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Abstract.
BACKGOROUND AND OBJECTIVE: Cardiovascular disorders are increasing because of poor eating habits, excessive
drinking, and lack of exercise. Some of the typical cardiovascular surgical procedures utilize catheters. Catheter-based procedures
require the surgeons to have extensive experience and high proficiency at performing vascular interventions. However, the
learning period to acquire such proficiency is lengthy and the opportunities for practical training and mastery are insufficient.
Therefore, due to insufficient skill, dangerous situations with damage or rupture of the patient’s blood vessels may occur, thereby
increasing the risk of medical accidents. Hence, it is necessary to have experience and proficiency for performing vascular
interventions. Thus, it is necessary to develop a simulator to shorten learning time and reduce medical accidents.
METHODS: In this study, we developed a position detection system for the simulator to use physical models to learn
cardiovascular surgical intervention techniques. The developed system uses changes in the output values of a Hall sensor based
on the position of a permanent magnet.
RESULTS AND CONCLUSIONS: From the changing output values, the distance calculation equation is derived, and the
position of the permanent magnet is effectively estimated from the calculations. The performance of the position detecting
system was tested, and the results proved that the system could be sufficiently used as a simulator.

Keywords: Permanent magnet, hall sensor, hall effect, position detection, medical simulator

1. Introduction

Cardiovascular disorders are increasing because of poor eating habits, excessive drinking, and lack
of exercise [1]. In addition, the risk of cardiovascular disease is emphasized as the elderly population
increases owing to a rapidly aging society [2]. Cardiovascular disease is identified as the second most
common cause of death in Korea; cardiovascular mortality rates rose by 38.8% in 2014 compared to
that in 2004 [3]. Catheters are commonly used in most cardiovascular surgical procedures because of
advantages such as short surgical duration, minimal invasiveness, and shortened patient recovery times [4].
Approximately 18.9% of all medical disputes in the United States resulting from surgery was attributable
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to chest and cardiac surgery [5]. The primary cause of such disputes involve catheter-based procedures,
which rely heavily on dexterity and are difficult to perform as they require advanced skills from extensive
experience. Because insufficient proficiency can lead to dangerous damage or rupturing of the patient’s
blood vessels, the risk of medical accidents is very high [6]. Consequently, the medical staff must have
accumulated experience and high proficiency to prevent medical accidents.

The learning period to acquire such proficiency is generally lengthy, and there are insufficient practical
training opportunities to develop mastery. To solve these problems, simulators have been utilized in
medical training [7–9]. Most vascular intervention simulators have visible internal structures; therefore,
medical training using such simulators is not very effective because the structures are different from
those of the human body, whose internal environment is invisible and non-transparent. In other words,
the two situations are different. Thus, in a vascular intervention simulator, detecting and manipulating
the position of the catheter inside an invisible and non-transparent environment is very important. In
surgical procedures involving catheters, generally the C-arm is used to detect the position of the catheter
inside the patient’s body. However, the C-arm utilizes X-rays, which can cause genetic abnormalities
and even cancer [10–12]. Therefore, 3D position detection methods for catheters that can avoid X-ray
exposure are required in the medical simulator. To address this issue, position detection methods such as
magnetic marker monitoring (MMM) and global positioning system (GPS) are used [13,14]. The MMM
technique is based on the superconducting quantum interference device (SQUID) and requires cooling;
further, the measurements must be performed in a magnetically shielded room [15]. Accordingly, there is
a disadvantage that high costs are incurred when detecting position via the MMM technology. The GPS
cannot receive satellite signals indoors; therefore, it cannot be used in indoor environments. In addition,
since the positional information of the GPS is inaccurate owing to large errors, it is inefficient for use in
a field requiring precise position information [16]. Anisotropic magnetoresistance (AMR) sensors can
detect changes in the Earth’s magnetic field via permanent magnets; thus, the position of a permanent
magnet can be detected by its movement [17]. This method requires AMR sensors, which are more
expensive than conventional magnetic sensors and require complicated data processing methods.

More recently, Kim et al. proposed a sensor system that recognizes the location of a magnet using a Hall
sensor [18]. In their study, the system was constructed using relatively inexpensive Hall sensors compared
to other magnetic sensors, but a large number of sensors were used by arranging the sensors at narrow
intervals. As a result, data processing was complex because of the increased amounts of computations
due to an excess of measurement data. Hu et al. proposed a magnetic localization and orientation system
that uses AMR sensors to detect the magnet’s position [19]. In their study, since expensive sensors were
used, the system configuration cost was large. In addition, their proposed algorithm was complicated.

In this paper, we propose a catheter position detection system for a medical simulator for cardiovascular
intervention. To solve the problems of the aforementioned studies, a Hall sensor, which is a relatively
inexpensive and highly sensitive magnetic sensor, that can minimize exposure to harmful radiation was
used to construct the simulation system. To simplify the processing, the proposed system was constructed
using a small number of sensors. In addition, the computations were simplified through an uncomplicated
algorithm. Further, the proposed system was fabricated, and experiments were conducted to verify system
performance.

2. Methods

2.1. Proposed position detection system configuration

The proposed position detection system consists of a permanent magnet, Hall sensors, a data acquisition
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Fig. 1. Block diagram of proposed position detection system.

(DAQ) system including an analog-digital converter (AD converter), and software. The block diagram of
proposed system is shown in Fig. 1.

The output of each Hall sensor is measured according to the position of the permanent magnet by the
DAQ system USB-6212 (National Instruments, USA). The measured analog output value is converted to
its digital form using an AD converter in the DAQ system. The converted digital data is then transferred
to a computer, and the position of the permanent magnet is estimated through the position detection
algorithm, which is developed in LabVIEW (National Instruments, USA) software.

In the proposed system, a linear Hall sensor WSH138 (Winson, Taiwan) was used in consideration of
the characteristic that the output value of the sensor changes according to the position of the permanent
magnet in three-dimensional space. The sensor has a sensitivity of 8.7 mV per gauss and an output voltage
between 0 and 5 V in the ± 500 gauss range.

We designed and fabricated an experimental apparatus to precisely position the permanent magnets. The
fabricated apparatus consisted of a bottom surface, sensor fixture, column for fixing the bottom surface,
and permanent magnet fixture. The bottom surface was perforated with 25 holes to fix the permanent
magnets at 10 mm intervals in both the x and y axis directions, and the design allowed fixing of column
by changing the angle by 30 degrees. The designed sensor fixture allowed the Hall sensors to be fixed
in the x, y, and z axis directions at each vertex, and the magnet fixture was designed for various heights
at intervals of 10 mm in the z axis direction. Aluminum was used as the material of the experimental
apparatus as it does not affect the magnetic field.

2.2. Proposed position detection algorithm

The proposed position detection algorithm estimates the distance between the permanent magnet and
sensor using the intensity of the magnetic field measured by the Hall sensors. The estimated distance
depends on the distance and angle between the permanent magnet and Hall sensor. Using the distance
between three or more sensors and the permanent magnet, the solution of the spherical equation is
obtained, and the three-dimensional position is estimated.

In order to obtain the data, the proposed system obtains measurements from 125 location points of the
permanent magnet within the coordinates (1, 1, 1) to (5, 5, 5). The measured data is the intensity of the
magnetic field on the Hall sensors arranged in the x, y, and z axis directions at each vertex. First, the output
value is measured when the Hall sensor is not influenced by the magnetic field of the permanent magnet;
in the case of an ideal Hall sensor, the output values when not influenced by the magnetic field would be
the same. However, an error of the initial output value occurs in the case of the practical Hall sensor. The
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Fig. 2. Proposed position detection algorithm; (a) flowchart of the proposed algorithm and (b) designed software for the algorithm
using LabVIEW.

measured values are calibrated by subtracting the value that is not affected by the magnetic field. Further,
the calibrated values are considered as absolute values so that only the magnitude of the magnetic field
applied to the Hall sensor is obtained without information regarding the pole of the permanent magnet.
The intensity of the magnetic field is measured by rotating through 360 degrees at angular intervals of
30 degrees around the z axis on the x-y plane at each point. Thus, the intensity of the magnetic field is
measured at each coordinate point. The algorithm of the proposed position detection scheme is shown in
Fig. 2a, and the corresponding LabVIEW program interface is shown in Fig. 2b.

The proposed position detection algorithm is based on the distance calculation equation between
the permanent magnet and sensor. The equation is derived from fitting data using Datafit 9.1 (Oakdale
Engineering, USA) and by calculating the maximum output value at each point as well as the distances
between the permanent magnet and vertex for all 125 coordinates in the three-dimensional space (1,
1, 1) to (5, 5, 5). After deriving the equation, when the permanent magnet is located at an arbitrary
position in the three-dimensional space, the output value is obtained from nine Hall sensors that are
located at the three vertexes. These values are input to the DAQ system and after AD conversion, the
data is transferred to the computer. Through the data processing program implemented in LabVIEW, the
maximum output value at each vertex is extracted and substituted into the derived equation to obtain the
distances between the permanent magnet and the three vertexes. Thereafter, the position of the permanent
magnet is calculated by solving the simultaneous equations for the distances between the three vertexes
and the permanent magnet, and the distance values used are calculated from the derived equation. The
simultaneous equations used are shown in Eqs (1) to (3).

x2 + y2 + z2 = r2v1 (1)

(x− 6)2 + y2 + z2 = r2v2 (2)

x2 + (y − 6)2 + z2 = r2v3 (3)

In Eqs (1) to (3), rv1 is the distance from the corner (0, 0, 0) to the permanent magnet, rv2 is the
distance from the corner (6, 0, 0) to the permanent magnet, and rv3 is the distance from the corner (0, 6, 0)
to the permanent magnet. The position of the permanent magnet is estimated by solving the simultaneous
equations.
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Fig. 3. Experimental environment for the verification of the proposed position detection system.

3. Experiment and results

3.1. Proposed position detection system implementation

To verify the feasibility of the position detection system, an experimental apparatus was constructed
and tested. The experimental setup for the verification of the proposed position detection system is shown
in Fig. 3.

In the experiment, nine Hall sensors were affixed to the x, y, and z axes at three vertexes each in the
experimental apparatus. The analog signal output from a 5.0 V input to the Hall sensor is applied to the
DAQ system. The input signal is converted into a digital signal by the AD converter and transmitted to a
computer. The transmitted data are detected by the data processing program implemented in LabVIEW
and the position and distance of the permanent magnet are calculated.

3.2. Distance between permanent magnet and Hall sensor

In order to derive the equation for the distance between the permanent magnets and Hall sensor,
experiments were conducted; the permanent magnets were placed at 125 points in the range of (1, 1, 1) to
(5, 5, 5), and output values were obtained from three Hall sensors in the x, y, and z axes. Thus, a total of
4500 values were obtained and calibrated to derive the distance calculation equation using Datafit.9.1
(Eq. (4)). The acquired constants and error values for Eq. (4) are shown in Table 1.

y = a+ b ln(x) + c ln(x)2 + d ln(x)3 + e ln(x)4 + f ln(x)5 (4)

The distances between the permanent magnets and the Hall sensors are then estimated by substituting
the output values of the Hall sensor into the derived Eq. (4).

Experiments were conducted to assess the accuracy of the derived distance equation. When a permanent
magnet was placed at an arbitrary point in the range of (1, 1, 1) to (5, 5, 5) in three-dimensional space,
measurements were obtained from the Hall sensors placed at the three vertexes. Then, the measured
values were substituted into Eq. (4) to calculate the distances between the magnet and sensor at each
vertex. The experiments were performed for all 125 coordinates, and some of the results comparing the
calculated and actual distance values are shown in Table 2.
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Table 1
Acquired constants and standard error values from data fitting

Variable Values Standard error
a 2.19550246603738 0.156527617152333
b −0.437120707497219 0.238274204048772
c −1.67778056268254E-02 0.191639355535731
d −0.520672363150345 0.282576431319038
e −0.239097163343398 0.125883149183374
f −3.28824574710213E-02 1.73157557680492E-02

Table 2
Distance between the magnet and three vertices for the selected measurements

Position (0, 0, 0) (0, 6, 0) (6, 0, 0)

Real
distance

(mm)

Calculated
distance

(mm)

Error
(mm)

Real
distance

(mm)

Calculated
distance

(mm)

Error
(mm)

Real
distance

(mm)

Calculated
distance

(mm)

Error
(mm)

(5, 3, 2) 50.99 51.09 0.10 24.49 24.01 0.48 50.99 51.46 0.47
(1, 4, 2) 36.05 33.65 2.40 57.44 55.30 2.14 17.32 20.64 3.32
(3, 3, 3) 41.23 41.12 0.11 41.23 40.70 0.53 41.23 41.07 0.16
(2, 5, 4) 53.85 56.46 2.61 64.03 60.56 3.47 33.16 40.29 7.13
(2, 1, 2) 17.32 18.47 1.15 36.05 33.03 3.02 45.82 47.75 1.93

Table 3
The magnet’s position value and distance calculation value for the selected measurements

Real value Calculated value Error

X Y Z Distance (mm) X Y Z Distance (mm) X Y Z Distance (mm)
5 3 2 61.64 4.69 2.96 2.17 59.55 0.31 0.04 0.17 2.09
1 4 2 45.82 1.39 3.58 1.87 42.71 0.39 0.42 0.13 3.11
3 3 3 51.96 3.02 3.00 1.13 44.04 0.02 0.00 1.87 7.92
2 5 4 67.08 2.60 4.30 2.56 56.39 0.60 0.70 1.44 10.69
2 1 2 30.00 2.37 1.38 2.03 34.12 0.37 0.38 0.03 4.12

The mean error in distance was 2.82 mm at (0, 0, 0), 2.73 mm at (0, 6, 0), and 2.73 mm at (6, 0, 0). The
average error of the three vertexes was 2.76 mm, and the accuracy of Eq. (4) was thus verified.

3.3. Detecting position of permanent magnet

In order to calculate the positions of the permanent magnet, the distances were calculated using
Eq. (4). Then, the calculated distances are assigned to simultaneous Eqs (1) to (3). Experiments were
performed for all 125 coordinates, and some of the positions of the permanent magnet calculated from
the simultaneous Eqs (1) to (3) and the distances from the origin (0, 0, 0) are shown in Table 3.

Using the measured data, the mean errors of the calculated positions are 7.35 mm for the x axis,
12.52 mm for the y axis, and 16.96 mm for the z axis when compared to the actual positions; moreover,
the calculated distance from the origin to the permanent magnet position has an average error of 3.11 mm.

4. Conclusion

In this study, a 3D position detection system for a medical simulator was developed. The proposed
system has advantages such as utilizing a relatively simple algorithm, small amount of computation,



S.K. Bang et al. / Implementation of a 3D position detection system for a medical simulator S325

and high efficiency in terms of cost of system configuration. Further, it does not emit radiation and
therefore does not cause harmful exposure. According to the experimental results, the mean error of the
distance between the permanent magnet and the vertexes calculated from the derived distance equation
was 2.76 mm; moreover, the derived position value has a mean error of 7.35 mm for the x axis, 12.52 mm
for the y axis, and 16.96 mm for the z axis. In addition, the mean error of the distance between the
calculated position of the permanent magnet and the origin (0, 0, 0) was 3.11 mm. From the experimental
results, the proposed system shows high error compared to the other studies. The cause of this high error
value is the generated electromagnetic noise in the process of measuring the outputs and the derived
equation using the data fitting program. Another cause might be errors due to the z axis positioning,
which can be measured only in one direction, unlike the x and y axes, which can be measured in multiple
directions through sensors located on three sides.

In the future, considering the scope for extension, it is possible to detect the position in a wider range
of three-dimensional space through additional arrangement of Hall sensors; further, we expect to carry
out research on methods to increase the accuracy without increasing the complexity of the proposed
system. Furthermore, if the position errors in the three-dimensional space can be reduced, it is expected
that the proposed system can be used not only in medical simulators but also in actual surgical situations
by sensitivity improvement and placement of the Hall sensor.
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