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Intensive crop production on grassland-derived Mollisols has liber-
ated massive amounts of carbon (C) to the atmosphere. Whether
minimizing soil disturbance, diversifying crop rotations, or
re-establishing perennial grasslands and integrating livestock can
slow or reverse this trend remains highly uncertain. We investi-
gated how these management practices affected soil organic car-
bon (SOC) accrual and distribution between particulate (POM) and
mineral-associated (MAOM) organic matter in a 29-y-old field
experiment in the North Central United States and assessed how
soil microbial traits were related to these changes. Compared to
conventional continuous maize monocropping with annual tillage,
systems with reduced tillage, diversified crop rotations with cover
crops and legumes, or manure addition did not increase total SOC
storage or MAOM-C, whereas perennial pastures managed with
rotational grazing accumulated more SOC and MAOM-C (18 to
29% higher) than all annual cropping systems after 29 y of man-
agement. These results align with a meta-analysis of data from
published studies comparing the efficacy of soil health manage-
ment practices in annual cropping systems onMollisols worldwide.
Incorporating legumes and manure into annual cropping systems
enhanced POM-C, microbial biomass, and microbial C-use effi-
ciency but did not significantly increase microbial necromass accu-
mulation, MAOM-C, or total SOC storage. Diverse, rotationally
grazed pasture management has the potential to increase persis-
tent soil C on Mollisols, highlighting the key role of well-managed
grasslands in climate-smart agriculture.
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Modern agriculture depleted soil organic carbon (SOC)
from much of the world’s arable lands over the past 150

y (1). Building soil organic matter (SOM) in agricultural soils is
crucial to our ability to counteract this trend and provide for
our wants and needs (2). Grassland-derived Mollisols cover
∼916 million ha of Earth’s surface and are now the agricultural
heartlands of North America, South America, and Eurasia.
Intensive agriculture on these Mollisols has liberated ∼2 Pg C
since cultivation began (3, 4). Enhancing SOM in Mollisols
would not only offset a portion of global greenhouse gas emis-
sions but also improve soil health that underpins vital ecosys-
tems services including food sovereignty, clean water, flood
reduction, and biodiversity, and therefore contribute to achiev-
ing sustainable development goals of the 2030 Agenda of the
United Nations (5).

Simulation and conceptual modeling indicate a large poten-
tial for SOM accumulation on Mollisols (6, 7), but uncertainty
remains about whether intensive agricultural use of these soils
can accrue carbon (C) and maintain it for relatively long peri-
ods (8, 9). SOM is comprised of fractions that differ in forma-
tion, persistence, and function (10). Reducing tillage, diversifying

crop rotations, and adding legumes and manure are touted as
promising strategies to regenerate SOM in croplands (11–13).
Whereas they appear to increase the relatively undecomposed
particulate organic matter (POM) fraction (14, 15), which is
directly associated with improved soil health, their ability to build
more persistent mineral-associated organic matter (MAOM) and
enhance total C stock and persistence in Mollisols has been
debated (16–19).

Growing evidence suggests MAOM is formed mainly when
microbial products associate with mineral surfaces (20–22), so
practices that promote efficient microbial growth and necro-
mass production should drive persistent C accrual in soils with
high mineral capacity for organomineral associations (23–25).
In the North Central United States, an important dairy-
producing region, agricultural operations in past decades have
incorporated more forage legumes such as alfalfa into crop
rotations (26), which may result in MAOM accumulation from
enhanced soil microbial growth and necromass accumulation
because of more low C:nitrogen (N) plant inputs and periodic
manure additions (27). The fine texture of Mollisols should
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favor the physical protection of newly synthesized microbially
derived C (23, 28). However, the expected C accrual has not
been observed consistently in field studies (15, 29).

To investigate how agricultural management geared toward
improving soil health affect soil C accrual on Mollisols, we
explored soils from the Wisconsin Integrated Cropping Systems
Trial (WICST), a long-term field experiment in the North Central
United States. The WICST was established in 1989 on land that
was tallgrass prairie until late 19th century, when it was plowed
and converted to annual grain and forage production through
most of the 20th century. The WICST consists of six side-by-side
conventional and alternative cropping systems, including three
cash-grain systems: 1) continuous monoculture maize (Maize) sys-
tem with annual tillage, 2) no-till maize-soybean (MS) rotation,
and 3) organically managed maize-soybean-wheat (MSW) rota-
tion that has a legume cover crop after wheat, and three dairy for-
age systems: 4) maize-alfalfa-alfalfa-alfalfa (MAAA) rotation, 5)
organic maize-oats/alfalfa/alfalfa (MOA) rotation, and 6) diverse,
rotationally grazed cool-season pasture (Pasture) with mixed
legumes and grasses (SI Appendix, Fig. S1 and Table S1) (30). We
expected that systems with reduced tillage or inclusion of cover or
forage crops (i.e., increased presence of living roots) would
increase POM-C. We also expected that systems with the incorpo-
ration of low C:N legumes and livestock excreta would lead to
increased MAOM-C as a result of the higher microbial C-use effi-
ciency (CUE) and microbial necromass production (23, 27, 31).
To test these hypotheses, we studied the quantity and composition
of SOM and their relationships with soil microbial traits after 29 y
of management. We also compiled data from published literature
addressing the effects of various agricultural practices on the SOC
content and distribution between POM and MAOM in Mollisols
worldwide to explore the generality of our findings at WICST.

Results and Discussion
Total and Mineral-Associated Soil C Highest under Well-Managed
Pastures. Our results suggest that reducing tillage, diversifying
crop rotations, or adding legumes or manure on these Mollisols
is unlikely to build MAOM-C and SOC, whereas managing the
land as rotationally grazed, diverse pastures has the capacity to
do so. SOC stocks (0 to 30 cm) were 15 to 28% greater in Pas-
ture than Maize, MS, MSW, and MAAA (Fig. 1A), similar to
the 20-y SOC change findings at WICST of Sanford et al. (29).
There was no difference in POM-C, MAOM-C, or SOC
between Maize and no-till MS. There were also no significant
differences in MAOM-C and N among all systems except Pas-
ture, which showed 18 to 29% greater MAOM-C than all other
systems (SI Appendix, Table S2 and Fig. 1B). On the contrary,
POM-C and N were significantly higher in the alfalfa-based sys-
tems (MOA and MAAA) compared to Maize and MS and
were greatest in Pasture (Fig. 1C and SI Appendix, Table S2),
aligning with previous results of Cates et al. (14). The C:N ratio

of POM was significantly lower in the alfalfa-based systems
than Maize and MS. Notably, the organic grain system (MSW),
which had a legume cover crop and manure addition but less
total and belowground C input, also had greater POM-C and N
and a lower POM C:N ratio than Maize and MS (Fig. 1C and
SI Appendix, Table S2). The meta-analysis we conducted based
on data from 17 published articles on Mollisols of the world (SI
Appendix, Table S3) aligned with the results from WICST. Out
of 28 paired comparisons of 1) reduced or no tillage and con-
ventional tillage, 2) diversified crop rotations with legumes and
monocultures, 3) manure and synthetic fertilizers, or 4) cover
crops and no cover crops, only two comparisons showed higher
MAOM-C under soil health practices, whereas 26 reported no
differences (SI Appendix, Fig. S2 and Table S3). Although
trends at deeper depths might differ from the surface layers
(32), these results suggest that effects of these soil health man-
agement practices on MAOM-C and total SOC on Mollisols
are typically small in intensive annual cropping systems.

Incorporating Legumes and Manure in Annual Cropping Systems
Enhanced Microbial Growth But Not Microbial Necromass or
MAOM. We observed no differences between Maize and no-till
MS in CUE, microbial biomass C (MBC), or the content of
amino sugars (biomarkers of microbial necromass). Alfalfa-
based systems had higher microbial CUE and MBC, but not
higher microbial necromass accumulation relative to grain-
based systems (Fig. 2 and SI Appendix, Table S4). The negative
relationship between CUE and POM C:N (SI Appendix, Table
S5) suggested that microbial physiological potential in using C
substrate was regulated by the C:N ratio of inputs. Low C:N
legume and manure inputs can enhance soil microbial growth
and necromass production (33). POM is largely comprised of
partially decomposed plant polymers after initial depolymeriza-
tion and serves as the major energy source for heterotrophic
microbes in the soil (10). Our results indicate that by incorpo-
rating legumes and/or manure the alfalfa-based systems can
lower the C:N ratio of POM therefore stimulate microbial
CUE by meeting the microbial stoichiometric demand (33).

However, similar to the trend of MAOM-C, the content of
microbial necromass biomarkers (amino sugars) was highest in
Pasture, but not significantly different across other systems
(Fig. 2C). The positive correlation between MAOM-C and the
aliphatic C content of MAOM (SI Appendix, Tables S5 and S6)
and between MAOM-C and microbial necromass (SI Appendix,
Fig. S3 and Table S5) indicated that microbially derived C is
the main contributor to MAOM (21, 34). Piecewise structural
equation modeling (SEM) showed that MAOM-C was directly
related to the amount of microbial necromass accumulated in
the soil, but not microbial biomass or CUE (SI Appendix, Fig.
S3), indicating that adding low C:N legumes and manure to

Fig. 1. SOC stocks across WICST cropping systems. (A) Organic carbon stocks in bulk soils, (B) MAOM, and (C) POM in the surface 30 cm after 29 y of
Maize, MS, MSW, MAAA, and MOA rotation and well-managed Pasture. Box boundaries indicate the 25th and 75th percentiles. Black lines indicate
medians, and pink lines indicate means.
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enhance microbial CUE may not always lead to increased accu-
mulation of microbial necromass or MAOM-C.

More Efficient Formation and Slower Mineralization of MAOM in
Well-Managed Pastures than Annual Cropping Systems. SOC stor-
age is the balance between formation and mineralization. While
MAOM-C is protected through association with soil minerals, a
fraction of it may decompose quickly. We measured the activities
of polyphenol oxidase (PPO) and peroxidase (PER), which were
produced by soil microbes to catalyze SOM decomposition and
nutrient provision (35). Higher PPO activity in MSW and MOA
and higher PER activity in MOA (SI Appendix, Table S7 and Fig.
3 A and B) indicated faster SOM decomposition in these low
fertilizer-input systems than high fertilizer-input systems and Pas-
ture, suggesting that microbial necromass or MAOM may be sub-
ject to quick mineralization in these systems (36, 37). Similar to
most cropped soils, these soils have very little POM, indicating
that MAOM might be an important source of nutrients (38).
MAOM is more N-enriched than POM and therefore a better
match for microbial stoichiometric needs (39). Once liberated after
desorption from mineral associations, microbially derived organic
matter may be quickly mineralized to meet crop nutrient demands
(40), which may be especially true for maize growing on Mollisols
where the N demand in the peak growing season is high (41).
High C:N maize residues are also more likely to induce the prim-
ing of extant SOM because of increased microbial nutrient
demand, especially when maize is in rotation with N-rich soybean
or alfalfa which would enhance microbial growth, leading to
increased microbial population size and substrate demand in the

maize phase (42). On the other hand, when tillage is used to con-
trol weeds in these organically managed systems, newly formed
MAOM can be exposed to microbial degradation because of soil
disturbance. Although unlikely to increase SOC stock on Mollisols,
incorporating legume cover and forage crops in maize/soybean
dominated systems do have meaningful agronomic and environ-
mental benefits, including reduced synthetic fertilizer needs,
improved soil health, and greater yield stability (43).

Although the precise mechanisms for greater MAOM-C in Pas-
ture require further research, the enhanced formation and reduced
mineralization of MAOM may have contributed to the SOC
accrual under well-managed pastures relative to annual cropping
systems (Fig. 4). In diverse, rotationally grazed pastures that more
closely resemble the structure and function of the bison-grazed tall-
grass prairie compared to annual grain and dairy forage cropping
systems, continuous low C:N plant and animal inputs can promote
microbial CUE, microbial necromass production, and MAOM for-
mation (31). Lower oxidative enzyme activities in Pasture also indi-
cated a slower rate of SOM decomposition in the peak growing
season when temperature and precipitation favor microbial activity.
In addition to greater microbial necromass accumulation (24), the
combination of abundant, diverse root architecture, phenology, pro-
duction, turnover, and exudation rates and compounds (44, 45)
may be conspiring to support soil C building under diverse, peren-
nial grasslands than annual crops (46). Future research should
focus on unraveling the plant–microbe–soil associations and associ-
ated changes in root architectures and soil microstructures related
to enhanced SOC and MAOM-C accumulation in perennial grass-
lands under a range of grazing management.

Fig. 2. Soil microbial traits across WICST cropping systems. (A) Microbial biomass C, (B) microbial CUE, and (C) total amino sugars of 0- to 15- and 15- to
30-cm soil at the WICST after 29 y of Maize, MS, MSW, MAAA, and MOA rotation and well-managed Pasture. Box boundaries indicate the 25th and 75th
percentiles. Black lines indicate medians, and pink lines indicate means.

Fig. 3. Activities of soil oxidative enzymes across WICST cropping systems. (A) PPO activity and (B) PER activity of 0- to 15- and 15- to 30-cm soil at the
WICST after 29 y of different management systems of Maize, MS, MSW, MAAA, and MOA rotation and well-managed Pasture. Box boundaries indicate
the 25th and 75th percentiles. Black lines indicate medians, and pink lines indicate means.
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Conclusions
Implementing no-till, crop rotations, and legumes and manure
additions in annual grain or semiannual forage systems on Mol-
lisols may improve soil health but are not likely to make their
topsoil (0 to 30 cm) atmospheric C sinks. Incorporating low
C:N inputs may enhance POM and microbial C cycling but not
lead to increases in microbial necromass and MAOM-C, possi-
bly because of higher SOM mineralization. In addition to
reducing erosion and nutrient loss, increasing infiltration and
water storage, and enhancing biodiversity (47, 48), well-
managed grazed perennial grasslands have the potential to
build persistent soil C in Mollisols making them a critical part
of climate-smart agriculture.

Materials and Methods
Site Description and Sampling. Established in 1990, the WICST is located at
the University of Wisconsin–Madison Agricultural Research Station
(43°1704500N, 89°2204800W, 315m above sea level) in Arlington, WI. The soil is
Plano silt loam (fine-silty, mixed, superactive, mesic Typic Argiudoll, US
Department of Agriculture [USDA] Soil Taxonomy) with 6% sand, 72% silt,
and 22% clay. The mean annual temperature at Arlington is 6.9 °C and mean
annual precipitation is 898 mm (1981 to 2010, National Oceanic and Atmo-
spheric Administration).

WICST is a randomized complete block design with four blocks, with all
phases of the six cropping systems represented each year (details are shown in
SI Appendix, Table S1). A complete site and study description can be found in
Posner et al. (30). Plots are 0.3 ha, and commercial farm-scale equipment is
used for all field work. The six cropping systems represent grain (Maize, MS,
and MSW) and forage (MOA, MAAA, and Pasture) enterprises. Pastures are
comprised of cool-season grasses Timothy (Phleum pratense L.), Kentucky
bluegrass (Poa pratensis L.), orchardgrass (Dactylis glomerata L.), ryegrass
(Lolium perenne L.), and festulolium (×Festulolium Asch. & Graebn.), dande-
lion (Taraxacum officinale F.H. Wigg.), and clover (Trifolium pratense L. and T.
repens L.). Pastures are rotationally grazed by six heifers each year between 1
May and 10 October for a stocking rate of ∼14 A.U. ha�1 y�1.

Maize in Maize, MS, and MAAA receives commercial fertilizer at recom-
mended rates. In MSW, pelletized composted poultry manure is applied prior
to maize (2.2 Mg ha�1) and wheat (1.6 Mg ha�1) crops, and a green manure
cover crop of oats and clover is sown after wheat harvest. Dairy slurry is

applied in the fall prior to maize and first year alfalfa seeding in MAAA and
MOA systems. The Maize, MSW, MAAA, and MOA systems are chisel-plowed
in the fall prior to maize planting, and MS is strip-tilled in the fall prior to
maize planting. A field cultivator is used in the spring just prior to planting
maize and soybeans in Maize, MSW, MAAA, and MOA. Soybeans in MS are
planted using a no-till drill. A chisel plow is also used prior to soybean planting
inMSWand alfalfa seeding inMAAAandMOA. Additional cultivation, includ-
ing use of a tine weeder, a rotary hoe, and Danish tine and/or disk hiller row
cultivator for weed control, is performed as needed in maize, soybean, and
wheat of MSW and MOA systems, whereas in Maize, MS, MAAA, and Pasture
weeds are chemically controlled.

Soil sampling was conducted in July 2018, during the peak growing season
in the maize phase of each rotation except the rotationally grazed Pasture sys-
tem. Soil samples (0 to 15 and 15 to 30 cm) were collected from eight locations
in each plot using a zigzag sampling pattern (to equally sample across the
maize row). A soil probe (diameter, 3.5 cm) was used to take three in-row and
three between-row soil samples at each location. Soil samples collected from
all locations (n = 48) were composited into one soil sample per plot. Samples
were transported to the laboratory immediately, passed through a 2-mm
sieve, and subsampled into two portions. One subsample was kept at 4 °C for
soil microbial and enzyme assays within 1 wk, the other subsample was air-
dried for physical fractionation, C and N, and spectroscopy analyses.

SOM Fractionation. All soils were separated after aggregate dispersion into
two size fractions: POM (>53 μm) and MAOM (<53 μm) by wet sieving (49).
Sodium hexametaphosphate solution (80 mL) was added to 10 g of air-dried,
2-mm-sieved soil and shaken for 18 h to disperse soil aggregates. MilliQ water
was used to wash the contents through a 53-μm sieve. The two fractions that
were separated by the sieve were dried to constant mass at 70 °C. All POM and
MAOM fractions were ground to homogeneity by hand with a coffee grinder.
A subsample of all homogenized samples was analyzed for C and N content
on an elemental analyzer (PDZ-Europa ANCA-GSL).

MAOM Composition. We used diffuse reflectance infrared Fourier transform
spectroscopy analysis in the midinfrared range to characterize functional
groups of MAOM samples (50, 51). Spectra were obtained using an X,Y Auto-
sampler (Pike Technologies Inc.) coupled with a Nicolet iS50 spectrometer
equipped with a diffuse reflectance accessory (Thermo Fisher Scientific Inc.).
Four spectral readings were performed for each subsample using the random
oversampling motion function of the X,Y Autosampler (within a 3-mm diame-
ter of the sample cup’s centroid) configured in AutoProTM software (Pike
Technologies Inc.). We used anodized aluminum plates that fit 24 polystyrene
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POM MAOM

Fig. 4. Conceptual model of how agricultural systems affect microbially regulated SOM dynamics. The size of the POM, persistent MAOM, and soil
microbes within each circle indicate the relative sizes of C pools. Different colors of labile organic matter fractions indicate the quality of C input (light
green = higher C:N ratio of labile fractions, dark green = lower C:N ratio of labile fractions). CUE, microbial biomass production/C assimilated. The size of
arrows indicates the relative magnitude of C fluxes. Adding legume cover or forage crops and/or adding manure in the systems supply higher-quality C
input (reflected by lower C:N ratio of the POM), which increases microbial CUE and necromass production. However, the oxidative loss of MAOM induced
by tillage or nutrient requirement (mostly from maize) results in a faster mineralization of MAOM. As a result, only the rotationally grazed pasture sys-
tems led to meaningful C accrual.
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sample cups (5.5-mL volume and 10-mm top opening diameter), each loaded
with a subsample, dried for >48 h at 40 °C and 12 to 14% relative humidity. All
measurements were conducted from 4,000 to 400 cm�1 at 4 cm�1 wavenumber
resolution using 24 coadded scans (52). Spectra absorbance peaks were inte-
grated using the local baseline technique, as described by Demyan et al. (50)
and Deiss et al. (52), and local peak areas were determined using the triangle
method available in the “geometry” package in R. We evaluated relative peak
areas, or proportion of a specific peak area relative to the total peak areas for
the following organic functional groups: aliphatic C-H functional group of
methyl and methylene groups (wavenumber 3,010 to 2,800 cm�1), aromatic
C = C stretch and/or asymmetric -COO- stretch (wavenumber 1,660 to 1,580
cm�1), aromatic C = C stretch (wavenumber 1,546 to 1,520 cm�1), and C-O in
both poly-alcoholic and ether functional groups (wavenumber 1,170 to 1,148
cm�1) (50). Our analysis focused on the aliphatic functional groups (peak 2,930
cm�1; frommicrobial cell components and plant wax layers) and aromatic func-
tional groups (peaks 1,530 and 1,620 cm�1; from lignin-derived products).

Microbial Biomass and CUE Characterization. We estimated microbial CUE by
the 13C glutamic acid tracing method. Because glutamic acid is taken up directly
into microbial cells, this approach allows us to directly compare CUE across
treatments since substrate-C allocation toward enzyme production is minimized
(21). Fresh soil samples (20 g dry weight) were amended in the laboratory with
50 μg C g�1 dry soil of 25 atom% labeled 13C glutamic acid (<1% total soil C)
and incubated at 45% water holding capacity for 22 h at 25 °C (27). An addi-
tional set of soils received only deionized H2O to serve as controls. After incuba-
tion, a 12-mL CO2 sample was collected using airtight plastic syringes for deter-
mining 13CO2-C respiration on a gas chromatography (Hewlett-Packard Model
6890)-isotope ratio mass spectrometer (PDZ-EuropaModel 20-20) andMBC was
determined by the fumigation-extraction method with a Shimadzu TOC Ana-
lyzer (Shimadzu Corp.) (53). 13C incorporation inMBCwas determined by an iso-
tope ratio mass spectrometer (PDZ-EuropaModel 20-20) after aliquots of K2SO4

extracts from both fumigated and unfumigated soils were dried at 60 °C in tin
capsules. Microbial CUE was calculated as [MB13C/(MB13C + 13CO2-C) × 100],
where MB13C and 13CO2-C are determined using a standard isotope mixing
model equation and represent the amount of substrate incorporated into MBC
and the substrate-C respired as CO2, respectively (27). Geyer et al. (54) demon-
strated that a significant amount (∼1/3) of glutamic acid C can be released by
microbes into the soil as microbial residues within 6 h of addition, which would
result in underestimation of CUE with this method, but there is no evidence
that this bias would be different across plant communities.

Microbial Necromass Assay. We assayed four amino sugars by gas chromatog-
raphy after their conversion to aldonitrile acetates (55) using a procedure
modified from Liang et al. (56). The procedure was based on the extraction of
signature amino sugar biomarkers from the cell wall of microorganisms.
Approximately 1 g finely ground air-dried soil samples were hydrolyzed with
6 M HCl at 105 °C for 8 h to release the amino sugar monomers. After purifica-
tion and derivatization, we analyzed extracts with an Agilent 6890 GC (Agi-
lent Technologies) equipped with a J&W Scientific Ultra-2 column (25 m × 0.2
mm × 0.33 μm) and flame ionization detector. The individual amino sugar
derivatives were identified by comparing their retention time with those of
authentic standards. Quantification from peak areas to mass per mass of soil
(μg/g) was gained relative to the internal standard myo-inositol, which was
added to the samples prior to purification.We also used the recovery standard
N-methylglucamine, added before derivatization to assess the efficiency of
the derivatization step. Muramic acid (MurA) is found in the bacterial cell wall
peptidoglycan and is not produced by eukaryotic cells (57). Equal amounts of
MurA and glucosamine (GluN) are found in bacterial peptidoglycan, but in
soils GluN predominantly originates from fungal chitin rather than bacterial
peptidoglycan (57). The origin of galactosamine or mannosamine is currently
debated (58, 59).

Soil Extracellular Enzyme Assays. The hydrolytic enzymes, α-glucosidase, acid
phosphatase, β-1,4-glucosidase, β-xylosidase, cellobiohydrolase, andN-acetyl-β-D-
glucosaminidase of fresh soil samples were measured fluorometrically using
methylumbelliferone-labeled substrates (60, 61). Specifically, each equivalent of
1.0 g dry mass of fresh soil was added into a 100-mL centrifuge tube, homoge-
nized with 50 mL of 50-mM acetate buffer using a polytron homogenizer, then
the mixture was poured into a round wide-mouth beaker. An additional 50 mL
of acetate buffer was used to wash the centrifuge tube and poured into the
same beaker. Amagnetic stirrer was used tomaintain a uniform suspension. The
buffer, sample suspension, 10-μM references and 200-μM substrates were dis-
pensed into the wells of a black 96-well microplate in the volume and order
described by DeForest (60). The microplates were covered and incubated in the

dark at 25 °C for 4 h and the fluorescence quantified using a microplate fluo-
rometer with 365-nm excitation and 450-nm emission filters (61).

The nonfluorometric enzymes, polyphenol oxidase and peroxidase (break-
down of lignin and other aromatic compounds), were measured spectrophoto-
metrically in the clear 96-well microplate using the substrate of L-3,4-dihydroxy-
phenylalanine (L-DOPA). The dispensed volume and the order of buffer, sample
suspension, 25-mM L-DOPA, and 0.3% H2O2 were the same as for thefluoromet-
ric enzymes (60). The microplates were covered and incubated in the dark at
25 °C for 20 h, and the activities were assayed by measuring the absorbance at
450 nmusing themicroplate reader and expressed in units of μmol h�1 g�1.

Literature Data. We used the Web of Science to search for papers containing
words such as “Mollisols” (or Chernozem, Kastanozem, and Phaeozem, based
on the World Reference Base classification), “soil organic matter fractions,”
“particulate organic matter,” or “mineral-associated organic matter” pub-
lished. We selected the field-based studies that have compared at least one
“alternative practice” with conventional practices. We chose studies that have
used aggregate dispersion and wet sieving methods to separate POM and
MAOM by using the 53-μm sieve. In total, we found 17 research articles that
studied the response of either POM or MAOM fractions of the world’s Molli-
sols. The alternative practices used in these studies include reduce or no tillage
vs. conventional tillage, crop rotation vs. monoculture, adding manure vs syn-
thetic fertilizers, cover crops vs. no cover crops, or a combination of these prac-
tices. The experiment length lasted from 4 to 60 y. Several studies have investi-
gated deeper depths, but to be able to compare with data from WICST, we
extracted data only from soils within 0 to 30 cm deep. We selected the natural
log of the response ratio (alternative/conventional) as our meta-analytic effect
size as commonly used in agroecological meta-analysis.

Statistical Analysis. Data including soil total organic C stock and POM-C and
MAOM-C (0 to 30 cm), C and N content and their ratios of bulk soil, POM and
MAOM (0 to 15 and 15 to 30 cm), microbial CUE, MBC, activities of extracellu-
lar enzymes, total and individual amino sugar concentrations, and C func-
tional groups of MAOM were analyzed with linear mixed-effects ANOVA
models to compare the effects of different cropping systems and depths. We
used cropping system and depth as fixed effects and replicate blocks as ran-
dom effect. Univariate responses including SOM fractions, microbial traits
(CUE, MBC, and amino sugars), enzyme activities, and the relative stability of
MAOM were analyzed with linear mixed-effects ANOVA models to compare
system and depth effects. The relationship between microbial traits and soil
properties was analyzed by Pearson’s correlation analysis. All ANOVA and cor-
relation analyses were performed in SAS v.9.4 (SAS Institute) using PROC
MIXED and PROC CORR. Significance for all analyses was determined at
P < 0.05.

We also used piecewise SEM (62) to examine the direct and indirect rela-
tionships between POM C, POM C:N ratio, the microbial traits, and MAOM-C.
Piecewise SEM takes a local estimation approach and analyzes the compo-
nents of the path diagram individually as a set of linear equations (62) rather
than a global estimation of parameters that best capture the observed
variance-covariance matrix (63). This allows for smaller sample sizes than are
typically required by traditional SEM. Each endogenous variable was exam-
ined using a generalized linear model, specifying a Gaussian distribution. We
hypothesized that POM C and POM C:N ratio both had direct effects on micro-
bial biomass, CUE, and MAOM-C. Microbial biomass and CUE, in turn had
direct effects on microbial necromass, which directly affected MAOM-C. We
also specified a correlation between POM C and POM C:N ratio based on an
initial correlation analysis. Analyses were conducted using the R package
piecewiseSEM v2.1.0 (62).

Data Availability. All study data that have been used to generate figures and
tables in the article and/or SI Appendix are available from the Dryad database
(DOI: 10.5061/dryad.h44j0zpn2).
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