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Abstract: Verticillium wilt (VW) is a soil-borne fungal disease caused by Verticillium dahliae Kleb,
which leads to serious damage to cotton production annually in the world. In our previous study, a
transmembrane protein 214 protein (TMEM214) gene associated with VW resistance was map-based
cloned from Gossypium barbadense (G. barbadense). TMEM214 proteins are a kind of transmembrane
protein, but their function in plants is rarely studied. To reveal the function of TMEM214s in VW
resistance, all six TMEM214s were cloned from G. barbadense in this study. These genes were named
as GbTMEM214-1_A/D, GbTMEM214-4_A/D and GbTMEM214-7_A/D, according to their location on
the chromosomes. The encoded proteins are all located on the cell membrane. TMEM214 genes were
all induced with Verticillium dahliae inoculation and showed significant differences between resistant
and susceptible varieties, but the expression patterns of GbTMEM214s under different hormone
treatments were significantly different. Virus-induced gene silencing analysis showed the resistance
to VW of GbTMEM214s-silenced lines decreased significantly, which further proves the important
role of GbTMEM214s in the resistance to Verticillium dahliae. Our study provides an insight into
the involvement of GbTMEM214s in VW resistance, which was helpful to better understand the
disease-resistance mechanism of plants.
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1. Introduction

Cotton production is seriously affected by Verticillium wilt (VW), and the breeding of
resistant varieties is a major problem faced by breeders. The main reason for this dilemma is
the lack of immunity or high resistance in cultivated varieties to VW. With the improvement
of biotechnology, transgenic technology is an important way to breed VW resistant varieties,
and the core of this technology is to clone important VW-resistant genes. In our previous
study, a VW resistance-related transmembrane protein gene, named as GbTMEM, was
cloned from Gossypium barbadense (G. barbadense) using map-based cloning [1]. As the
results showed, GbTMEM was highly expressed in G. barbadense when infected with VW,
and its silencing expression would reduce disease resistance.

The resistance mechanism of cotton to VW is a very complex process, and research
progress is delayed by the lack of cotton germplasm resources immune to VW. With the
development of biotechnology, various omics and high-throughput sequencing technolo-
gies have been applied to study the resistance mechanism of cotton to VW, and a large
amount of valuable data was obtained [2,3]. In addition, virus-induced gene silencing
(VIGS) technology is widely used in the study of the cotton resistance mechanism. The
function of resistance genes can be confirmed by specific silencing and the observation of
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phenotypic changes [4,5]. These methods provide an important reference for screening
candidate resistance genes and play an important role in elucidating the regulatory network
of cotton resistance.

The resistance mechanism of cotton to VW is a very complex biological process,
involving a variety of substances and signaling pathways. Terpenoid aldehydes and
phenylpropanoids, as well as reactive oxygen species, salicylic acid, jasmonic acid, ethy-
lene, brassinosteroids and other signaling pathways are involved in cotton resistance to
VW [4,6–10]. In the process of exploring the resistance mechanism of plants to VW, a large
number of genes related to VW resistance were cloned. Ve1 in tomatoes is one of the well-
known resistance genes to VW. But studies have shown that this gene is not involved in the
resistance of cotton to VW, which indicates the different resistance mechanisms between
cotton and tomatoes [11]. Some Ve genes were also cloned in cotton, and the transgenic
plants showed a certain degree of resistance to VW. However, further exploration of their
resistance mechanisms has not been reported [12,13]. In addition to Ve genes, a large
number of genes related to VW resistance were cloned from the cotton genome, including
GbRLK, GhPAO, Gbvdr, GbTLP1, GbERF1-like, GhSAMDC, GbNRX1, GhLMM etc. [10,14–19].
In addition, some exogenous genes can also improve the resistance of cotton to VW, such
as Hpa1Xoo, p35, NaD1, GAFPs and Hcm1 [20–23]. In this study, we found that a new class
of genes, TMEMs, also play an important role in the resistance of cotton to VW.

Transmembrane proteins are a kind of special proteins located in the phospholipid bi-
layer, which mainly undertake the function of intracellular and extracellular environmental
information and material exchange, and are indispensable in biological activities. In the pro-
cess of plant disease resistance, transmembrane proteins can recognize and accept pathogen
signals, activate intracellular reactions, transmit extracellular signals to the intracellular,
and induce defense responses. A large number of resistance-related transmembrane pro-
tein genes have been cloned in plants, such as Xa21, Pi-d2, FLS2, Ve1 and PigmR [24–27].
However, the resistance function of TMEMs in plants has never been reported. A series
of studies showed that the TMEM protein family in animals is involved in intercellular
signal transduction, immune-related diseases and tumor development [28,29]. TMEMs
have been proved to participate in many physiological processes, such as the formation of
plasma membrane ion channels, the activation of signal transduction pathways, mediating
apoptosis and autophagy [29]. However, the related research is still in its infancy, and the
functions of these proteins have not been fully revealed. In this study, other members of
the TMEM gene family in G. barbadense were cloned. VIGS and expression analysis showed
that these genes were also involved in the resistance of cotton to VW.

2. Results
2.1. Identification and Phylogenetic Analysis of GbTMEM214s

In our previous study, a VW-resistant gene, GbTMEM214, on chromosome D4 of G.
barbadense was identified with QTL mapping [1]. The gene was located on chromosome D4,
and its resistance function was verified with qRT and VIGS experiments. Five other genes
in the TMEM214 gene family were cloned from chromosomes A1, A4, A7, D1 and D7 in this
study. The three genes were respectively named GbTMEM214-1_A/D, GbTMEM214-4_A/D
and GbTMEM214-7_A/D, according to the chromosomes they are located on.

A comparison of gene structures revealed differences among the homologs of GbT-
MEM214s (Figure 1 and Figure S1). The structures of GbTMEM214-1 homologous genes in
A- and D- genomes of G. hirsutum and G. barbadense were the same. The homologous genes
of GbTMEM214-4 were different in the first exon, and similar differences existed among
homologous genes of GbTMEM214-7. To explore the existence and evolutionary relation-
ship of the TMEM214 protein in plants, proteins encoded with the TMEM214 homologous
genes in G. barbadense were further subjected to phylogenetic tree analysis together with
homologous genes in other plants. It was shown that the genetic relationship of TMEM214
homologous proteins between the A- and D- genomes was very close (Figure 2). Among
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TMEM214s in selected plants, GbTMEM214-4 was closer to EOY01031 and EOY01030 in
cocoa, while GbTMEM214-7 was closer to EOY03934.
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Figure 1. The position of TMEM214 genes in the chromosomes of G. barbadense and G. hirsutum. The
TMEM214 genes in cotton were predicted with the hidden Markov model (HMM) and HMMER
3.0 software with the HMM seed file of TMEM214 (PF10151). GbTMEM214s and GhTMEM214s
were named according to their localization on the chromosomes of G. barbadense and G. hirsutum,
respectively. The gene structure was analyzed with GSDS 2.0 (http://gsds.cbi.pku.edu.cn/ accessed
on 13 May 2022). The exons were boxed and the introns were lined.

Plants 2022, 11, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. The phylogenetic trees of TMEM214 proteins in plants. MEGA 5.05 was applied to con-

struct the phylogenetic trees of TMEM214 proteins. GbTMEM214s from G. barbadense were bolded 

and marked with a box. 

2.2. Protein Structure and Subcellular Localization of GbTMEM214s 

To understand TMEM214s in cotton, bioinformatic and molecular biologic experi-

ments were carried out to analyze the characteristics of GbTMEM214s. As shown in the 

results, the homologous proteins of GbTMEM214s in the A- and D- genomes were highly 

similar in secondary (Figures 3 and S3). Protein domain analysis showed that all six 

GbTMEM214s contained a TMEM214 domain of different sizes (Figure 3a). The TMEM214 

domain of GbTMEM214-7 was significantly shorter than other GbTMEM214 proteins. At 

the N-terminal of the protein sequence, GbTMEM214-4 and GbTMEM214-7 contained one 

and two low-complexity regions, respectively. Although the six GbTMEM214s were clas-

sified in the TMEM214 protein family, the 3D modeling results showed the wide differ-

ence among the 3D model structures (Figure 3b). Although no transmembrane region was 

found in the protein sequences and the 3D structures were quite different, the three pro-

teins were co-localized with PIP2A on the cell membrane as subcellular localization re-

sults showed (Figure 4). 

Figure 2. The phylogenetic trees of TMEM214 proteins in plants. MEGA 5.05 was applied to construct
the phylogenetic trees of TMEM214 proteins. GbTMEM214s from G. barbadense were bolded and
marked with a box.

http://gsds.cbi.pku.edu.cn/


Plants 2022, 11, 2342 4 of 14

2.2. Protein Structure and Subcellular Localization of GbTMEM214s

To understand TMEM214s in cotton, bioinformatic and molecular biologic experi-
ments were carried out to analyze the characteristics of GbTMEM214s. As shown in the
results, the homologous proteins of GbTMEM214s in the A- and D- genomes were highly
similar in secondary (Figure 3 and Figure S3). Protein domain analysis showed that all six
GbTMEM214s contained a TMEM214 domain of different sizes (Figure 3a). The TMEM214
domain of GbTMEM214-7 was significantly shorter than other GbTMEM214 proteins. At
the N-terminal of the protein sequence, GbTMEM214-4 and GbTMEM214-7 contained one
and two low-complexity regions, respectively. Although the six GbTMEM214s were classi-
fied in the TMEM214 protein family, the 3D modeling results showed the wide difference
among the 3D model structures (Figure 3b). Although no transmembrane region was found
in the protein sequences and the 3D structures were quite different, the three proteins were
co-localized with PIP2A on the cell membrane as subcellular localization results showed
(Figure 4).

2.3. Verticillium Dahliae Induced Expression Analysis of TMEM214s in Cotton

In order to find out the differential expression of TMEM214s in susceptible and resistant
cotton varieties infected with Verticillium dahliae (V. dahliae), qRT-PCR was applied to
examine the expression of homologs in TM-1 (susceptible variety) and Hai7124 (resistant
variety) (Figure 5). As shown in the results, all three TMEM214s were induced with
V. dahliae inoculation and involved in the response to V. dahliae. The expression level of
GbTMEM214-4 in Hai7124 was more significantly up-regulated than GhTMEM214-4 in
TM-1 at 24 h and 48 h after inoculation, reaching 5.57-fold and 19.09-fold, respectively.
However, the expression of GbTMEM214-1 and GbTMEM214-7 in Hai7124 was less up-
regulated than their homologous genes in TM-1, GhTMEM214-1 and GhTMEM214-7, from
48 h to 144 h after inoculation, and the expression of GhTMEM214-7 was significantly
increased by 6.00, 1.85 and 3.16-fold, respectively. Overall, the expression of TMEM214-4
in the resistant variety was more significantly up-regulated than that in the susceptible
variety, while the expression patterns of TMEM214-1 and TMEM214-7 in the resistant and
susceptible varieties were not significantly different.

2.4. Phytohormone Induced Expression Analysis of GbTMEM214s

Phytohormones play an important regulatory role in cotton disease resistance. There-
fore, their regulatory characteristics on GbTMEM214s expression were explored in this
study. Under phytohormone induction, the expression patterns of GbTMEM214s were quite
different. Following treatment, GbTMEM214-4 was induced with jasmonic acid (JA), sali-
cylic acid (SA), gibberellin (GA) and ethylene (ET), and reduced with indole-3-acetic acid
(IAA) and Zeatin. GbTMEM214-1 was induced with JA, SA, abscisic acid (ABA), GA, Zeatin
and ET, and reduced with IAA and brassinosteroid (BR). GbTMEM214-7 was induced with
JA, SA, IAA, GA, and ET, and reduced with ABA, BR and Zeatin (Figure 6). Under ET
treatment, GbTMEM214-4 was highest up-regulated with a maximum of 8.42-fold at 10 h,
but the expressions of GbTMEM214-1 and GbTMEM214-7 were not so obvious. Among
the eight hormones, GbTMEM214-1 was highest up-regulated with JA with a maximum of
5.48-fold at 1 h, and GbTMEM214-7 was highest up-regulated with IAA with a maximum of
4.00-fold at 1 h. Three GbTMEM214s were not induced with BR, and the expression levels
even decreased at 12 h after treatment.
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Figure 3. The protein structure of GbTMEM214s. (a) Protein sequence of GbTMEM214s in D-genome
were analyzed with the Simple Modular Architecture Research Tool (SMART, http://smart.embl-
heidelberg.de/ accessed on 13 May 2022). The structural models automatically generated with the
website were recolored to highlight each domain. The low complexity region and TMEM214 domain
were represented by black and blue boxes, respectively. (b) 3D structural models of GbTMEM214s
D-genome. Homology modeling of protein structures was applied to construct the 3D structural
models using the SWISS-MODEL web server (https://swissmodel.expasy.org/ accessed on 13 May
2022). The optimal PDB modeling templates were selected according to the Global Model Quality
Estimate (GMQE) value (Tables S1 and S2).
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Figure 4. The subcellular localization of GbTMEM214s. The subcellular localization of GbTMEM214s-
GFP in tobacco leaves. The constitutive GFP serves as a control. AtPIP2A-mCherry was used
as a membrane-localization marker. The constructs were transiently expressed in N. benthamiana
leaves. The green signal of GFP was fused with the red signal of membrane marker to determine the
localization of the protein. Bars = 40 µm.
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Figure 5. The relative expression levels of TMEM214 genes under the challenge of V. dahliae. (a) GhT-
MEM214 genes in susceptible variety TM-1; (b) GbTMEM214 genes in resistant variety Hai7124. The
qRT-PCR was applied to analyze the expression of TMEM214 genes. The data were expressed relative
to 0 h for each gene. “**” represent significant differences relative to each control and p-value < 0.01,
based on Student’s t-test. Each value was the mean ± SD of three biological determinations.

2.5. Resistance Function Analysis of GbTMEM214s

To verify the resistance function, GbTMEM214s was silenced using VIGS to define
loss-function in response to the pathogen. Two weeks after VIGS infiltration, the positive
control, TRV:GbCLA, showed an obvious photobleaching phenotype, and the expression of
GbTMEM214s in silenced plants was significantly down-regulated in the corresponding
lines (Figure 7a,c). After inoculation with V. dahliae, all three GbTMEM214s-silenced lines ex-
hibited more wilting, etiolated and even abscission of leaves than mock (Figures 7b and S3).
The disease index was calculated 28 days after inoculation, which reached 78.8%, 70.8%
and 75.0% respectively for GbTMEM214-4, GbTMEM214-1 and GbTMEM214-7 deficient
lines, compared with 39.3% for Hai7124 and 41.7% for the pTRV2:00 line (Figure 7d). The
increased susceptibility of silenced lines indicated the important role of GbTMEM214s in
cotton resistance to V. dahliae.
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Figure 6. The relative expression levels of the GbTMEM214 genes with the treatment of phytohormone.
(a) jasmonic acid (JA) treatment; (b) salicylic acid (SA) treatment; (c) abscisic acid (ABA) treatment;
(d) indole-3-acetic acid (IAA) treatment; (e) brassinosteroid (BR) treatment; (f) gibberellin (GA)
treatment; (g) zeatin treatment; (h) ethylene (ET) treatment. The qRT-PCR was applied to analyze the
expression of the TMEM214 genes. The data were expressed relative to 0 h for each gene. “*”, “**”
represent significant differences relative to each control and p-value < 0.05 or p-value < 0.01, based on
Student’s t-test. Each value was the mean ± SD of three biological determinations.
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Figure 7. The resistance function analysis of the GbTMEM214 genes using VIGS. (a) The cotton
gene GhCLA1 was used as a positive control, and VIGS of GhCLA1 results in a phenotype of white
leaves; (b) The phenotypes of Hai7124 under infection with V. dahliae after VIGS with Agrobacterium
carrying pTRV2:GbTMEM214s and pTRV2:00, and the photos were taken at 42 days after V. dahliae
inoculation; (c) qRT-PCR analysis of the expression levels of GbTMEM214s in the silenced lines;
(d) The disease index of plants with silenced GbTMEM214s. The data for each cotton line were filled
in different colors. The qRT-PCR data were expressed relative to Hai7124 for each gene. The results
were evaluated at 28 d after V. dahliae inoculation, with three replications containing at least 20 plants
each. “**” represent significant differences relative to each control and p-value < 0.01, based on
Student’s t-test. Each value was the mean ± SD of three biological determinations.

3. Discussion

Transmembrane proteins are a class of proteins with a unique structure, which are
ubiquitous in various animal and plant cells. According to plant genome data, 20% to 30%
of the proteins have transmembrane domains, indicating that these proteins play a very
important and extensive role [30].

Based on a previously cloned disease-resistance gene, GbTMEM214, the function
of its homologous gene in G. barbadense against VW was analyzed in this study. The
results showed that these genes played an important role in cotton disease resistance. A
plant’s immune system is composed of cell surface and intracellular immunity [31]. In
cell surface immunity, immune receptors sense common signatures of pathogens outside
the host cell via extracellular domains (ECDs) and initiate cellular responses to resist
infection via intracellular kinase domains (KDs) [32]. Membrane-localized receptor-like
kinases (RLKs) and receptor-like proteins (RLPs) are two major components of cell-surface
immunity to detect signatures of infection [33]. RLKs contain a variable extracellular
domain mediating pathogen recognition, a single-pass transmembrane domain and an
intracellular KD-transducing signal to downstream immune pathways [34]. Whereas, RLPs
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exhibit a similar overall structure to RLKs, but only contain a short intracellular tail, lack a
kinase domain, and require a co-receptor to transduce signals [35,36]. Cell-surface immune
receptors, also known as pattern recognition receptors (PRRs), monitor the extracellular
environment for pathogen invasion patterns, including microbial-associated molecular
patterns (MAMPs) and damage-associated molecular patterns (DAMPs) [37,38]. In the
process from sensing patterns to immune responses, co-receptors are required to transduce
immune signals [39,40]. In this study, GbTMEM214s were found to be located on the cell
membrane of plants, and they were considered to play an important role in cell surface
immunity. Based on the analysis of the sequence and structure of the three GbTMEM214
proteins, they were obviously different in the secondary and 3D structures. Therefore, the
members of this protein family were speculated to play different roles in the resistance of
cotton to VW, but the specific mechanism remained to be further studied.

TMEMs belong to a large gene family containing the TMEM domain, but their func-
tions are rarely studied and even not reported in plants. According to existing functional
studies, it was found that TMEMs in animals are related to intracellular signal transduction,
immune-related diseases and tumorigenesis, but the function of most genes in this family
is still unclear [41]. The immune system of plants is similar to the innate immune system
of animals [42]. However, as plants lack an adaptive immune system, they rely solely on
natural immunity against pathogens. As reported, several TMEM proteins in animals were
found to be involved in immune-related diseases. TMEM9B can activate NF-κB pathway-
induced apoptosis, and act as an important factor in the TNF-activated MAPK signaling
pathway [43,44]. TMEM176 is related to transplantation immunity, and its overexpression
can inhibit rejection after transplantation [45]. TMEM214 in animals, which belongs to
the same subfamily as GbTMEM214 in this study, mediates endoplasmic reticulum stress-
induced Caspase 4 activation and apoptosis [46]. Unlike GbTMEM214s, which have only
one TMEM domain, the animal TMEM214 protein contains two transmembrane domains at
its C terminus and a large at N terminus, and these domains are essential for the function of
TMEM214. Nevertheless, current understanding of TMEM in animals is still not sufficient,
and plant immunity is quite different from animal immunity, which limits the implication
of the functional mechanism of GbTMEM214 from animal studies. Our study provides an
important insight into the involvement of GbTMEM214s in plant-disease resistance, but the
molecular mechanism remains to be revealed through further experiments.

4. Materials and Methods
4.1. The Bioinformatics Analysis of TMEM214 Superfamily

The genome data were downloaded at CottonFGD (https://cottonfgd.org/ accessed
on 8 May 2020). The TMEM214 proteins in cotton were predicted with hidden Markov
model (HMM) and HMMER 3.0 software. The HMM seed file of TMEM214 (PF10151) was
obtained from the Pfam database (http://pfam.sanger.ac.uk/ accessed on 20 September
2021). The protein sequences of TMEM214 in other plants were obtained from NCBI
(https://www.ncbi.nlm.nih.gov/ accessed on 20 September 2021). The sequence alignment
of TMEM214 proteins were performed with ClastalX 1.83 software. The results were
visualized with GENDOC software. The maximum likelihood method in MEGA 5.05
software was applied to build the phylogenetic trees of TMEM214 genes. The ORFs were
predicted with the Fgenesh subroutine in MolQuest 2.3.3 software. The gene structure was
analyzed with GSDS 2.0 (http://gsds.cbi.pku.edu.cn/ accessed on 13 May 2022).

4.2. Protein Structure Analysis of TMEM214s

The domains in TMEM214 proteins were identified using the Simple Modular Archi-
tecture Research Tool (SMART, http://smart.embl.de accessed on 13 May 2022) following
the instruction. Homology modelling of protein structures was applied to construct the 3D
structural models using the SWISS-MODEL web server (https://swissmodel.expasy.org/
accessed on 13 May 2022).

https://cottonfgd.org/
http://pfam.sanger.ac.uk/
https://www.ncbi.nlm.nih.gov/
http://gsds.cbi.pku.edu.cn/
http://smart.embl.de
https://swissmodel.expasy.org/
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4.3. Plant Materials and Treatments

VW-resistant variety Hai7124 and susceptible variety TM-1 were used in this study.
Cotton seedlings were grown in a greenhouse at 28 ◦C during the day/night period of
16 h/8 h for 2 weeks. The V. dahliae strains were cultured on potato dextrose agar medium
(PAD) at 24 ◦C for 5 days, in Czapek’s medium at 25 ◦C for 5 days, and then adjusted to
1 × 107 conidia/mL with deionized water for inoculation. The seedlings were inoculated
with V. dahliae using the dip-inoculation method, and the root samples were harvested at 0,
24, 48, 96 and 144 h, respectively.

4.4. RNA Isolation and Expression Pattern Analysis

Total RNA was extracted from root samples using (Omega Bio-tek) according to the
manufacturer’s instructions, and cDNA was synthesized using PrimeScript RT reagent
Kit with gDNA Eraser (TaKaRa). Quantitative PCR primers of GbTMEMs and histone 3
(AF024716) were designed using Beacon Designer 7.0 software or following the previous
studies (Table S1), in which histone 3 (His3) was used as a reference gene. Quantitative
PCR was performed using TB Green qPCR Master Mix (TaKaRa) on the ABI QuantStudio
5 PCR System. The relative expression level was calculated as 2−∆∆∆Ct; ∆∆∆Ct = [(CtGene
− CtHis3)x h − (CtGene − CtHis3)0 h]Treatment − [(CtGene − CtHis3)x h − (CtGene − CtHis3)0 h]CK.

4.5. Cloning of the GbTMEM214s in Hai7124

The gene-specific primers of GbTMEMs were designed using Primer Premier 5 soft-
ware (Table S3). Standard PCR reactions were performed using Ex Taq Hot Start Version
DNA Polymerase (TaKaRa) to amplify the GbTMEMs with complete ORFs. The final prod-
uct was cloned into pMD19-T Vectors (TaKaRa) and transformed into the E.coli strain DH5α.

4.6. VIGS Experiments

VIGS was performed using the binary pTRV1 and pTRV2 vectors to silence GbTMEMs.
TRV2: GbTMEMs and TRV2: GbCLA1 vectors were constructed by inserting the 3′UTR
region specific sequences into pTRV2, and were subsequently transformed into the Agrobac-
terium tumefaciens (A. tumefaciens) strain GV3101. The A. tumefaciens cultures were grown
overnight at 28 ◦C on a solid LB medium (50 µg/mL kanamycin, 25 µg/mL gentamicin),
and then inoculated into a liquid LB medium (50 µg/mL kanamycin, 25 µg/mL gentamicin,
10 mM MES and 20 µM acetosyringone). The cultures were grown overnight in a 28 ◦C
shaker. Cells were then harvested and re-suspended in an infiltration medium (10 mM
MgCl2, 10 mM MES and 200 µM acetosyringone). The cell suspensions were adjusted to an
O.D. of 2.0 and incubated at room temperature for 3 h. The A. tumefaciens cells containing
the pTRV1 and pTRV2 vectors were mixed at a ratio of 1:1 and infiltrated into two fully
expanded cotyledons of 2-week-old cotton plants. Thirty plants per VIGS treatment were
infected with V. dahliae and a disease index was calculated as previously descripted [1].

4.7. Subcellular Localization of GbTMEMs

The ORFs of GbTMEMs were inserted into the pBin-GFP4 vector to express GbTMEMs-
GFP fusion protein. The vector expressing the AtPIP2A-mCherry fusion protein was used
as a positive control [47]. The vectors were then transformed into the A. tumefaciens strain
GV3101, and the A. tumefaciens cells containing each vector were mixed at a ratio of 1:1 and
infiltrated into Nicotiana benthamiana (N. benthamiana) leaves to transiently co-express fusion
proteins following previous study [48]. Visualization of fluorescence signals was observed
using a confocal laser scanning microscope (Zeiss, EVO-LS10) 3 d after infiltration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11182342/s1, Table S1: The information of the first three
PDB templates with the highest GMQE value; Table S2: The information of PDB templates for 3D
protein modeling; Table S3: Primer pairs used in this study; Figure S1: The sequence alignment and
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primer information of GbTMEM214s; Figure S2: The amino acid sequence alignment of GbTMEM214s;
Figure S3: Comparison of phenotypes at different days after inoculation in VIGS analysis.
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