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ABSTRACT

Volume of distribution at steady state (VD,ss) is one of the key
pharmacokinetic parameters estimated during the drug discovery
process. Despite considerable efforts to predict VD,ss, accuracy and
choice of prediction methods remain a challenge, with evaluations
constrained to a small set (<150) of compounds. To address these
issues, a series of in silico methods for predicting human VD,ss directly
from structure were evaluated using a large set of clinical compounds.
Machine learning (ML) models were built to predict VD,ss directly and to
predict input parameters required for mechanistic and empirical VD,ss

predictions. In addition, log D, fraction unbound in plasma (fup), and
blood-to-plasma partition ratio (BPR) were measured on 254 com-
pounds to estimate the impact of measured data on predictive
performance of mechanistic models. Furthermore, the impact of novel
methodologies such as measuring partition (Kp) in adipocytes and
myocytes (n = 189) on VD,ss predictions was also investigated. In
predicting VD,ss directly from chemical structures, both mechanistic
andempirical scalingusing acombinationof predicted rat anddogVD,ss

demonstrated comparable performance (62%–71% within 3-fold). The
direct ML model outperformed other in silico methods (75% within
3-fold, r2 = 0.5, AAFE = 2.2) when built from a larger data set. Scaling to
human from predicted VD,ss of either rat or dog yielded poor results
(<47%within 3-fold). Measured fup and BPR improved performance of
mechanistic VD,ss predictions significantly (81% within 3-fold, r2 = 0.6,
AAFE = 2.0). Adipocyte intracellular Kp showed good correlation to the
VD,ss but was limited in estimating the compounds with low VD,ss.

SIGNIFICANCE STATEMENT

This work advances the in silico prediction of VD,ss directly from
structure and with the aid of in vitro data. Rigorous and comprehensive
evaluation of various methods using a large set of clinical compounds
(n = 956) is presented. The scale of techniques evaluated is far beyond
any previously presented. The novel data set (n = 254) generated using
a single protocol for each in vitro assay reported in this study could
further aid in advancing VD,ss prediction methodologies.

Introduction

The current drug discovery path is a sequential, time-consuming
process with a high attrition rate (Hinkson et al., 2020). Attrition of
small-molecule drug candidates due to poor pharmacokinetic (PK)
profiles has diminished significantly in recent years (Waring et al.,
2015). This advancement can partly be attributed to the unprecedented
emphasis on screening compounds based on PK parameters in the drug
discovery phase (Ferreira and Andricopulo, 2019). PK is a well
recognized and fundamental property that influences drug concentra-
tions at target, which ultimately determines a drug’s efficacy and safety
(Ferreira and Andricopulo, 2019). Volume of distribution at steady state
(VD,ss) is a key PK parameter that describes the relationship between
drug concentrationmeasured in plasma or blood to the amount of drug in
the body at equilibrium (Smith et al., 2015). Estimation of apparent VD,ss

is of utmost importance because it influences Cmax and half-life in
plasma and target tissues, which in turn determines dose and dosing
regimen in the clinic (del Amo et al., 2013). Toward this end, VD,ss in
humans is commonly predicted using preclinical in vivo and in vitro data
in conjunction with various allometric scaling methods such as the Oie
and Tozer method (Jones et al., 2011). Alternatively, VD,ss can be
extrapolated from tissue-to-plasma partition coefficients (Kp) from
preclinical species (generally rat) (Nigade et al., 2019). These experiments
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are resource-intensive and require the synthesis of compounds; these
limitations further hinder the ability to predict human VD,ss early in drug
discovery or during lead optimization. Thus, considerable effort has been
undertaken to develop predictive in silico models to accelerate and reduce
the cost of drug discovery processes (Wenzel et al., 2019). As VD,SS is
dependent on the tissue partitioning of compounds, numerous studies have
focused on developing in silico approaches to predict tissue partitioning
based on physicochemical properties such as pKa and log P, plasma protein
binding, and blood-to-plasma partition ratio (BPR) (Graham et al., 2012;
del Amo et al., 2013). Poulin and Theil were some of the first to propose
a mechanistic Kp prediction method (Poulin and Krishnan, 1995; Poulin
and Theil, 2002). This method incorporates several important mechanisms,
such as albumin binding, neutral lipid, and phospholipid binding.
Berezhkovskiy (2004) is another method similar to Poulin and Theil.
The Rogers and Rowland method (Rodgers et al., 2005; Rodgers and
Rowland, 2006) is by far the most comprehensive Kp prediction method in
terms of mechanisms captured. It includes all the mechanisms captured in
previous published methods along with the addition of acidic phospholipid
and cytosolic ion partitioning. A drawback for the Rogers and Rowland
method is that there are two sets of equations based on the dissociation
constant or pKa of the compounds, and the cutoff or switch between these
equations was set at a pKa of 7. This results in a discontinuous relationship
between the dissociation constant and plasma tissue partitioning. Finally,
the method is also heavily dependent on accurate pKa predictions. To
address these issues, a modified Rodgers and Rowland method was
developed (Lukacova et al., 2008) that employs a single continuous
combined equation for compounds regardless of pKa. Ion partitioning into
acidic or basic intracellular compartments (lysosomes and mitochondria)
was described by Trapp et al. (2008) and can be used as an aid to Kp
prediction method for compounds for which ion trapping is expected. Key
mechanisms that play a crucial role in partitioning itself between plasma
and the specific organ tissue implemented by each prediction method is
summarized in Table 1.
Accurately predicting VD,ss remains a challenge that has not been

adequately solved (Smith et al., 2015). Few studies have evaluated the
performance of various VD,ss predictionmethods; however, these reports
were either in preclinical species (Graham et al., 2012) or used a small set
(,150) of clinical compounds (Jones et al., 2011; Korzekwa and Nagar,
2017; Chan et al., 2018; Nigade et al., 2019; Mayumi et al., 2020).
Recently, Lombardo et al. (2018) published a manually curated data set
of VD,ss for 1352 drugs after intravenous dosing, which presented an
opportunity to evaluate the predictive performance of various VD,ss

methodologies in determining human VD,ss. Therefore, we investigated
the 1) performance of the most common VD,ss prediction strategies, 2)
sensitivity of input parameters that influence VD,ss predictions, 3) impact
of experimental data on mechanistic VD,ss predictions, and 4) whether
novel methodologies such as using adipocyte andmyocyte cell partitioning
could improve VD,ss predictions.

Materials and Methods

Experimental Approaches

The VD,ss prediction strategies investigated are broadly categorized into two
approaches based on the starting data for the analysis, which is either fully in silico
(e.g., structural) or in vitro (experimental). Based on the compound availability, an
initial in vitro experimental data set of 331 compounds (Lombardo et al., 2018)
was identified. Predictive performances were assessed using 956 compounds for
the in silico and 254 compounds for the in vitro experimental approaches,
respectively.

For the in silico approach, VD,ss was predicted directly from chemical structure
[using compound Simplified Molecular Input Line Entry System (SMILES) as
input] by using the following four approaches: 1) mechanistic VD,ss prediction
using predicted physicochemical properties from commercial software (ADMET
Predictor 9.0) or 2) using machine learning (ML) models generated by the
Accelerating Therapeutics for Opportunities inMedicine (ATOM) consortium, 3)
allometric scaling from predicted VD,ss for preclinical species such as rat and dog
MLmodels, and 4) direct human VD,ss predictions using anMLmodel built using
clinical compounds (see schematic shown in Fig. 1).

In the Experimental Data approach, two distinct experimental data sets were
generated. The first experimental data set included measurement of physico-
chemical properties under a single protocol for each in vitro experiment, which
included log D, fraction unbound in plasma (fup), and BPR for 331 clinical
compounds (Lombardo et al., 2018). The above experimental data were used as
input parameters individually or in combination to predict mechanistic VD,ss

(Lukacova et al., 2008). In addition, novel experiments were conducted to
determine partition of compounds in human adipocytes and myocytes for 200
compounds that were a subset of the 331 compounds selected above. In silico and
experimental methodologies are further described in detail below. The percentage
of compounds that had accurately predicted VD,ss within 2-, 3-, or 10-fold; r2

(Pearson correlation coefficient); and absolute average fold error (AAFE) were
used as key criteria for comparison of predictive performance of each method.

In Silico Methods

VD,ss of the clinical compounds data set (Lombardo et al., 2018) was
subdivided based on whether experimental data were directly measured (331
compounds) or not (970 compounds). Evaluation of in silico methods was

TABLE 1

Comparison of mechanistic tissue partitioning (Kp) prediction methods

Mechanisms
Poulin

Homogeneous
Berezhkovskiy

Rogers and
Rowland

Lukacova
Trapp

Intracellular

Albumin binding Yes Yes Yes Yes No
Neutral phospholipid binding Yes Yes Yes Yes No
Neutral lipid binding Yes Yes Yes Yes No
Acidic phospholipid binding No No Yes Yes No
Cytosolic ion partitioning No No Yes Yes Yes
Lysosomal ion trapping No No No No Yes
Mitochondria ion partitioning No No No No Yes
Membrane potential No No No No Yes
Intracellular water Yes Yes Yes Yes Yes
Extracellular water Yes Yes Yes Yes No
Tissue-specific composition Yes Yes Yes Yes No

ABBREVIATIONS: AAFE, absolute average fold error; ATOM, Accelerating Therapeutics for Opportunities in Medicine; BPR, blood-to-plasma
partition ratio; CHI, chromatographic hydrophobicity index; ECFP, extended connectivity fingerprint; fup, fraction unbound in plasma; Kp, tissue-to-
plasma partition coefficient; LC/MS/MS, liquid chromatography with tandem mass spectrometry; ML, machine learning; MOE, molecular operating
environment; PK, pharmacokinetic; RED, rapid equilibrium dialysis; VD,ss, volume of distribution at steady state.
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performed on both data sets. It is important to note that all the evaluations were
performed on a complete hold-out set. For example, when predicting VD,ss for the
experimental data set, none of the compounds in the experimental data set were
a part of any of the ML model building data sets.

ADMET Mechanistic VD,ss Prediction. ADMET Predictor (version 9.0) was
used to predict pKa (S +Acidic_pKa, S +Basic_pKa), fraction unbound in plasma
(hum_fup%, converted to fup), BPR, and log P/D (S + log D, S + log P) from
chemical structure. These parameters were subsequently used as input parameters
to predict mechanistic Kp and human VD,ss predictions (Lukacova et al., 2008).
Predicted values of the input parameters were limited to typical assay limits for
each of the input parameters (hum_fup%: 0.1%–100%,BPR: 0–200, log P and log
D: 23 to 10).

ATOM Mechanistic, Allometry, and Direct ML Predictions

ATOM Mechanistic VD,ss Prediction. Data sets generated by GlaxoSmithK-
line (Supplemental Table 1) containing molecular structure information and
physicochemical parameters (log D, fup, BPR) were split into train, validation,
and test subsets. Model training and evaluation was generally performed as
previously described (Minnich et al., 2020). Briefly, a grid search hyperparameter
optimization technique was employed to train several machine learning
models (neural networks and random forests) with different hyperparameter
combinations (learning rate, layer sizes, number of nodes, dropout rates for
neural networks and maximum depth, number of trees for random forests),
splitting strategies (random and scaffold), and featurization techniques
[graph convolution, extended connectivity fingerprint (ECFP), molecular
operating environment (MOE) descriptors, and Mordred descriptors].
Additional details related to data sets and model performances are de-
scribed in Supplemental Table 1. Models with highest validation set R2

(coefficient of determination calculated using sklearn’s r2_score package)
regression score function were selected to predict fup, BPR, and log D from
chemical structures. These parameters were subsequently used to predict
mechanistic Kp and human VD,ss predictions by the Lukacova method
(Lukacova et al., 2008) as described in the ADMET Mechanistic VD,ss

Prediction section above.
Allometric Scaling. Rat fup, rat VD,ss, dog fup, dog VD,ss, and human fup

values were predicted using ATOM ML models built on GlaxoSmithKline
proprietary data sets as described in the ATOM Mechanistic VD,ss Prediction
section (Supplemental Table 1). Subsequently, human VD,ss was predicted using
the following three methods:

Single-species allometry scaling from rat (Jones et al., 2011)

Human  VDss ¼ ðRat   VDssÞ �
�
Human  fup

Rat   fup

�

Single-species allometry scaling from dog (Jones et al., 2011)

Human  VDss ¼ ðDog  VDssÞ �
�
Human  fup

Dog  fup

�

Predicted from rat and dog VD,ss using two species (Wajima et al., 2003)

logðHuman  VDssÞ ¼ ð0:07714� logðRat   VDssÞ � log  ðDog  VDssÞ  Þ
þ 0:5147  logðDog  VDssÞ þ 0:586

Direct ML Models. An alternative approach to mechanistic prediction of
human VD,ss is to build ML models to predict volumes of distribution directly
from chemical structures. For this approach, regression models based on
molecular structure were fit to directly predict the log base 10 experimental
human VD,ss values of clinical compounds (Lombardo et al., 2018). Compounds
were clustered by Bemis-Murcko scaffold and subsequently divided into training,
validation, and test sets, starting with the largest cluster size to the smallest cluster
size. A train/validation/test split of 70%/10%/20% was used to train and evaluate
random forest and neural network models as described for the in vitro parameter
models (Minnich et al., 2020). Neural network models sampled different
combinations of learning rates, layer sizes, and number of nodes. Random forest
models sampled different maximum tree depth and number of trees. Several
featurization approaches were used including DeepChem’s (https://github.com/
deepchem/deepchem) graph convolution model, ECFP, and calculated MOE and
Mordred descriptors. Models were selected by picking the model with the
maximum validation set R2. Clinical compounds were grouped into two sets. The
first set of compounds was the 287 compounds that were selected for experimental
measurements (BPR, fup, and log D). The second set of compounds was the 970
additional compounds described in Lombardo et al. (2018) without further
experimental measurements. These sets were used in two ways for fitting and
prediction. 1) To compare predictive performance of the directMLmodels against
the other in vitro approaches, models were trained using the 970 human VD,ss of
compounds without further experimental measurements. The VD,ss ML model
was then used to predict VD,ss for the 287 compounds with new experimental
measurements for comparison with in vitro methods. 2) A very challenging (due
to the small size of the training set) external test set was used by inverting the
previous approach. Models were developed using 287 compounds with new
experimental measurements. Then, the fit model was used to predict VD,ss for the
970 compounds without further experimental measurements. In both approaches,
the set of compounds used for model development was further split into training,
validation, and internal test sets as previously described.

Experimental Data

Log D. The chromatographic hydrophobicity index (CHI) (Valkó et al., 1997)
values were measured using a reversed phase high-performance liquid chroma-
tography (HPLC) column (50� 2mm 3mMGemini NXC18; Phenomenex, UK)
with fast acetonitrile gradient at starting mobile phase of pH 2, 7.4, and 10.5. CHI
values are derived directly from the gradient retention times using calibration

Fig. 1. Overview of human VD,ss prediction methods and input parameters (in silico and in vitro data) evaluated in this study.
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parameters for standard compounds. The CHI value approximates to the volume
percent organic concentration when the compound elutes. CHI is linearly
transformed into ChromlogD (Young et al., 2011) by least-squares fitting of
experimental CHI values to calculated ClogP values for over 20,000 research
compounds using the following formula: ChromlogDpH=7.4 = 0.0857CHI-2.00.

Blood-to-Plasma Partition Ratio. In vitro measurement of blood-to-plasma
partition was conducted in human blood (K2EDTA as anticoagulant) obtained
from a commercial source (BioReclamation IVT, Liverpool, NY).Hematocrit (the
ratio of volume of red blood cells to total blood) was measured by centrifugation
of the whole blood at 3000 rpm for 10 minutes using microhematocrit capillary
tubes. Control plasma was prepared from a portion of the whole blood by
centrifugation at 3000g for 10 minutes. Both whole blood and control plasma
samples were warmed at 37�C in a water bath for 30 minutes. Subsequently, the
test compounds (1 mM in the final concentration) and controls [methazolamide
(BPR ;1) and metoprolol (BPR ;40)] were spiked into blood and incubated at
37�C (5% CO2) with shaking at 200 rpm for 60 minutes along with control
samples. After incubation for 60minutes, the incubated whole bloodwas removed
from the water bath, and the plasma was separated by centrifugation at 1000g for
10 minutes. Aliquots of the control plasma were also removed. All plasma
samples (50 ml) were treated with 400 ml of ice-cold acetonitrile containing an
internal standard (100 ng/ml tolbutamide in acetonitrile). After the removal of
protein by centrifugation at 1640g (3000 rpm) for 10 minutes at 4�C, the
supernatants were transferred to HPLC autosampler plate. Test compounds and
internal standard response (or peak area) ratio in whole blood and its resulting
plasma were measured using liquid chromatography with tandem mass spec-
trometry (LC/MS/MS). Blood-to-plasma partition was calculated by ratio of mass
spectrometric response of compounds in blood samples after 60 minutes of
incubation to mass spectrometric response in plasma samples.

Fraction Unbound in Plasma. In vitro measurement of fup was conducted
using a rapid equilibrium dialysis (RED) device. The fup values of test
compounds and a positive control (warfarin) were determined at a single time
point of 4 hours postincubation. Considering high surface-to-volume ratio of the
membrane compartment in a RED device, equilibrium is expected to be achieved
within 4 hours of incubation (Waters et al., 2008). Stock solutions of test
compounds and warfarin were prepared in DMSO at concentrations of 5 mM and
subsequently diluted to a final concentration of 0.5 mM in DMSO:water (1:1,
v/v). Incubation mixtures were prepared by diluting the stock solution into human
plasma obtained from a commercial source (BioReclamation IVT). Final
concentrations of compounds in incubation mixture were 5 mM. Human plasma
was prewarmed in a water bath at 37�C prior to the experiment. In total, 400 ml of
the stopping solution (100 ng/ml tolbutamide in acetonitrile) was added to a 96-
well deep well sample collection plate on ice. In a RED device, 500ml of PBSwas
added to the white chambers (receiver side), and aliquots (300 ml) of each
incubation mixture were spiked into the red wells (donor side). A sample (40 ml)
of the incubation mixture was transferred into the 0-minute wells on the
sample collection plate. The device and remaining spiked plasma samples
were incubated at 37�C for 4 hours with shaking at 150 rpm. After the
incubation period, 40 ml of the remaining spiked plasma was transferred to
the sample collection plate. All samples in the RED device were mixed by
pipetting prior to aliquoting (40 ml) from each donor well into a well
containing 160 ml of PBS buffer. A sample (160 ml) of each receiver well was
aliquoted into a tube containing 40 ml of blank plasma. PBS (160 ml) was
added to the 0-minute and 240-minute stability wells. Analysis of samples
was performed using LC/MS/MS. For all samples, peak area ratios were used
to determine percent unbound. Plasma proteins were precipitated with 400 ml
of acetonitrile containing 100 ng/ml tolbutamide as a mass spectral internal
standard. The resulting mixtures were vortex-mixed, followed by centrifu-
gation for 15 minutes at .3500 rpm/min. A sample (100 ml) of the
supernatant/well was transferred to a clean 96-well plate containing 100 ml
of ultrapure water/well. The plate was vortexed for 1 minute at .1700 rpm/
min. Aliquots (4 ml) of the resulting supernatant were injected onto the
LC/MS/MS system to obtain peak area ratios for each compound to
determine fraction unbound in plasma. Equilibrium dialysis method for
measuring fup is amenable to automation and is generally accepted as the
gold standard (Trainor, 2007).

Adipocyte and Myocyte Partition. Intracellular partition of compounds in
adipocytes and myocytes was determined using a protocol described previously
(Treyer et al., 2018). Primary human adipocytes and myocytes were obtained

from commercial sources (Lonza, MD). The test compounds and controls at
a final concentration of 0.5mMwere incubated with fully differentiated myocytes
and adipocytes plated in culture in triplicate at 37�C (5% CO2) with shaking at
100 rpm for 45 minutes. After the end of the incubation, the medium was
transferred to a stop solution containing acetonitrile and internal standard (100 ng/
ml tolbutamide in acetonitrile). The cell layer was washed with 200 ml of cold
Hanks’ buffered salt solution and extracted with stop solution (100 ng/ml
tolbutamide in acetonitrile). Both the intracellular and extracellular compound
concentrations were analyzed using LC/MS/MS. The cell protein concentration
was determined by the bicinchoninic acid assay. Intracellular drug accumulation
(Kp) was calculated from the peak area ratios of the analyte to internal standard in
the medium, cells, and protein concentration from the following Kpintra2 cell

equation. Protein content was quantified using the bicinchoninic acid assay in
representative wells to calculate the cellular volume (Vcell), assuming 6.5 ml/mg
protein (Treyer et al., 2018). Amount of drug in the cells ðAcell) was estimated
using peak area ratio and volume of cell lysate (area ratio� volume of cell lysate).
Cmedium refers to corrected medium concentration. Intracellular accumulation was
determined using cell lysate concentration � volume of cell lysate (150 ml).
Subsequently, the Kpfat or Kpmuscle is calculated accounting from protein binding
in plasma.

Kpintra2 cell ¼
�
Acell
Vcell

�
Cmedium

Kpfat ¼ fup� Kpadipocyte;  intra2 cell

Kpmuscle ¼ fup� Kpmyocyte;  intra2 cell

Predictions Based on Experimental Data

Mechanistic Models for Kp Prediction. Experimental data (logD, fup, BPR)
were used as input parameters individually or in combination to predict Kp
(Lukacova et al., 2008) and subsequently were used to calculate VD,ss using the
following relationship:

VDSS ¼ Vp þ Ve
E

P
þ+n

i¼1KpiVi;

where Vp is the volume of plasma; Ve is the volume of erythrocytes (Vblood 2VpÞ;
E/P is the erythrocyte-to-plasma ratio, which is derived by the equation BPR +
hematocrit 2 1)/hematocrit; and Kpi and Vi are the plasma tissue partition ratio
and volume, respectively, for the ith tissue (Nigade et al., 2019).

Tissue-Level Kp Prediction. We used five strategies for predicting VD,ss

using adipocytes and myocyte Kp values:

1. Adipocyte-only method: Adipocyte Kp values were used to calculate
partitioning into fat (Kpfat). Kp for other organs was assumed to be 1 to
predict VD,ss using the following equation:

VDss ¼ Vp þ ðKpfat � VfatÞ þ 1� Vresto fthebody:

2. Myocyte-only method: Myocyte Kp values were used to calculate
partitioning into muscle tissue (Kpmuscle), and Kp for other organs was
assumed to be 1 to predict VD,ss using the following equation:

VDss ¼ Vp þ Kpmuscle � Vmuscleð Þ þ 1� Vresto fthebody:

3. Combined method: Both adipocyte and myocyte Kp values were used to
calculate fat and muscle volumes, respectively. Kp for all nonfat and
muscles organs was assumed to be 1 to predict VD,ss.

VDss ¼ Vp þ ðKpfat � VfatÞ þ ðKpmuscle � VmuscleÞ þ ð1� Vresto fthebodyÞ

4. Average method: Average of adipocyte and myocyte Kp values were
used as Kp for all nonfat and muscle tissues. Both adipocyte and
myocyte Kp values were used to calculate fat and muscle volumes,
respectively, to predict VD,ss.

VDss ¼ Vp þ ðKpfat � VfatÞ þ ðKpmuscle � VmuscleÞ þ ðKpavg � Vresto fthebodyÞ

5. Separate method: Mechanistic Kp (Lukacova et al., 2008) calculations
were used for nonfat or nonmuscle organs. Both adipocyte and myocyte
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Kp values were used to calculate fat and muscle volumes, respectively.
Both of the volumes were subsequently added to predict VD,ss as follows:

VDss ¼ Vp þ ðKpfat � VfatÞ þ ðKpmuscle � VmuscleÞ þ VDssLukacova;rest  o f   tissues:

Results

As summarized in Fig. 1, we investigated the performance of the most
common VD,ss prediction strategies, sensitivity of input parameters that
influence VD,ss predictions, impact of experimental data on mechanistic
VD,ss predictions, and whether adipocyte and myocyte cell partitioning
could improve predictive performance by using a large compound
data set. An in silico–only approach was applied using a set of
956 compounds (the ATOM in silico set) related to the Lombardo
intravenous dosing drug set (n = 1352 drugs) in which VD,ss values

were reported (Lombardo et al., 2018). A separate set of compounds, the
ATOM experimental set (n = 254 compounds), had additional in vitro
data collected under uniform experimental conditions (seeMaterials and
Methods; Supplemental Table 2) and was used as a comparator against
the purely in silico methods. Although the ATOM experimental data set
was selected based on the compound availability from an initial set of
331 drugs, it represented chemical diversity of the clinical data set
(Supplemental Fig. 1).
The comparative assessments of various in silico approaches

evaluated to predict human VD,ss for two discrete sets of compounds
are summarized in Fig. 2 and Table 2. Details of ATOM ML models
used to predict input parameters for mechanistic VD,ss predictions are
shown in (Supplemental Table 1). Model/featurization combination that
resulted in the best models varied by data sets. MOE or graph
convolution featurization with random forest or neural network models

Fig. 2. Summary of model performance of
in silico VD,ss prediction methodologies: (A)
ATOM in silico set (n = 956 compounds) and (B)
ATOM experimental set (n = 254 compounds).

TABLE 2

Summary of model performance of in silico VD,ss prediction methodologies for Lombardo intravenous dosing drug set (n = 1352 drugs) divided into two subsets: 1) ATOM
in silico set (.940 compounds) and 2) ATOM experimental set (n . 280 compounds)

Method Description Input Parameters n
Within
2-Fold

Within
3-Fold

Within
10-
Fold

r2 AAFE

%
ADMET mechanistic Log D, fup, BPR (predicted using ADMET Predictor models) 956 47 65 90 0.25 2.8

287 51 71 92 0.35 2.4
ATOM mechanistic Log D, fup, BPR (predicted using ATOM ML models) 936 45 62 87 0.23 3.1

285 50 66 92 0.38 2.7
Allometry (rat and dog) Rat VD,ss, dog VD,ss (predicted using ATOM ML models) 956 45 66 93 0.28 2.7

283 45 69 96 0.37 2.5
Allometry (rat) Rat VD,ss, rat fup, fup (human) (predicted using ATOM ML models) 956 30 47 79 0.02 4.4

283 23 40 76 0.0 4.9
Allometry (dog) Dog VD,ss, dog fup, fup (human) (predicted using ATOM ML models) 956 28 43 75 0.05 4.9

283 23 38 77 0.12 4.7
Direct ML model for human VD,ss SMILES/MOE descriptors 956 36 55 88 0.14 3.3

285 58 75 98 0.52 2.2
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most frequently outperformed other featurization and models investi-
gated in this study. Relative to other in silico methods, mechanistic VD,ss

predictions (both by ATOM and ADMET ML models) and two-species
allometry demonstrated superior predictive performance, with 62%–71%
of compounds within 3-fold of observed VD,ss for both data sets (Table 2).
In contrast, scaling from single species using allometric methods
performed poorly, with only 38%–47% of compounds within 3-fold
(Table 2). Trends in predictive performance (such as percentage within
2-, 3-, and 10-fold; AAFE; and Pearson’s r2) across various in silico
models were comparable using either the smaller or larger data sets
(Table 2, 283 and 956 compounds), with an exception for direct ML
model. Predictive performance of the direct ML model to predict VD,ss

increased significantly when the ML model was built using a larger data
set (Fig. 3; Table 2). The percentage of compounds within 2-, 3-, and 10-
fold increased to 58%, 75%, and 98% from 36%, 55%, and 88%,
respectively (Fig. 2; Table 2). Similarly, there was significant improve-
ment in r2 values (from 0.14 to 0.52) and AAFE (decreased from 3.3 to
2.2). The scatter plots of direct ML model predictions are shown in
Fig. 3. Additional scatter plots of predicted VD,ss comparedwith reported
(Lombardo et al., 2018) values across both data sets and various in silico
methods are presented in Supplemental Fig. 2.
Experimentally measured log D, fup, and BPR in vitro assays for 254

compounds are summarized in Supplemental Table 2. Although 331

compounds were originally included, some of the compounds showed
analytical or recovery issues in different assays and were removed from
the data sets. Figure 4 and Table 3 summarize predictive performance of
various combinations of experimental data (Supplemental Table 2) as
input parameters. Scatter/kernel density estimation plots of mechanistic
VD,ss predictions using various combinations of experimental data (fup,
BPR, and log D) as input parameters are shown in Supplemental Fig. 4.
The highest percentage of compounds within 3-fold of prediction error
was observed when experimentally determined fup and BPR were used
as input parameters, with 81% of the compounds within 3-fold of
Lombardo reference values; a good correlation between predicted and
observed values (r2 = 0.58) was seen.
Correlation between observed and predicted VD,ss for 254 compounds

using experimental fup and BPR data as input parameters is shown in
Fig. 5. Among the experimental parameters investigated, VD,ss pre-
dictions were sensitive to BPR. VD,ss predictions within 3-fold dropped
to 73% from 81%, and r2 reduced from 0.58 to 0.42 when only fup was
used instead of fup and BPR. In absence of experimental data, assuming
BPR as 1 could be recommended, as better performance was observed
when the BPR value was assumed to be 1 instead of inputting ML-
predicted values (Table 3); 63% of the compounds were predicted within
2-fold when BPR was assumed to be 1, compared with 56% when BPR
was predicted fromMLmodels in combination with measured fup. This

Fig. 3. Predicted vs. observed VD,ss using direct ML models: (A) the ML model built was using a smaller data set (287 compounds), and predictions were tested on a large
in silico set (956 compounds) and (B) vice versa. Crosslines indicate 2-, 3-, and 10-fold limits.

Fig. 4. Predictive performance of mechanistic Kp pre-
diction methods using various combinations of experi-
mental (Exp.) data.
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highlights that VD,ss predictions are sensitive to errors in BPR predictions
fromMLmodels and that the best performance across all the methods is
with measured fup and BPR values. In contrast, complementing
measured log D to mechanistic predictions with fup and BPR measured
data did not improve predictive performance any further (Table 3).
Since predicted values from log D ML models (both ADMET and
ATOM) were in close agreement with measured values (Supplemental
Fig. 3), it is not surprising to see that measurement of log D values did
not improve VD,ss predictions. Figure 5A displays the correlation of
predicted-to-observed VD,ss classified by ionization class (Lombardo
et al., 2018). Anionic and zwitterionic compounds are the best-predicted
classes compared with neutral compounds. The kernel density estima-
tion (Seaborn Python library: https://seaborn.pydata.org/tutorial/
distributions.html) plot in Fig. 5B demonstrates underlying distri-
bution of the points in the Fig. 5A scatter plot. Figure 5B suggests
that overall predictions usingmechanistic predictions usingmeasured fup
and BPR are directly correlated, and a majority of the predictions are on
the unity line, highlighting that there is no overall trend of overpredicting
or underpredicting VD,ss.
As fat and muscle contribute to 60% of body volume, the impact of

experimental adipocyte and myocyte cell partition in improving VD,ss

prediction was investigated. Measured intracellular partitioning of 189
compounds in adipocytes and myocytes is presented in Supplemental
Table 3. The impact of adipocyte and myocyte cell partition on
predictive performance for the same set of compounds was compared
with that from the best predictive model (fup and BPR experimental data
as input parameters; Fig. 6; Table 4). Good correlation between observed
versus predicted VD,ss was noted when either adipocyte or myocyte or
both Kp values were used (r2 of 0.41–0.48, Table 4). Although the
percentage of compounds within 3-fold, r2, and AAFE were not
significantly different using either adipocyte or myocyte partitioning,
percentage of compounds within 2-fold was significantly higher when
VD,ss was predicted using adipocyte Kp values (54% vs. 41%, Table 4).
The combination of both adipocyte and myocyte partitioning with
different strategies did not improve predictive performance any further
(Table 4). For the same set of compounds, VD,ss predicted using only fup
and BPR experimental data demonstrated higher percentage of com-
pounds with 2- and 3-fold comparedwith predictions based on adipocyte
or myocyte data (Fig. 6; Table 4).
Across all the prediction methods evaluated using different data sets,

there was a good correlation between AAFE and percentage of
compounds within 2- or 3-fold of observed. As anticipated, prediction
methods in which lower AAFEswere observed demonstrated the highest
percentage of compounds within 3-fold. Among all the methods
investigated, mechanistic VD,ss predictions utilizing measured fup and
BPR as input parameters demonstrated superior performance, with
lowest AAFE, highest r2, and percentage of compounds within 3-fold.

Discussion

Mechanistic VD,ss Predictions. Kp calculations use physiologic
parameters of the tissue and physicochemical properties of the drug to
ascertain how compounds partition themselves between plasma and
tissue. Based on preliminary evaluations and other reports in the
literature (Graham et al., 2012), the Lukacova method (Lukacova
et al., 2008) was used as a method of choice for mechanistic VD,ss

predictions. Key prerequisite input parameters to predict mechanistic
VD,ss are pKa, log D, log P, fup, and BPR. Therefore, estimating these
input parameters either by in silico methods or by experimental
measurements, and impact of measured parameters on mechanistic
VD,ss predictions have been explored.
Mechanistic VD,ss predictions using input parameters predicted by

either ATOM ML models or ADMET Predictor demonstrated similar
performance across data sets (Table 2). Therefore, either of the two ML
models set (ATOM or ADMET Predictor) can be used to predict
mechanistic VD,ss in silico. It is important to note that ML models for
BPR [ATOMML or ADMET Predictor (from user manual)] were built
using very small data sets (Supplemental Table 1), and predictive
performances of ML models to predict BPR are questionable. When
predicted BPR values were replaced with experimental data, significant
improvement in mechanistic VD,ss predictive performance was ob-
served; r2 increased from 0.38 to 0.51 and percentage within 3-fold
increased from 66% to 79%, highlighting the sensitivity of VD,ss

predictions to BPR values (Fig. 4; Table 3). As BPR is a key parameter,
particularly for calculation of intracellular acidic phospholipid binding
of strongly basic drugs, it could be anticipated to improve the
predictions. However, impact of BPR measurement was not definitely
demonstrated in literature until recently (Yau et al., 2020). The current
evaluations (Table 3) clearly demonstrate the importance of measuring
BPR in predicting VD,ss and the need to fill the existing gaps in BPR data
sets used to build predictive ML models. It is noteworthy that with only
two in vitromeasurements (fup andBPR), 81% of compounds are within
3-fold of observed VD,ss (Table 3), with AAFE of 2.0.
Because it can impact both the pharmacokinetics and pharmacody-

namics of a drug, fup is measured routinely in drug discovery (Smith
et al., 2010). On the other hand, BPR of compounds in the early
discovery phase is relatively less routinely measured and might lead to
missed opportunities not only in predicting VD,ss (as observed in this
study) but also in predicting the impact on overall pharmacokinetics of
a compound (Kalamaridis and DiLoreto, 2014). Comparable predictive
performance was noted by Chan et al. (2018) using a smaller data set of
152 clinical compounds. They demonstrated that mechanistic VD,ss

predictions were accurate or superior to empirical approaches based on
the extrapolation of VD,ss from preclinical species (Chan et al., 2018). In
addition to superior performance of mechanistic VD,ss prediction
methods (using either ML-predicted or experimental input parameters),

TABLE 3

Summary of mechanistic VD,ss predictive performance using experimental data (fup, BPR, and log D) as input parameters

Method Description Input Parameters n
Within
2-Fold

Within
3-Fold

Within
10-
Fold

r2 AAFE

%
Experimental fup Experimental fup. Other input parameters were predicted by ATOM ML models 254 56 73 93 0.42 2.3
Experimental BPR Experimental BPR. Other input parameters were predicted by ATOM ML models 254 57 79 96 0.51 2.1
Experimental log D Experimental log D. Other input parameters were predicted by ATOM ML models 254 47 70 89 0.29 2.7
Experimental fup, BPR Experimental fup and BPR. Other input parameters were predicted by ATOM ML models 254 65 81 96 0.58 2.0
Experimental fup, BPR,

log D
Experimental fup, BPR, and log D 254 59 76 93 0.46 2.2

Experimental fup (BPR =
1)

Experimental fup, and BPR is assumed equal to 1. Other input parameters were predicted by
ATOM ML models

254 63 76 94 0.48 2.1
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a mechanistic approach uniquely offers the ability to calculate partitioning
(Kp) of compounds into various tissues.
Allometric Scaling. Traditionally, prediction of human VD,ss has

relied on scaling of VD,ss obtained from preclinical species using
allometric equations (Jones et al., 2011). Although allometry has some
limitations in predicting distribution of highly protein-bound drugs, it
has been a valuable technique to predict human PK parameters to
determine first-time-in-human dose (Choi et al., 2019). To leverage

existing data from animal studies during early drug discovery, use of
ML-predicted VD,ss employing allometric scaling from preclinical
species was explored. Although there continue to be translational
questions about interspecies scaling, it was hypothesized that de-
ployment of this technique could allow for much wider chemical space
coverage relative to human VD,ss trained models, as well as to provide
insight into mechanisms not captured by mechanistic models such as
transporter-driven tissue uptake. Although ML models to predict VD,ss

and fup values in preclinical species have demonstrated good perfor-
mance (Supplemental Table 1), single-species scaling performed poorly
in predicting human VD,ss (Table 2, ,50% were within 3-fold). This
poor performance could be due to magnification of errors in predictions
of VD,ss and/or fup values in addition to limitations of single-species
scaling. Several studies have shown that plasma protein binding
corrections significantly enhanced predictive performance of allometric
scaling from preclinical VD,ss (Zou et al., 2012). As the VD,ss predictions
are inversely proportional to fup in preclinical species (seeMaterials
and Methods for equations), errors in the predictions of fup values
will have a significant impact on VD,ss predictions. Therefore, we
investigated VD,ss comparisons without fup corrections. Direct
correlation of predicted dog VD,ss (without fup corrections) with
human VD,ss demonstrated improved performance, with 48%, 65%,
and 97% of compounds within 2-, 3-, and 10-fold of observed human
VD,ss, respectively, when compared with fup accounting for the
difference between dog and human (23%, 37%, and 75%, Table 2).
This supports that the poor predictive accuracy of the dog fup model
magnified the prediction errors. However, similar improved perfor-
mance or correlations were not observed in the case extrapolating
from rat VD,ss predictions. In contrast, human VD,ss scaled using
both rat and dog by the Wajima method demonstrated predictive
performance similar to mechanistic models (Table 2). Although
overall predictive performance is not significantly different between
the two methods, it is noteworthy that mechanistic models were
relatively better at predicting anionic compounds within 2-fold
compared with the Wajima method (Supplemental Fig. 7). VD,ss

predictions classified by ionization class across various methods can
be found in Supplemental Fig. 6.
Direct MLModels. Previously, we observed that the data set size has

a direct impact onmodel predictivity for several pharmacokinetic related
data sets (Minnich et al., 2020). As anticipated, ML models built using
smaller data sets, such as that for BPR, showed lower model
performance statistics compared with models built using a larger data
set (Supplemental Table 1). Furthermore, the direct ML model built on
a larger data set (using 970 clinical compounds) outperformed other
in silico methods, including the mechanistic VD,ss method (Table 2).
When utilizing direct ML models built on a larger data set, 75% of
compounds (Table 2) were predicted within 3-fold of observed VD,ss,
with excellent correlation (Fig. 3B). It is important to highlight that the
clinical data set is highly diverse across physicochemical, in vitro
ADME, and in vivo PK properties (Lombardo et al., 2018). Models built
on diverse data sets of chemical space have a greater applicability
domain and generalizability (Simeon et al., 2019). Therefore, direct ML
predictions of VD,ss might be the most computationally efficient and
predictive way to process in silico predictions of VD,ss for de novo
compounds. One limitation of the current model is the relatively small
training set, possibly restricting the application of the model to certain
chemotypes. In such cases, models that are limited to structurally related
analogs may prove more predictive than global models built on a diverse
set of compounds (Simeon et al., 2019). Despite some differences in
hyperparameters and data set splits used relative to our study, Simeon
et al. (2019) demonstrated similar predictive performance for a direct
ML model built using a data set of 941 compounds. These independent

Fig. 5. (A) Scatter plot [colored by ionic state reported in Lombardo et al. (2018)].
(B) Kernel density plot showing correlation between observed and predicted VD,ss

for 254 compounds using experimental (exp) fup and BPR data as input parameters.
Crosslines indicate 2-, 3-, and 10-fold limits.
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studies provide promising evidence of improved performances of direct
ML models with enhanced data sets of clinical compounds.
Predictions Using Adipocyte and Myocyte Cell Partitioning.

Muscle and fat are tissues with larger physiologic volumes (60% of
tissue volume), and distribution of compounds to these tissues have
a major impact on the VD,ss of compounds in human (Davies andMorris,
1993). Björkman (2002) evaluated relative contributions of various
tissue partition coefficients (Kp, tissues) in predicting VD,ss in rat and
observed an excellent linear correlation (.0.99) between VD,ss when
calculated using only Kp values from muscle and fat. In this study, we
hypothesized that intracellular partitioning of compounds into human
adipocytes and myocytes in vitro could be used as a surrogate to
determine fat and muscle Kp values and subsequently be used to
estimate human VD,ss. In addition, measuring Kp values directly in
human cells could improve translation to human tissues. Higher
predictive performance was observed, but only when one of the
adipocyte partition or myocyte partition values was included to predict
VD,ss (Table 4). Adipocyte and myocyte partition values and predicted
VD,ss were highly correlated (r

2 . 0.7), suggesting that measurement of
partition in only one cell type is adequate. Between the two measure-
ments, adipocyte partition (Kpfatonly) showed better performance,
particularly with respect to the percentage of compounds within 2-fold
compared with myocyte partition (Kp muscle only). Combination of
both adipocyte and myocyte partition in various combinations did not
provide significant improvement in VD,ss predictions (Table 4). Al-
though, Kpfat showed good correlation to human VD,ss, it failed to
predict compounds with low VD,ss (,1 l/kg) because of volume
contributions from other tissues (assumption of Kp = 1) (Supplemental
Fig. 5a). Surprisingly, predictive performance was lower when fat and
muscle volumes were predicted using both adipocyte and myocyte
measured data, and the volume of the remaining tissues was predicted

using mechanistic Kp prediction method. Only 56% of the compounds
were within 3-fold compared with 63% when Kp was assumed to
be 1 for other tissues (Table 4). However, it improved prediction of
compounds with low VD,ss. Measured adipocyte and myocyte
partition data provided in Supplemental Table 3 enable further
exploration of VD,ss prediction methods.

Conclusions

One of the purposes of comparing various in silico VD,ss prediction
methods was to establish the best in silico approaches to predict VD,ss for
de novo compounds. Based on the extensive comparisons of results
across the in silico methods (Table 2), we conclude that 1) the
mechanistic VD,ss prediction methods using a combination of ML
models for predicting physicochemical properties paired with mecha-
nistic equations for Kp or 2) theWajimamethod employing predicted rat
and dog VD,ss are our recommended in silico approaches to predict
human VD,ss. If a larger training data set of chemically diverse VD,ss

experimental values is available, then direct ML predictions of VD,ss

might be the most computationally efficient and predictive way to
process in silico predictions of VD,ss for de novo compounds. Once these
de novo compounds have been synthesized in discovery, it is most useful
to experimentally measure BPR and fup to get to a more accurate
estimation of human VD,ss. Based on our analysis, BPR is the most
sensitive physicochemical property to determine VD,ss in silico. Further,
we investigated the utility of adipocyte and myocyte partitioning in
predicting VD,ss. If fat or muscle partition coefficients are being
considered as part of the model, adipocyte Kp measurements may
provide more predictive power than either myocyte Kp alone or
adipocyte and myocyte combined. In summary, the scale of prediction
strategies evaluated and size of data sets used in this study are novel and
significantly larger than those presented in the literature thus far. In

Fig. 6. Predictive performance using adipocyte (Kp
fat) and myocyte (Kp muscle) partitioning experimental
(exp) data.

TABLE 4

Performance of VD,ss prediction methods utilizing adipocyte and myocyte Kp experimental data

Method Description Input Parameters n
Within
2-Fold

Within
3-Fold

Within
10-
Fold

r2 AAFE

%
Kp fat only Kp adipocyte, fup and BPR 189 54 68 97 0.42 2.4
Kp muscle only Kp myocyte, fup and BPR 189 41 65 94 0.43 2.6
Kp fat and muscle Kp adipocyte, Kp myocyte, fup and BPR 189 36 63 92 0.46 2.9
Kp average of fat and muscle Kp adipocyte, Kp myocyte, fup and BPR 189 31 46 83 0.46 3.9
Kp fat and Kp muscle with mechanistic predicted Kp

values for other tissues
Kp adipocyte, Kp myocyte, fup and BPR, predicted Kp values

using ATOM mechanistic models for tissues other than fat and
muscle

189 33 56 93 0.48 3.1

Kp fat and Kp muscle with mechanistic predicted Kp
values for other tissues using experimental log D

Kp adipocyte, Kp myocyte, fup and BPR, predicted Kp values
using ATOM mechanistic models for tissues other than fat and
muscle

169 27 46 85 0.41 3.9

Lukacova with experimental fup, BPR Experimental fup and BPR. Other input parameters were predicted
by ATOM ML models

189 60 76 95 0.50 2.2
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addition, we investigated novel methodologies such as adipocyte and
myocyte partitioning in predicting VD,ss. Finally, we have provided
several novel in vitro data sets (e.g., BPR, adipocyte Kp, myocyte Kp)
generated using a single protocol for 254 clinical compounds that will
enable the research community to further enhance VD,ss prediction
methods.This document was prepared as an account of work sponsored
by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied,
or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those
of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product
endorsement purposes. The authors declare no competing financial
interest.
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