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Cryogenic electron tomography (cryo-ET) allows structural determination of biomolecules

in their native environment (in situ). Its potential of providing information on the dynamics

of macromolecular complexes in cells is still largely unexploited, due to the challenges

of the data analysis. The crowded cell environment and continuous conformational

changes of complexes make difficult disentangling the data heterogeneity. We present

HEMNMA-3D, which is, to the best of our knowledge, the first method for analyzing cryo

electron subtomograms in terms of continuous conformational changes of complexes.

HEMNMA-3D uses a combination of elastic and rigid-body 3D-to-3D iterative alignments

of a flexible 3D reference (atomic structure or electron microscopy density map) to

match the conformation, orientation, and position of the complex in each subtomogram.

The elastic matching combines molecular mechanics simulation (Normal Mode Analysis

of the 3D reference) and experimental, subtomogram data analysis. The rigid-body

alignment includes compensation for the missing wedge, due to the limited tilt angle

of cryo-ET. The conformational parameters (amplitudes of normal modes) of the

complexes in subtomograms obtained through the alignment are processed to visualize

the distribution of conformations in a space of lower dimension (typically, 2D or 3D)

referred to as space of conformations. This allows a visually interpretable insight

into the dynamics of the complexes, by calculating 3D averages of subtomograms

with similar conformations from selected (densest) regions and by recording movies

of the 3D reference’s displacement along selected trajectories through the densest

regions. We describe HEMNMA-3D and show its validation using synthetic datasets.

We apply HEMNMA-3D to an experimental dataset describing in situ nucleosome

conformational variability. HEMNMA-3D software is available freely (open-source) as part

of ContinuousFlex plugin of Scipion V3.0 (http://scipion.i2pc.es).
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1. INTRODUCTION

Cryogenic electron microscopy (cryo-EM) image collection and
analysis technique referred to as single-particle analysis (SPA)
allows near-atomic structural resolution of purified biomolecular
complexes (in vitro). It is based on the principle of reconstructing
a three dimensional (3D) structure from two dimensional
(2D) parallel-beam projection images of vitrified specimens
containing many copies of the same macromolecular complex
at unknown orientations and positions. The 3D reconstruction
requires extracting macromolecular complexes (particles) from
the collected images into individual (single-particle) images
and determining the particle orientation and position in
every single-particle image. On the other hand, cryogenic
electron tomography (cryo-ET) is gaining popularity for studying
biomolecular complexes in their native environments (in situ).
Cryo-ET requires the acquisition of multiple 2D projection
images of the specimen in a range of orientations. In most
practices, the specimen is physically rotated around a single axis
(perpendicular to the electron beam) inside the cryo electron
microscope. An image is collected at each tilting angle in a
specific range (e.g., −60 to 60◦ with a step of 1◦), yielding a tilt
series representing 2D projections of the specimen. The tilt series
is then used to computationally reconstruct a 3D volume called
tomogram. A tomographic reconstruction typically contains
hundreds of copies of a target biomolecular complex at
unknown orientations and positions. These copies are then
identified and extracted into individual (single-particle) volumes
called subtomograms, either manually or semi-automatically
(via template matching methods). Subtomograms suffer from
a low signal-to-noise ratio (SNR), which is due to exposing
the sample to a low electron dose during data acquisition in
order to preserve the fragile biological structure. Additionally,
subtomograms suffer from the so-called missing wedge artifacts,
which are due to inability to include in the 3D reconstruction
the images from all orientations (the maximum tilt angle in the
microscope is usually limited to ± 60◦). The missing wedge
artifacts are often observed as elongation along the beam axis,
blurring, and distracting caustics in the subtomograms. Due
to the low SNR and the missing wedge artifacts, cryo-ET data
processing is mainly based on rigid-body aligning and averaging
many subtomograms to enhance the data quality and reveal the
targeted biomolecular structure (Leigh et al., 2019).

The primary technique for macromolecular structural
determination is so-called subtomogram averaging (StA), in
which subtomograms are classified, rigid-body aligned and
averaged into 3D density maps iteratively (Mahamid et al.,
2016; Schur et al., 2016; Wan and Briggs, 2016; Albert et al.,
2017; Böck et al., 2017; Bykov et al., 2017; Pfeffer et al.,
2017; Riedel et al., 2017; Wan et al., 2017; Davies et al., 2018;
Guo et al., 2018; Hutchings et al., 2018; Kovtun et al., 2018;
Mosalaganti et al., 2018; Park et al., 2018; Kaplan et al., 2019;
Rapisarda et al., 2019). However, with recent instrumentation
and software development, more research moves in the direction
of studying single-particle subtomograms individually (with no
or a minimum of averaging) by developing new methods for
denoising, missing wedge correction, and 3D reconstruction

(Zhang and Ren, 2012; Moebel and Kervrann, 2020; Zhai et al.,
2020).

Biomolecular complexes are not rigid but flexible entities
with gradual (continuous) conformational transitions, and this
flexibility is usually referred to as continuous conformational
variability. If not properly taken into account, conformational
heterogeneity limits the resolution of the resulting 3D structure.
However, SPA research in the last decade has shown that
disentangling the different conformations and identifying the
conformational transitions from heterogeneous samples is
valuable to study molecular mechanisms of action of complexes
(Dashti et al., 2014; Jin et al., 2014; Zhou et al., 2015; Abeyrathne
et al., 2016; Banerjee et al., 2016; Haselbach et al., 2018).
The majority of available SPA computational methods rely
on optimized biochemical specimen preparation protocols and
data classification, and simplify the problem of conformational
heterogeneity by assuming that the data can be classified into
a small number of different conformations (Penczek et al.,
2006, 2011; Fu et al., 2007; Elad et al., 2008; Scheres, 2012;
Lyumkis et al., 2013). However, some SPAmethods explicitly take
into account continuous conformational variability and aim at
determining the full conformational distribution (Dashti et al.,
2014; Jin et al., 2014; Sorzano et al., 2014; Katsevich et al., 2015;
Tagare et al., 2015; Frank and Ourmazd, 2016; Andén and Singer,
2018; Harastani et al., 2020). They represent images in a low-
dimensional space, referred to as space of conformations or
energy landscape, and allow a 3D visualization of conformational
changes along trajectories in this space. For more information on
SPA methods for continuous conformational variability analysis,
the reader is referred to the recent reviews by Jonić (2017) and
Sorzano et al. (2019).

Methods reported to deal with cryo-ET data heterogeneity
are based on rigid-body alignment and can be classified into (i)
post-alignment classification approaches, and (ii) simultaneous
alignment and classification approaches (Förster et al., 2008;
Scheres et al., 2009; Stölken et al., 2011; Xu et al., 2012;
Chen et al., 2014; Bharat and Scheres, 2016; Himes and
Zhang, 2018). In the first family, the starting point is usually
the covariance matrix representing the similarities of each
pair of aligned subtomograms. The covariance matrix serves
as a basis for a classification technique with some variants
including dimensionality reduction. The second family of
methods is based on competitive alignment. An example of
the competitive alignment is a multireference alignment in
which a subtomogram is compared with a set of different
references provided by an expert user based on a prior knowledge
and, then, attributed to the reference that yields the highest
similarity score. Another example is maximum-likelihood-
based alignment, where each subtomogram contributes to all
references with a probability. The main drawback of the post-
alignment classification approaches is that the classification is
heavily dependent on the alignment quality that degenerates
with broadly heterogeneous specimens. The main drawback
of the simultaneous alignment and classification methods is
that the number of classes must be decided and set prior to
the use of the methods. Besides, the methods that require
prior knowledge of the specimen’s anticipated conformations
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are prone to overfitting and data misinterpretation. Finally, as
macromolecular complexes are not rigid but flexible entities
with continuous conformational transitions, particles assigned
to the same class will rarely, if ever, have perfectly identical
conformations. Formore information regarding the classification
based techniques for cryo-ET conformational heterogeneity, the
reader is referred to a recent review on the available techniques
by Castaño-Díez and Zanetti (2019).

Existing multivariate statistical analysis techniques adapted to
cryo-ET analysis of continuous flexibility of particular systems
have been used previously (e.g., Mattei et al., 2016). However, to
the best of our knowledge, no method is currently available that
has been specifically designed for cryo-ET analysis of continuous
conformational variability of a general-case macromolecular
complex. In this article, we present one such method,
named HEMNMA-3D, which allows analyzing continuous
conformational variability of macromolecular complexes by
cryo-ET. It is inspired by HEMNMA, a method for continuous
conformational variability analysis in SPA (Jin et al., 2014;
Sorzano et al., 2014; Harastani et al., 2020). HEMNMA
interprets the conformation in each cryo-EM single-particle
image by comparing this image with 2D projections of a 3D
reference (an atomic structure or a density map) deformed
elastically using normal modes. Normal Mode Analysis (NMA)
is a method for molecular mechanics simulation. One of its
main applications is elastic deformation of an existing atomic
structure of one conformation to fit an electron microscopy
density map (EM map) of a different conformation of the
same macromolecule, which is usually known as normal
mode flexible fitting and allows obtaining atomic resolution
models for the EM map (Tama et al., 2004a,b). However,
as HEMNMA, HEMNMA-3D can use normal modes of an
atomic structure or a density map. As in the case of the
reference density-map structure in HEMNMA, HEMNMA-3D
converts the density map into a collection of 3D Gaussian
functions, referred to as pseudoatoms, and computes normal
modes of this pseudoatomic structure, following the procedures
described in Nogales-Cadenas et al. (2013), Jin et al. (2014),
and Jonić and Sorzano (2016). HEMNMA-3D uses the atomic
or pseudoatomic normal modes to elastically deform the 3D
reference to match the conformation of the complex in the
given series of subtomograms (3D data) (see Figure 1). More
precisely, HEMNMA-3D uses a combination of elastic (based on
normal modes) and rigid-body 3D-to-3D iterative alignments of
the 3D reference to match the conformation, orientation, and
position of the complex in each subtomogram, and includes
compensation for the missing wedge. The conformational
parameters (amplitudes of normal modes) of the complexes
in subtomograms obtained through the alignment are then
processed to visualize the distribution of conformations in a
space of lower dimension (typically, 2D or 3D) referred to as
space of conformations. This space allows a visually interpretable
insight into the dynamics of complexes, by calculating 3D
averages of subtomograms with similar conformations from
selected (densest) regions and by recording movies of the
3D reference’s displacement along selected trajectories in the
densest regions.

In this article, we describe HEMNMA-3D and show its
validation using synthetic datasets. Additionally, we show
an application of HEMNMA-3D with an experimentally
obtained dataset for in situ nucleosome conformational
variability. HEMNMA-3D software is available freely (open-
source) as part of ContinuousFlex plugin of Scipion V3.0
(http://scipion.i2pc.es). The article is organized as follows:
section 2 describes building blocks of HEMNMA-3D workflow,
notably, in 2.5 we describe the software developed for this
method. In section 3, we present (i) the process of synthesis of
test datasets and HEMNMA-3D validation using these synthetic
test data, and (ii) use of HEMNMA-3D with experimental, in situ
nucleosome data, and we discuss these results. The conclusions
are provided in section 4.

2. MATERIALS AND METHODS

The flowchart in Figure 2 describes the workflow of the proposed
method, which was inspired by the workflow of HEMNMA (Jin
et al., 2014; Harastani et al., 2020). A graphical summary of the
method is presented in Figure 3. The workflow comprises the
following steps: (1) Input: the input to the method are a reference
structure and a set of subtomograms. In the case where the
reference structure is a density map (a 3D volume, such as an EM
map or a subtomogram average), a conversion to 3D Gaussian
functions (pseudoatoms) takes place. (2) Normal mode analysis
of the reference atomic structure or the reference pseudoatomic
structure (obtained by converting the reference density map
into 3D Gaussian functions in the previous step). (3) Combined
iterative elastic and rigid-body 3D-to-3D alignment of the
reference structure with each input subtomogram independently
from other subtomograms, with missing wedge compensation.
(4) Visualization of the computed conformations, after projecting
the conformational parameters obtained for all subtomograms
onto a low-dimensional space. In the remaining part of this
section, we describe these steps in more detail. Please note
that the first two steps of the workflow are exactly as those of
HEMNMA and were thoroughly presented, tested and discussed
in our previously published works on HEMNMA, its tools
and applications (Nogales-Cadenas et al., 2013; Jin et al., 2014;
Sorzano et al., 2014; Jonić and Sorzano, 2016; Harastani et al.,
2020). However, for completeness of the present article, we here
recall their basic principles. We close this section by a brief
description of the software implemented for HEMNMA-3D.

2.1. Input Reference and Conversion of
Reference Density Maps Into Pseudoatoms
A reference structure of the molecule targeted in the
subtomograms can be used in the form of an atomic model
(PDB formatted files) or a density map, such as an EM map
(SPA reconstruction) or a subtomogram average (obtained
using classical StA without taking into account conformational
heterogeneity). Although our method can be used with both
atomic and density-map reference structures, one should prefer
the use of a reference density map from the data at hand, if it
can be obtained. If a reference density map is used, it must be
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FIGURE 1 | The general scheme of elastic deforming of a reference structure (atomic or pseudoatomic) using normal modes to fit a density map (e.g., an EM map or

a subtomogram average).

converted into a collection of Gaussian functions (pseudoatoms)
with a carefully selected standard deviation (pseudoatom size,
whose default value is 1 voxel Nogales-Cadenas et al., 2013;
Jonić and Sorzano, 2016). The pseudoatom size should lead to a
structure (called pseudoatomic structure) that, converted back
to a density map, approximates the input density map with a
small error (given a target approximation error, whose default
value is 5% Nogales-Cadenas et al., 2013; Jonić and Sorzano,
2016). Optionally, a mask on the density map can be used prior
to the conversion into pseudoatoms (e.g., a spherical binary
mask of a given radius) to reduce background noise. Such masks
may also be useful if applied on input cryo-ET subtomograms
to maximize the chance of having a single molecular complex
in each subtomogram (Preprocessing block in the workflow
in Figure 2A).

2.2. Normal Mode Analysis
This step involves computing normal modes of a reference
atomic or pseudoatomic structure, for the 3D-to-3D elastic
alignment in the next step. The computation of normal modes
is based on the elastic network model (Tirion, 1996; Tama
et al., 2002) by representing the interaction between the
(pseudo-)atoms as if they are locally connected by elastic springs
(within a cutoff distance). Normal Mode Analysis requires the
diagonalization of a 3N × 3N matrix of second derivatives of
the potential energy (Hessian matrix), where N is the number
of nodes in the elastic network model determined by the total
number of atoms (or pseudoatoms) in the input reference. In

the case of atomic structures, we use the rotation-translation
block (RTB)method, which divides the structure into blocks (one
or a few consecutive residues per block) whose rotations and
translations are considered rather than all degrees of freedom
for all atoms (Durand et al., 1994; Tama et al., 2000). Since
the RTB method reduces the basis for Hessian diagonalization,
it allows fast computing of normal modes. Since pseudoatomic
structures usually contain fewer nodes (pseudoatoms) than
atomic structures, normal modes can be obtained by a direct
diagonalization of the 3N × 3N Hessian, which is referred to
as the Cartesian method. As in the case of HEMNMA, we here
use the RTB and Cartesian method implementations of Tama
et al. (2002) and Suhre and Sanejouand (2004), respectively.
Larger values of the interaction cutoff distance (the distance
below which atoms or pseudoatoms do not interact) lead to
more rigid motions. The atomic interaction cutoff distance may
be set manually (by default 8 Å) and the pseudoatomic cutoff
distance is recommended to be computed automatically based
on the distribution of the pseudoatomic pairwise distances (e.g.,
as the value below which is a given percentage of all distances
as in Nogales-Cadenas et al., 2013; Jin et al., 2014; Jonić and
Sorzano, 2016; Harastani et al., 2020). The modes are computed
along with their respective collectivity degrees, which count the
number of atoms or pseudoatoms affected by the mode as in
Brüschweiler (1995). To allow faster data analysis and avoid noise
overfitting in the 3D-to-3D elastic alignment in the next step, we
select a subset of normal modes (usually, less than 10) with lowest
frequencies and highest collectivities, as previously described (Jin
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FIGURE 2 | Flowchart of HEMNMA-3D. (A) Workflow. (B) Combined iterative elastic and rigid-body 3D-to-3D alignment step (the core module of HEMNMA-3D).

FIGURE 3 | A graphical summary of the dataflow of HEMNMA-3D. (A) Input subtomograms containing the same biomolecule but at different orientations, positions

and conformations (here represented with a low level of noise for illustration). (B) Input subtomograms projected onto a low-dimensional “space of conformations,”

describing and visualizing the biomolecular conformational variability contained in the subtomograms. (C) Grouping of close points (subtomograms with similar

biomolecular conformations) and averaging of subtomograms in these groups. (D) Animating biomolecular motion along trajectories identified in the densest regions.

et al., 2014; Sorzano et al., 2014; Harastani et al., 2020). Low-
frequency high-collectivity normal modes have been shown to
be relevant to functional conformational changes (Tama and
Sanejouand, 2001; Delarue and Dumas, 2004; Wang et al., 2004;
Ma, 2005; Suhre et al., 2006; Tama and Brooks, 2006). The first

six (lowest-frequency) normal modes are related to rigid-body
transformations and are thus not used for the 3D-to-3D elastic
alignment in the next step. The rigid-body 3D-to-3D alignment is
done without using these rigid-body normal modes, as explained
in the next paragraph. Additionally, a prior knowledge about the
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conformational transitions of the complex under study can be
used to select the normal modes for the use in the next step. The
HEMNMA-3D graphical interface helps the user decide which
normal modes to select. The reader is referred to Ma (2005)
and Tama and Brooks (2006) for reviews on the usefulness and
limitations of NMA.

2.3. Combined Iterative Elastic and
Rigid-Body 3D-to-3D Alignment
This step, represented in Figure 2B, is the backbone of the
proposed method. It has been inspired by the combined
iterative elastic and rigid-body 3D-to-3D alignment step of
StructMap method (Sorzano et al., 2016), which was proposed
for pairwise similarity analysis of SPA high-resolution EM maps
(no missing wedge). In HEMNMA-3D proposed here, this step
comprises simultaneous NMA-based elastic alignment (search
for amplitudes of a linear combination of normal modes)
and rigid-body alignment (search for orientation and position,
meaning three Euler angles and x, y, and z shifts) of the
reference structure with each given subtomogram. It refines
the amplitudes of displacement along each used normal mode
(elastic parameters) as well as the angles and shifts (rigid-body
parameters) of the reference structure until the best match
is obtained between this reference structure and the given
subtomogram. The latter is achieved bymaximizing the similarity
between the subtomogram and the density volume from the
elastically deformed, oriented and shifted reference, and includes
missing wedge compensation. The missing wedge compensation
is done by calculating the cross-correlation between the reference
and subtomogram density maps only in the region of the Fourier
space where the data can be trusted, i.e., by constraining the
cross-correlation evaluation to the Fourier space region that
excludes the missing wedge region (the region outside of the one
specified by the tilt angle range, e.g., −60 to +60◦). To maximize
this constrained cross-correlation (CCC), we use a variant of
Powell’s UOBYQAmethod, which subjects the objective function
to a trust-region radius (Berghen and Bersini, 2005). To control
the elastic deformation with highly noisy data, the radius of
the trust region is adjusted iteratively. The scaling factor of
the initial trust-region radius is a parameter that controls the
normal-mode amplitude search range and can be modified by
the user. It should have a positive value and its default value
of 1 produces good results in general. It may be increased
(typically to a value between 1 and 2) or decreased (e.g., between
0.5 and 0.9), if expecting larger or smaller conformational
changes, respectively. For each subtomogram, the normal mode
amplitudes are initiated with zeros, meaning that the non-
deformed reference is used in the first iteration. As the iterations
evolve, the reference model is displaced with the new guesses
of the normal mode displacement amplitudes, converted into
a volume and rigid-body aligned with the subtomogram using
the method of fast rotational matching. Fast rotational matching
has been largely used for rigid-body fitting of atomic models
to high-SNR consensus EM maps (Kovacs and Wriggers, 2002;
Kovacs et al., 2003). It has been extended to alignment of noisy
subtomograms in Chen et al. (2013) and this implementation is

used in our work. At the end of each iteration, the CCC is found
and fed to the numerical optimizer (Berghen and Bersini, 2005).
The iterations repeat until the final value of the trust-region
radius or the maximum number of iterations is reached.

2.4. Visualizing and Utilizing the Space of
Conformations
The number of elastic alignment parameters (normal mode
amplitudes) is determined by the number of selected normal
modes for the 3D-to-3D elastic alignment. The ensemble
of normal mode amplitudes (for all subtomograms) can
be projected onto a lower-dimensional space, so-called
conformational space, using a dimensionality reduction
technique. Here, we use linear Principal Component Analysis
(PCA) as it is the most widely known and intuitively clear
dimensionality reduction method, but other dimension
reduction methods could also be used (linear or nonlinear).
The dimensionality reduction is usually performed to two
or three dimensions, which allows a global data display and
easier modeling of conformational changes. Each point in the
conformational space represents a subtomogram and close points
correspond to similar conformations in the subtomograms. The
points that differ significantly from the remaining observations
(too isolated, outlier points) may be excluded from the further
analysis, by excluding the points below a certain p-value based
on the Mahalanobis distance (the distance between each point
and the whole distribution) (Mahalanobis, 1936). The excluded
points can be explained by the fact that some orientations of
the molecule combined with the missing wedge artifacts and
the high noise make some volumes more difficult to align
with the elastically deformed reference. After excluding such
outlier points, the space of conformations can be analyzed to
reveal molecular dynamics. This can be done by averaging
subtomograms of similar conformations in the densest regions
of the conformational space or by exploring the densest regions
by fitting curves (approximation by line segments) through
the data and displacing the reference structure along these
curves (referred to as trajectories) to animate the motion along
them. The 1-CCC color bar of the conformational space shows
coloring the points according to the value of the CCC between
the subtomograms and the density maps from the elastically
deformed reference model. Subsequently, the colors provide
the level of confidence in the obtained conformations. Those
subtomograms in which we have less confidence (subtomograms
with lower CCC values) than in the “consensus” observations
(subtomograms with higher CCC values) can be eliminated from
the group averages.

2.4.1. Averaging Subtomograms of Similar

Conformations
Close points in the conformational space can be grouped, which
results in grouping subtomograms of similar conformations
and averaging them. Before computing group averages, the
rigid-body alignment parameters found during the combined
iterative elastic and rigid-body alignment are applied on
the subtomograms. Optionally, before computing group
averages, the missing-wedge Fourier space region of individual
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subtomograms may be filled in with the corresponding region of
the global average computed from all subtomograms. A similar
procedure of missing wedge filling of individual subtomograms
is used in EMAN2 software package (Galaz-Montoya et al.,
2015). The subtomogram averages obtained from the selected
groups of subtomograms can be overlapped and compared to
understand the conformational changes of the complex in the
given set of subtomograms.

2.4.2. Animating Motions (Trajectories)
Distinct trajectories can be determined through the data in the
conformational space, and animated to see the motion of the
biomolecule while it is displaced along the trajectory. To animate
a trajectory, several points (e.g., 10) along the trajectory should
be mapped back to the original displacement space (e.g., using
inverse PCA), resulting in elastic alignment parameters that
can be used to deform the reference atomic or pseudoatomic
structure. Concatenating and displaying the resulting structures
can show a movie-like animation of the reference biomolecule
traveling across the specified trajectory.

2.5. Software Implementation and
Technical Details
The software of HEMNMA-3D method proposed here is freely
available (open-source). It is a part of ContinuousFlex plugin
for the open-source software Scipion3 (De la Rosa-Trevín et al.,
2016). ContinuousFlex was introduced in Harastani et al. (2020)
and also contains HEMNMA software. The software provides a
graphical user interface (GUI) and is empowered with a C++
backend with a message passing interface (MPI) parallelization
scheme to efficiently analyze large datasets (simultaneous analysis
of N subtomograms using N computing threads). We tested
the software on our local workstations and on supercomputer
centers. On our local workstations (2.2 GHz Intel Xeon Silver
4214 CPU processors), the current implementation takes around
10 and 30 min to analyze a subtomogram of size 643 voxels
with three and six normal modes, respectively. These times are
reported for the two types of complexes used in this article,
together with the number of normal modes used in these two
cases. They are the average times required for all iterations of
analyzing one subtomogram using a single computing thread
while the different subtomograms are analyzed in parallel using
different computing threads (if the time is measured for the entire
dataset, it will vary with the size of the dataset). It should be
noted that the software allows the use of any number of MPI
threads and any number of normal modes. However, the more
modes are used, the slower the processing. Finally, it should be
noted that there is no constraint regarding the size of the dataset
(the number of subtomograms) or the size of the individual
subtomograms (the number of voxels) that can be analyzed with
our software.

3. RESULTS AND DISCUSSION

In this section, we present and discuss the results of HEMNMA-
3D with synthetic and experimental subtomograms.

3.1. Synthesizing Datasets for Testing the
Method Performance
For testing HEMNMA-3D in general, and the combined elastic
and rigid-body 3D-to-3D alignment module in particular (which
is the core module of the proposed method), we synthesized two
datasets of conformationally heterogeneous subtomograms that
mimic discrete and continuous conformational variability, called
“Discrete” and “Continuous” datasets, respectively. The flowchart
for the data generation procedure is shown in Figure 4 and is
detailed in the following.

The “Discrete” dataset comprises 900 synthetic subtomograms
representing three different (synthetic) conformations of the
atomic PDB:4AKE structure (Müller et al., 1996) of adenylate
kinase chain A (1656 atoms), i.e., 300 subtomograms per
conformation. We generated this dataset using the atomic
PDB:4AKE structure and its first two non-rigid-body normal
modes, i.e., modes 7 and 8. Precisely, the three conformations are
represented by the following amplitudes of modes 7 and 8: (mode
7, mode 8) ∈ {(−150, 0), (+150, 0), (0, +150)}.

The “Continuous” dataset comprises 1,000 synthetic
subtomograms representing a continuum of conformations
of the same PDB:4AKE structure. We generated this dataset
using this atomic structure and its modes 7 and 8 using a linear
relationship between the amplitudes of the two modes. More
precisely, the synthesized amplitudes of modes 7 and 8 were
identical and randomly distributed in the range [−200, +200]
(uniform distribution).

Normal-mode amplitudes do not have a physical unit.
Nonetheless, the Root Mean Square Deviation (RMSD)
(Kufareva and Abagyan, 2011) between the reference atomic
coordinates and these coordinates displaced using normal-mode
amplitudes transforms the normal mode amplitudes in physical
units. To provide a basis for further evaluation of the method
performance, we found a RMSD of 6.95 Å corresponding to the
displacement using the amplitude of 200 for each of the two
combined modes 7 and 8 (this represents one half of the full
range of the synthesized motion).

To generate a subtomogram, first, we deform the atomic
structure using appropriate amplitudes for the selected normal
modes depending on the dataset in hand, i.e., we use (mode
7, mode 8) = (+150, 0) or (−150, 0) or (0, +150) to create a
subtomogram in the “Discrete” dataset, while we assign a random
value in the range [−200, 200] for both mode 7 and mode 8 to
generate a subtomogram in the “Continuous” dataset. Then, we
convert the deformed structure to a volume of size 643 voxels and
the voxel size of 2.2 Å3 (Peng et al., 1996). Afterwards, we rotate
and shift this volume in 3D space using random Euler angles
(each of the three Euler angles was randomized in the range [0,
360◦]) and random shifts (the shift along each of the x, y, and
z axes was randomized in the range [−5, +5] voxels), and we
project the rotated and shifted volume using tilt values −60 to
+60◦ to obtain a tilt series. We simulate microscope conditions
by adding heavy noise (signal to noise ratio SNR = 0.01) and
modulating the images with a contrast transfer function (CTF)
of defocus −1 µm, so that one part of the noise is affected
by the CTF and the other is not (Sorzano et al., 2007; Chen
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FIGURE 4 | Flowcharts of synthesis of the datasets used for testing and validating HEMNMA-3D, namely “Discrete” dataset (left) and “Continuous” dataset (right).

FIGURE 5 | Examples of synthetic subtomograms containing the same molecule but at different orientations, positions and conformations, for two different noise

levels. (A) Low level of noise (SNR = 0.5). (B) High level of noise (SNR = 0.01).

et al., 2013). Finally, we reconstruct a volume (our synthetic
subtomogram) from the tilt series using a Fourier reconstruction
method (Sorzano et al., 2013). A few examples of the synthesized
subtomograms (SNR= 0.01) and their less noisy version (SNR=

0.5, for illustration) is presented in Figure 5.

3.2. Synthetic Discrete-Type
Conformational Variability
In this experiment, our goal is to retrieve the ground-truth
amplitudes of normal modes 7 and 8 by the combined elastic and
rigid-body alignment (the core module of HEMNMA-3D) of a
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FIGURE 6 | Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D with “Discrete” dataset (synthetic subtomograms are

simulating discrete conformational heterogeneity). (A) Use of the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. (B) Use of a

pseudoatomic structure (from a simulated density map) and its normal modes to estimate the conformational and rigid-body parameters of the molecules in the input

synthetic subtomograms. The goal was the retrieval of the ground-truth relationship between the amplitudes along normal modes 7 and 8; ideally, all data should lay in

one of the following three clusters of normal-mode amplitudes: (mode 7, mode 8) ∈ {(-150, 0), (150, 0), (0, 150)}; each point in the plot represents a subtomogram and

close points represent similar conformations. Note that the dashed curves enclose the data points where p-value > 0.01 in Table 1. See the text for more details on

this experiment.

TABLE 1 | Mean absolute error and standard deviation between the estimated and ground-truth normal-mode amplitudes along with the angular and shift distances

obtained with HEMNMA-3D and “Discrete” synthetic dataset, using an atomic structure (Atomic) and simulated EM map (Volume) as input references.

Experiment Mode 7 Mode 8 Mode 9 Angular (deg) Shifting (vox)
p-Value Samples

Ref Dataset Mean Std Mean Std Mean Std Mean Std Mean Std

Atomic “Discrete” 16.51 11.87 10.91 7.64 10.70 6.66 1.33 0.77 0.19 0.09 p > 0.01 871/900

Volume “Discrete” 17.70 13.26 11.90 10.13 12.29 8.03 1.33 0.81 0.21 0.10 p > 0.01 870/900

The data points below the p-value of 0.01 were excluded from the error evaluation based on the Mahalanobis distance measure (few data points differing significantly from the remaining

observations, which would not be selected in real-case experiments as being too isolated and far from other points). The number of points used for the error computation is shown in

the last column of the table (column Samples) and the region with the kept points (p-value > 0.01) is shown in Figure 6.

referencemodel with the subtomograms in the “Discrete” dataset.
In other words, the goal is to find a solution for the challenging
inverse problem of finding the conformation of the structure
in each subtomogram. Since the proposed method can use two
choices for the reference model, namely, an atomic structure and
a density map (e.g., an EM map or a subtomogram average), we
performed two types of tests. In the first test type, the atomic
structure used to generate the synthetic subtomograms (chain A
of the PDB:4AKE) was used as a reference for retrieving normal
mode amplitudes of the synthetic subtomograms. In the second
test type, we converted (Peng et al., 1996) the atomic structure
into a density map (volume) of size 1283 voxels and voxel size of
1 Å3, and we used this density map as a reference for retrieving
normal mode amplitudes of the synthetic subtomograms. In the
case of the reference density map, normal modes were computed
from the corresponding structure obtained by converting the
density map into pseudoatoms (1675 pseudoatoms for the given

pseudoatom radius of 1.25 voxels and the target approximation
error of 5%). In both cases (reference atomic structure and
reference pseudoatomic structure, with their corresponding
normal modes), we used three modes (modes 7, 8, and 9)
instead of only two modes (modes 7 and 8 that were used
to generate synthetic subtomograms), to make the 3D-to-3D
elastic and rigid-body alignment task even more challenging.
Figure 6 presents the estimated amplitudes of normal modes
7 and 8 (the estimated amplitude of normal mode 9 is close
to 0 and is therefore not shown graphically). Table 1 presents
the mean absolute error and the standard deviation between
the estimated and ground-truth normal-mode amplitudes along
with the angular and shift distances. In both test cases, the
three distinct synthetic groups of subtomograms are correctly
separated, taking into account the extreme noise level. The results
show a less accurate alignment in the second case, which is
expected since, in that case, the atomic structure was used to
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FIGURE 7 | Averages of the three groups (enclosed by ellipses) of

subtomograms identified from the output of the 3D-to-3D elastic and

rigid-body alignment module of HEMNMA-3D with “Discrete” dataset (shown

in Figure 6A), using the atomic structure (chain A of PDB:4AKE) and its

normal modes to estimate the conformational parameters (normal-mode

amplitudes) and rigid-body parameters (orientation and shift) of the molecules

in the input synthetic subtomograms. Subtomograms are represented by

points and close points represent similar conformations. The numbers of

volumes written above the shown subtomogram averages are the numbers of

synthetic subtomograms used for computing these subtomogram averages

(the numbers of points enclosed by the corresponding ellipses). On the

bottom, the subtomogram averages are shown at 50% transparency along

with the corresponding ground-truth deformed atomic structure (in red).

generate the dataset and the pseudoatomic structure was used
as the reference model for the method to estimate the normal-
mode amplitudes from this generated dataset. This is in contrast
to the first test case where the same atomic structure was used
to create the dataset and as the reference for the method to
estimate the normal-mode amplitudes from this dataset. We
found a RMSD of 0.55 and 0.60 Å corresponding to a combined
displacement along modes 7, 8, and 9 with the mean absolute
errors in Table 1 for the tests with atomic and pseudoatomic
structures, respectively. Similarly, we found a RMSD of 0.94 and
1.06 Å corresponding a combined displacement along modes
7, 8, and 9 with the sum of the mean and standard deviation
of the absolute errors in Table 1 for the tests with atomic and
pseudoatomic structures, respectively. Hence, the error range
is significantly inferior to the half range of the synthesized
motion (6.95 Å) and the pixel size used to create the data (2.2
Å). Figure 7 shows grouping and averaging the subtomograms

in the first test type (atomic reference). We compared the
obtained subtomogram averages with the corresponding ground-
truth volumes (density maps from ground-truth deformed
models, without noise and missing wedge, used for synthesizing
noisy and CTF-affected tilt-series from which subtomograms
were obtained by 3D reconstruction). The visual comparison
shows no significant difference between them. The resolutions
calculated using Fourier shell correlation—FSC (threshold value
of 0.143), after applying onto the subtomogram average a large
spherical mask (radius of 28 voxels) with smooth edges (Gaussian
smoothing with Gaussian standard deviation of five voxels), are
5.30, 5.35, and 5.74 Å for the three subtomogram averages shown
from left to right in Figure 7, respectively. Without masking
subtomogram averages, these resolutions are 6.31, 6.10, and 6.43
Å, respectively. As a basis for comparison, we provide the
resolutions of three individual subtomograms arbitrarily chosen
from the three corresponding subtomogram averaging groups.
The resolutions of individual subtomograms with masking (the
mask already described) are 10.58, 10.57, and 12.75 Å. The
resolutions of the same subtomograms without masking are
12.67, 13.55, and 14.72 Å. These results show that a twice better
resolution is obtained after averaging only about 300 individual
subtomograms per group (Figure 7).

3.3. Synthetic Continuous-Type
Conformational Variability
Similarly to the previous experiment, our goal in this experiment
is to find a solution for the inverse problem of finding the
conformation of the structure in each subtomogram using the
combined elastic and rigid-body alignment of a reference model
with the subtomograms in the “Continuous” dataset. We used
the same two reference models as in the previous experiment
to estimate the normal-mode amplitudes: an atomic structure
(chain A of PDB:4AKE) and a density map from this atomic
structure. Also, as in the previous experiment, we used three
modes for both tests (atomic or pseudoatomic modes 7, 8,
and 9). Figure 8 presents the estimated amplitudes of modes
7 and 8 (the estimated amplitude of mode 9 is close to 0 and
is not shown in the plots). Table 2 shows the mean absolute
error and the standard deviation between the estimated and
ground-truth normal-mode amplitudes along with the angular
and shift distances. In both test cases, a linear relationship
between the estimated amplitudes of normal modes 7 and
8 is clearly distinguishable, which is close to the identity
relationship between the ground-truth amplitudes taking into
account strong noise present in the data. As in the previous
experiment, the results show a slightly less accurate alignment
in the second test type (pseudoatomic reference) for the same
aforementioned reason. We found a RMSD of 0.66 and 0.75 Å
corresponding to a combined displacement along modes 7, 8,
and 9 with the mean absolute errors in Table 2 for the tests with
atomic and pseudoatomic structures, respectively. Similarly, we
found a RMSD of 1.09 and 1.21 Å corresponding a combined
displacement along modes 7, 8, and 9 with the sum of the mean
and standard deviation of the absolute errors in Table 2 for
the tests with atomic and pseudoatomic structures, respectively.

Frontiers in Molecular Biosciences | www.frontiersin.org 10 May 2021 | Volume 8 | Article 663121

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Harastani et al. HEMNMA-3D

FIGURE 8 | Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D with “Continuous” dataset (synthetic subtomograms

are simulating continuous conformational heterogeneity). (A) Use of the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. (B) Use of a

pseudoatomic structure (from a simulated density map) and its normal modes to estimate the conformational and rigid-body parameters of the molecules in the input

synthetic subtomograms. The goal was the retrieval of the ground-truth relationship between the amplitudes along normal modes 7 and 8 (ideally linear relationship,

with equal amplitudes of normal modes 7 and 8); each point in the plot represents a subtomogram and close points represent similar conformations. Note that the

dashed ellipses enclose the data points where p-value > 0.001 in Table 2. See the text for more details on this experiment.

TABLE 2 | Mean absolute error and standard deviation between the estimated and ground-truth normal-mode amplitudes along with the angular and shift distances

obtained with HEMNMA-3D and “Continuous” synthetic dataset, using an atomic structure (Atomic) and simulated EM map (Volume) as input references.

Experiment Mode 7 Mode 8 Mode 9 Angular (deg) Shifting (vox)
p-Value Samples

Ref Dataset Mean Std Mean Std Mean Std Mean Std Mean Std

Atomic “Continuous” 20.12 11.30 12.78 11.24 12.74 7.71 1.31 0.79 0.19 0.10 P > 0.001 960/1,000

Volume “Continuous” 21.94 12.59 14.03 9.92 15.68 10.04 1.34 0.80 0.21 0.10 P > 0.001 957/1,000

The data points below the p-value of 0.001 were excluded from the error evaluation based on the Mahalanobis distance measure (few data points differing significantly from the remaining

observations, which would not be selected in real-case experiments as being too isolated and far from other points). The number of points used for the error computation is shown in

the last column of the table (column Samples) and the region where p-value > 0.001 is shown in Figure 8.

Hence, the error range is significantly inferior to the half range
of the synthesized motion (6.95 Å) and the pixel size used to
create the data (2.2 Å). Figure 9 shows grouping and averaging
of subtomograms in this experiment, with eight subtomogram
averages calculated along the distribution of the points for the
first test type (atomic reference). The subtomogram averages
show different conformations of adenylate kinase chain A. Note
that the noise contained in the individual subtomograms (SNR
= 0.01, Figure 5B) was reduced through subtomogram averaging
(Figure 9). Additional experiments, for other noise levels in input
subtomograms, can be found in Supplementary Figure 1 and
Supplementary Table 1.

3.4. Experimental Cryo-ET Data:
Nucleosomes in situ
We applied our method on a dataset comprising 650 in
situ subtomograms of nucleosomes collected from a cell of a
Drosophila embryonic brain, whose conformational variability
was detected but not fully explored in a previous work (Eltsov

et al., 2018). The subtomograms had the size of 643 voxels
and the voxel size of 4.4 Å3. A density map obtained with
classical subtomogram averaging (without taking into account
conformational heterogeneity) was used as the reference density
map for HEMNMA-3D (Figure 10C). The resolution of this
reference density map is around 2 nm (as determined by
Fourier Shell Correlation between the reference density map
and the density map from the atomic nucleosome structure
PDB:3w98 Iwasaki et al., 2013 shown in Figure 10B). For more
information on how this reference density map (global initial
subtomogram average) was obtained, please see section 1 of
the Supplementary Material (Nucleosome data preparation and
acquisition). This reference density map was converted into
pseudoatoms (1368 pseudoatoms for the pseudoatom radius
of 0.5 voxels and the target approximation error of 5%) and
normal mode analysis of the obtained reference pseudoatomic
structure was performed. The combined elastic and rigid-body
alignment was performed using the pseudoatomic structure and
a set of its six low-frequency high-collectivity normal modes.
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FIGURE 9 | Averages of eight groups (enclosed by ellipses) of subtomograms identified from the output of the 3D-to-3D elastic and rigid-body alignment module of

HEMNMA-3D with “Continuous” dataset (shown in Figure 8A), using the atomic structure (chain A of PDB:4AKE) and its normal modes to estimate the conformational

parameters (normal-mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input synthetic subtomograms. Subtomograms are

represented by points and close points represent similar conformations. The numbers of volumes written above the shown subtomogram averages are the numbers

of synthetic subtomograms used for computing these subtomogram averages (the numbers of points enclosed by the corresponding ellipses). On the bottom, the

subtomogram averages are shown at 50% transparency along with the corresponding theoretical centroid deformed atomic structure (in red).

We selected modes 7–11 and mode 16, as described above
and in our previous works (Jin et al., 2014; Sorzano et al.,
2014; Harastani et al., 2020). Modes 7–11 were selected as
being the five lowest-frequency non-rigid-body modes with
collectivities above 0.5. They include the mode related to gaping
motion (mode 7) and the mode related to breathing motion
(mode 9), which have been described in previous nucleosome
studies (Zlatanova et al., 2009; Eltsov et al., 2018). Mode
16 was selected as being related to a motion that could be
potentially interesting but it is more complex (a slightly higher
frequency motion), potentially including gaping- and breathing-
like motions. The normal-mode amplitudes estimated through
the alignment (six normal mode amplitudes per subtomogram)
were then projected onto a 2D space of conformations using
PCA. The space of conformations is presented in Figure 10.
Recall that each of the points represents a subtomogram, and
close points represent similar conformations. By inspecting this
conformational space, we identified four densest regions with

70, 183, 74, and 64 points from left to right in Figure 10D.
Following this analysis, we grouped the subtomograms in each
of these four regions and averaged them. Before averaging,
we filled in the missing-wedge Fourier space region of the
individual subtomograms with the corresponding region of
the global average computed from all subtomograms (please
note that this global average was computed after aligning
subtomograms using the rigid-body alignment parameters found
along with the 3D-to-3D elastic alignment by HEMNMA-3D,
which is a similar density map to the initial global average
map shown in Figure 10C as both density maps result from
averaging conformational heterogeneous subtomograms). The
displacement of the reference pseudoatomic structure (converted
into a density map) along two directions D1 and D2 in
the space of conformations is shown in Figure 11 and in
Supplementary Videos 1, 2. The significant difference between
the four group averages (Figure 10D) and the reference density
map (Figure 10C) as well as the motion observed along the two
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FIGURE 10 | Illustration of HEMNMA-3D use with in situ cryo-ET nucleosome dataset. (A) Space of conformations resulting from projecting the estimated amplitudes

of six normal modes onto a two-dimensional space using PCA. (B) Nucleosome atomic structure PDB:3w98, for comparison purposes. (C) Nucleosome

subtomogram average (around 2 nm resolution) used as the input reference density map for HEMNMA-3D, obtained by classical subtomogram averaging, without

taking into account conformational heterogeneity [for more information on how this global initial subtomogram average was obtained, see section 1 of the

Supplementary Material (Nucleosome data preparation and acquisition)]. (D) Four subtomogram averages from four densest regions in the space of conformations

(regions encircled with ellipses) showing different nucleosome conformations, mainly, different gap distances between the nucleosome gyres. The numbers of volumes

written above the subtomogram averages shown in (D) are the numbers of in situ cryo-ET subtomograms used for computing these subtomogram averages (the

numbers of points enclosed by the corresponding ellipses).

directions D1 and D2 (Figure 11, Supplementary Videos 1, 2)
can be described, mainly in terms of opening the nucleosome
by increasing the distance between the two gyres of the DNA

superhelix. This result consents the previous findings, observed
but not fully explored in a previous study (manual analysis) of the
nucleosome conformational variability (Eltsov et al., 2018). The
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FIGURE 11 | Displacement of the reference density map along two directions D1 and D2 in the space of conformations obtained (Figure 10) with HEMNMA-3D with

in situ cryo-ET nucleosome dataset. (A) Space of conformations (left) as shown in Figure 10 and two directions D1 and D2 used to displace the reference density

map (Figure 10C) in this space (right). (B) Displacement of the reference density map along the D1 and D2 directions (10 frames of the corresponding trajectory are

shown row-wise).

group averages are also compared with the atomic nucleosome
structure PDB:3w98 in Supplementary Figure 2.

4. DISCUSSION AND CONCLUSIONS

This article presents HEMNMA-3D, the first cryo-ET
subtomogram data analysis approach to study continuous

conformational variability of biomolecular complexes, which
maps a set of subtomograms into a space of conformations
using a reference model and its normal modes. The
conformational space permits (i) grouping (and averaging)
subtomograms with similar conformations and revealing hidden
conformations and (ii) recording animated displacements
of the reference model along the densest regions of the
space, along trajectories identified by curve fitting of the
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data in these regions. These HEMNMA-3D outputs could
be valuable to cryo-ET studies of molecular mechanisms
involved in conformational changes of complexes in vitro and
in situ. HEMNMA-3D is thoroughly tested using synthetic
subtomograms and applied to a cryo-ET experimental
dataset (nucleosome subtomograms recorded in situ in
Drosophila interphase nucleus). It provides promising
results coherent with previous findings. An open-source
software with a graphical user interface is provided for this
method with a C++ backend and a Message Passing Interface
parallelization scheme.

Both HEMNMA-3D and NMA-based flexible fitting
are NMA applications concerned with estimating the
molecular conformation in density maps based on an
atomic or pseudoatomic reference. However, the purpose
of HEMNMA-3D is different from that of the classical
NMA-based fitting methods. Classical NMA-based fitting
methods aim at determining an atomic representation of
an EM density map, which is done by flexible fitting of a
given atomic structure into that EM map. The purpose of
HEMNMA-3D is to get a low-dimensional representation
of the heterogeneity of a given set of EM maps, such as
subtomograms. Such low-dimensional representations do not
require pushing the limits of the fitting accuracy as in the
case of classical flexible fitting of atomic structures into EM
maps, which also prevents overfitting. Besides, HEMNMA-3D
performs a rigid-body alignment simultaneously with the
flexible alignment, which accounts for the missing wedge of the
low-SNR subtomograms, whereas classical NMA-based fitting
methods typically use high-SNR average consensus EM maps
reconstructed from single particle cryo-EM images without
missing wedge.

The uniform random distribution of conformations was used
in our experiments with synthetic data to show that HEMNMA-
3D finds the correct values (within an acceptable error) for
any conformation, rotation and translation, and that it does
not yield wrong biased solutions (e.g., systematic alignment
errors, such as a wrong biased alignment to one or the
other conformation and systematic rotational or translational
errors). Taking into account the independent analysis of each
individual subtomogram, HEMNMA-3D should be able to
recover any other conformational distribution, with similar
errors to those obtained with the conformational distributions
used in this article.

The tests with synthetic data using a pseudoatomic structure
from a simulated density map as a reference were used to
demonstrate the ability of the method to retrieve the ground
truth conformations with a comparable accuracy to the
accuracy achieved using an atomic reference despite that
(i) the pseudoatomic reference was not used to synthesize
the data (the datasets were synthesized using the atomic
reference), (ii) pseudoatomic coordinates unlikely coincide
with atomic coordinates (pseudoatomic coordinates are
obtained through volume-to-pseudoatoms conversion, which
does not use any prior information about atoms), and (iii)
the method for calculating normal modes is different for a
pseudoatomic reference (Cartesian method) and an atomic

reference (RTB method). In experimental cases, one could
obtain pseudoatoms from a density map of higher resolution
than the data itself, if such density map is already available
(e.g., an EMDB map obtained by high-resolution single
particle cryo-EM reconstruction) or if it can be simulated
from an available atomic structure (as in our synthetic data
experiments). However, a preferred choice for the reference
density map should be a density map from the data itself,
which can be obtained by classical subtomogram averaging
(without taking into account conformational heterogeneity),
as was the case in the nucleosome experiments shown in
this article.

The synthetic subtomogram datasets used in this work do
not account for crowdedmolecular environments, radiation dose
accumulation during tilting, and differences in CTF defocus over
the tilted planes. Nevertheless, the synthesized subtomograms
used here were challenging, as containing a small number of
voxels and as being obtained by 3D reconstruction from synthetic
tilt images affected by strong noise and CTF, which altogether
lowered the resolution of the reconstructed subtomograms.
The subtomograms were additionally affected by the missing
wedge artifacts. Despite such difficult conditions, HEMNMA-3D
finds the correct conformational, orientational, and translational
parameters, which suggests that it can be useful in practice,
and this usefulness was here demonstrated with experimental
nucleosome subtomograms.

In experimental cases, such as the nucleosome study shown
in this article, the number of used normal modes will always
be smaller than the actual number of normal modes (the entire
set of modes is too large to be included in our calculations
as this would require too long computing times). Therefore,
the conformational landscape will always be an approximation
of the actual conformational landscape. Small sets of selected
potentially relevant modes have been shown to produce good
approximation of the actual conformational landscape of the
nucleosome studied here by HEMNMA-3D as well as of other
complexes studied by HEMNMA. In some cases, a single
normal mode could be enough, such as in the case of 70S
ribosomes, where the normal mode describing the rotation
between the two subunits 30S and 50S was used to analyze
conformational and compositional variability of EF-G bound
and unbound 70S ribosome cryo-EM dataset (Jin et al., 2014).
HEMNMA-3D uses the same software for NMA and the same
numerical optimizer (to estimate the amplitudes of normal
modes iteratively) as HEMNMA, and it should thus have
similar performance as HEMNMA regarding the determination
of the conformational landscape using a smaller number of
normal modes. HEMNMA-3D software (ConinuousFlex plugin
of Scipion V3.0) helps the user decide which normal modes
to select, based on the lowest-frequency highest-collectivity
criterion and including or not a prior knowledge about the
conformational transitions, as is the case with HEMNMA
software (Harastani et al., 2020).

HEMNMA-3D can deal with larger sets of subtomograms
than those shown in this article. Each subtomogram is analyzed
independently of other subtomograms, meaning on a separate
computing thread. The same computing time per subtomogram
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is required for larger and smaller datasets of the same molecular
complex and the time required to process the entire dataset varies
with the size of the dataset.
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