
sensors

Article

Extended Codebook with Multispectral Sequences for
Background Subtraction †

Rongrong Liu *, Yassine Ruichek and Mohammed El Bagdouri

Connaissance et Intelligence Artificielle Distribuées (CIAD), University Bourgogne Franche-Comté, UTBM,
F-90010 Belfort, France; yassine.ruichek@utbm.fr (Y.R.); mohammed.el-bagdouri@utbm.fr (M.E.B.)
* Correspondence: rongrong.liu@utbm.fr
† This paper is an expanded version of our paper published in Liu, R.; Ruichek, Y.; El Bagdouri, M.

Enhanced Codebook Model and Fusion for Object Detection with Multispectral Images. In Proceedings of
the International Conference on Advanced Concepts for Intelligent Vision Systems, Poitiers, France,
24–27 September 2018; pp. 225–232.

Received: 6 January 2019; Accepted: 4 February 2019; Published: 8 February 2019
����������
�������

Abstract: The Codebook model is one of the popular real-time models for background subtraction.
In this paper, we first extend it from traditional Red-Green-Blue (RGB) color model to multispectral
sequences. A self-adaptive mechanism is then designed based on the statistical information extracted
from the data themselves, with which the performance has been improved, in addition to saving time
and effort to search for the appropriate parameters. Furthermore, the Spectral Information Divergence
is introduced to evaluate the spectral distance between the current and reference vectors, together with
the Brightness and Spectral Distortion. Experiments on five multispectral sequences with different
challenges have shown that the multispectral self-adaptive Codebook model is more capable of
detecting moving objects than the corresponding RGB sequences. The proposed research framework
opens a door for future works for applying multispectral sequences in moving object detection.

Keywords: background subtraction; multispectral sequences; codebook; self-adaptive; spectral
information divergence

1. Introduction

Moving object detection is often the first step in video processing applications, such as
transportation, security and video surveillance. A widely used approach for extracting moving
objects from the background in the presence of static cameras is detection by background subtraction.
Although numerous efforts have been made for this problem and significant improvement has been
achieved in recent years, there still exists an insurmountable gap between current machine intelligence
and human perception ability.

1.1. Background Subtraction

In the past decade and a half, there have been thousands of researchers devoted to background
subtraction and a great number of papers have been published [1]. Although different, most
background subtraction techniques share a common denominator: they make the assumption that
the observed video sequence is made of a static background, in front of which moving objects, also
called foreground, are observed [2]. Thus, background subtraction is sometimes known as foreground
detection [3] and foreground–background segmentation [4].

The natural idea of the background subtraction is to automatically generate a binary mask
which segments the set of pixels into foreground objects and background. In the ideal case, a simple
inter-frame difference between the current frame and a background reference frame is conducted to
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obtain the mask with the help of a global static threshold. However, detecting moving objects is not as
easy as it may first appear, due to the complexity of real-world scenes. Specifically speaking, it is often
difficult to obtain a good “empty” background reference frame in the case of a dynamic background,
and illumination changes may also make the global static threshold an inferior choice.

During the general background subtraction algorithm, a background model is initially constructed
to represent the background information of each pixel, based on a training image sequence via relevant
image characteristics, and, subsequently, a distance evaluation between this model and an input image
is conducted, resulting in foreground segmentation if the corresponding image features of the input
image significantly differ from those of the background model.

There are several types of background subtraction schemes or machine learning algorithms such as
Gaussian mixture models (GMM), Kernel Density Estimation (KDE) and Vibe, to name a few. GMM [5]
is one of the most widely used background subtraction methods, where each pixel has been modeled
as a mixture of weighted Gaussian distributions. With the probability density function (PDF) learned
over a series of training frames, the background subtraction problem becomes a PDF thresholding
issue for which a pixel with low probability is likely to correspond to a moving foreground pixel.
The main challenge for GMM is that it is a parameter-based algorithm. Thus, its performance is highly
influenced by the choice of the selected parameters.

To avoid the difficult question of finding appropriate parameters, nonparametric methods to
model background distributions such as KDE have been proposed [6]. Given the previous pixels,
the PDF of the intensities in the current frame can be estimated by KDE without any assumption on
distribution. However, kernel based methods are computationally intensive.

As a well-known cluster model, the Codebook technique has attracted many researchers’
attention. The motivation for having such a model is that it is fast, efficient, adaptive and able
to handle complex backgrounds with sensitivity [7]. In the original Codebook model proposed by [8],
a codebook containing several codewords is first constructed from a sequence of RGB sequences
from a static camera on a pixel-by-pixel basis; then, the pixel vector of a new frame is compared
with the average vector of the tested codeword in the background model, in order to finally obtain a
foreground–background segmentation.

Each method has its advantages over the other and ultimately the type of application and the
available data greatly influence the method used for the training of the background subtraction
algorithm. Thus, a multitude of more sophisticated methods have been proposed in the recent past.
Their efforts mainly focus on two aspects: the first takes on more sophisticated learning modes,
while the latter employs more powerful feature representations.

Since the Codebook model is simple and effective, we use it in our background subtraction
framework and improve it via modifying the original model and utilizing a new feature-measuring
method in the domain of multispectral sequences.

1.2. Multispectral Sequences

Earlier studies usually exploit the background subtraction using visible light cameras, mainly
RGB, or transferring it to other color model, like YCbCr [9], Lab [3] or YUV (Y, Luminance; U,
Chrominance; V, Chroma) color space [10]. Commonly, the methods developed for visible light
cameras are particularly sensitive to low light conditions and specular reflections, especially in an
outdoor environment. Nowadays, several works propose utilizing alternative kinds of sensors to
overcome these limitations. Thanks to the advancements in sensor technologies, now it is possible to
capture and visualize a scene at various bands of the electromagnetic spectrum. Thus, one of these
alternatives is the use of multispectral cameras which are very robust to bad illumination conditions.

The corresponding multispectral sequence, as the name implies, is a collection of several
monochrome sequences of the same scene and each band, or channel, is taken with additional receptors
sensitive to other frequencies of the visible light or to frequencies beyond the visible light like the
infrared region of electromagnetic continuum [11]. There is a large potential to improve the detection
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by multispectral sequences, for the intuitive fact that with more spectral bands, more information could
be obtained, particularly for harsh environmental conditions characterized by unfavorable lighting and
pronounced shadows, or around-the-clock applications, e.g., surveillance and autonomous driving.

In fact, aforementioned restrictions of visible cameras not only exist in moving object detection,
but also in many other vision tasks [12], including (but not limited to) remote sensing [13],
food control [14], face recognition [15], semantic segmentation [16], security, defense, space,
medical [17], manufacturing and archeology [18]. In this paper, we focus on how to make the most
of multispectral sequences for background subtraction framework using the Codebook algorithm.
Thus, we propose a Codebook based background subtraction using multispectral sequences. More
specifically, we focus our effort on verifying that multispectral sequences do have better performance
over traditional RGB sequences. Hereafter, we use the terminology multispectral for any cube that
includes more than two spectral bands selected from the original multispectral dataset, to distinguish
it from the traditional RGB.

To efficiently achieve this goal, the following incremental contributions have been established.
We first extend the original three-dimensional algorithm to the multispectral field. A preliminary
version of this step forward appears as part of our previous conference paper [19]. We further present
a self-adaptive mechanism of a boundary to get rid of the tiring work of searching for the optimal
parameters and combining the spectral information divergence to improve the performance. We have
tested this multispectral self-adaptive Codebook model on five multispectral sequences proposed
by [20] with different challenges, which show better performance than the corresponding RGB results.
This study extends the work in our second conference paper [21].

The rest of this paper is organized as follows: the Codebook algorithm is firstly adapted to
multispectral sequences in Section 2. A detailed description of the proposed multispectral self-adaptive
mechanism and the utilization of the spectral information divergence are presented in Section 3.
Section 4 discusses the experimental evaluation procedure and background subtraction results obtained.
Finally, Section 5 summarizes the contributions of this paper and suggests future works.

2. Multispectral Codebook

The Codebook algorithm performs a background subtraction with a clustering technique on
sequences taken from a still point of view in order to segment moving objects out of the background.
The method works in two phases: Codebook construction and foreground detection. In the first phrase,
a model representing the background is constructed from a sequence of images on a pixel-by-pixel
basis. Then, in the second phase, every new frame is compared with this background model in order
to finally obtain a foreground–background segmentation.

During the last decade, many works have been dedicated to improving this model. For example,
Refs. [22,23] have adopted a two-layer model, to handle dynamic background and illumination
variation problems. Other modifications like transferring RGB to other color models in order to solve
the problem of existence of shadows and highlights for foreground detection can also be found in [10].
In Ref. [24], a multi-feature Codebook model, which integrates intensity, color and texture information
across multiple scales, has been presented.

The object of this work is to investigate the benefits of multispectral sequences rather than
traditional RGB to improve the performance of moving objects’ detection. Thus, we first adapt the
original Codebook algorithm to multispectral sequences. Minor modifications have been performed
comparing with the original RGB Codebook technique [8]. Specifically speaking, the definition of
brightness in RGB is extended to multispectral case. In addition, unlike color distortion in the original
Codebook, we adopt spectral distortion instead, as the term color is always related to RGB, and,
even for three bands out of multispectral sequences, they are not strictly color.
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2.1. Codebook Construction

For each pixel, a Codebook is constructed to describe what background should act and each
codebook C = {c1, c2, . . . cL}, consists of L codewords. The number of codewords is different according
to the pixel’s activities. More precisely, each codeword is defined by two vectors: the first one
contains the average spectral values for each band of the pixel, vm = (V1, V2, . . . , Vn), where n
is the number of bands of multispectral sequences. The second one is a six-tuple vector auxm =

Ǐm, Îm, fm, λm, pm, qm, where:

• Ǐm, Îm, the min and max brightness, respectively, of all pixels assigned to codeword cm.
• fm, the frequency with which codeword cm has occurred.
• λm, the maximum negative run-length (MNRL), defined as the longest interval of time during

the construction period that the codeword cm has not been updated. pm, qm, the first and the last
times, respectively, that the codeword cm has been occurred.

To construct this background model, the codebook for each pixel is initialized as the first line
in Algorithm 1 shows, when the algorithm starts. N is defined as the total number of frames in the
construction phase. Then, the current value xt of a given pixel is compared to its current codebook. If
there is a match with a codeword cm, this codeword is used as the sample’s encoding approximation.
Otherwise, a new codeword is to be created. The detailed algorithm of Codebook construction is given
in Algorithm 1, during which the matching process is evaluated by two judging criteria: (a) brightness
bounds and (b) spectral distortion.

Algorithm 1 Codebook Construction

L←− 01, C←− φ

for t = 1 −→ N do xt = (X1, X2, . . . , Xn), I =
√

∑n
i=1 X2

i

find the matching codeword to xt in C if (a) and (b) occur.
(a) brightness(I, 〈Ǐm, Îm〉) = true
(b) spectral_dist(xt, vm) ≤ ε1

if C←−φ or there is no match, then L←−L + 1, create a new codeword
v0 = xt

aux0 = 〈I,I,1,t−1,t,t〉.
Else, update the matched codeword, composed of
vm =

(
Xm1, Xm2, . . . Xmn

)
and auxm =

〈
Ǐm, Îm, fm, λm, pm, qm

〉
by editing

vm ←
(

fmXm1+X1
fm+1 , fmXm2+X2

fm+1 , . . . , fmXmn+Xn
fm+1

)
auxm ← 〈min{I, Ǐm}, max{I, Îm}, fm + 1, max{λm, t− qm}, pm, t

〉
end for

(a) The brightness of the pixel must lie in the interval [Ilow, Ihi]. For grayscale pixels, the grayscale
value or the brightness is obtained by I = |x| =

√
x2. For RGB pixels, the brightness is calculated by

I =
√

R2 + G2 + B2. Accordingly, for multispectral pixel vector xt = (X1, X2, . . . , Xn), the brightness
can be also measured by the L2-norm of the pixel vector

I =
√

∑ n
i=1x2

i , (1)

where n is the number of bands. The boundaries are calculated from the min and max brightness
Ǐm, Îm, with Equation (2):

Ilow = α Îm, Ihi = min
{

β Îm ,
Ǐm

α

}
, (2)

where the values of α and β are obtained from experiments. Typically, α is between 0.4 and 0.7, and β
is between 1.1 and 1.5 [8].
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Thus, the logical brightness function is defined as:

brightness(I, 〈 Ǐm, Îm〉) =
{

true i f Ilow ≤ I ≤ Ihi,
f alse otherwise.

(3)

(b) The spectral distortion, spectral_dist, must lie under a given threshold ε1. Following
Equations (4) and (5), define the calculation of spectral distortion between an input multispectral
vector xt = (X1, X2, . . . , Xn) and a background average multispectral vector vm = (V1, V2, . . . , Vn):

p2 = ‖ xt ‖2 cos2θ =
xt, vm

2

‖ vm ‖2 , (4)

spectral_dist(xt, vm) =
√
‖ xt ‖2 −p2. (5)

To make it intuitive, the two criteria (a) and (b) are visualized in Figure 1. The pixel of a
multispectral image is considered as a vector in an n-dimensional space and three bands are used as
an example. In Figure 2, the blue cylinder represents a certain codeword, whose bottom radius is the
spectral distortion threshold ε1. The red and the blue vectors stand for the average spectral vm in this
codeword and the current pixel xt, respectively. With Equations (4) and (5), the spectral distortion can
be calculated and illustrated with the green line. As discussed above, a match is found if the brightness
of the pixel vector lies between Ilow and Ihi, and the spectral distortion is under a given threshold ε1.
Accordingly, the L2-norm of vector xt must be located along the axis in the cylinder and the length of
the green line must be smaller than the radius of the cylinder.
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At the end of the Codebook construction algorithm, the model has to clean the codewords that
are most probably belonging to foreground objects. To achieve that, the algorithm makes use of MNRL
recorded in the six-tuple of each codeword. A low value means that the codeword has been frequently
observed. A high value means that it has been less frequently observed and that it should be removed
from the model as it is probably part of foreground. The threshold value is often set as half of the
number of images used in the construction period [8].

2.2. Foreground Detection

The foreground detection phase that follows performs almost the same task as that of the
construction phase. It simply consists in testing the difference of the current image from the background
model with respect to brightness and spectral distortion. The pixel is detected as foreground if no
acceptable matching codeword exists. Otherwise, it is classified as background and the corresponding
codeword is updated at the same time. During the detection phase, the threshold for spectral distortion
is set with higher value to be more tolerant for noise.
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The process of the Codebook technique is illustrated in Figure 2, where the dashed lines represent
the decision made in the detection phase. CW is codeword for short. We need to note that, in the
construction phase, when there is no appropriate match found, a new codeword will be established,
while, in the detection phase, the pixel is detected as foreground directly and no more extra measures
will be taken.
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3. Multispectral Self-Adaptive Codebook

In this section, we proposed two techniques to improve the Codebook algorithm: multispectral
self-adaptive mechanism and new estimation criteria. With the first technique, the brightness bound
and spectral distortion thresholds are calculated automatically from the image data themselves
statistically, not chosen empirically like the original Codebook, which is helpful for researchers to get
rid of the cumbersome task of parameters tuning. Furthermore, the spectral information divergence is
employed to be the criteria to evaluate the distance in the matching process.

3.1. Self-Adaptive Mechanism

Like other parametric methods, the detection result of the original Codebook is heavily impacted
by the parameters. The Codebook model devoted to in Section 2 has the four following basic key
parameters: α, β, ε1 and ε2. To be specific, α and β are used to obtain the bounds from the min and max
brightness Ǐm and Îm in a certain codeword, with Equation (2), and, ε1 and ε2 are the spectral distortion
thresholds used in the construction and detection phases, respectively.

The fashionable way to get these parameters is empirical and experimental. The pioneers of
this technique [8] have provided the typical range of these parameters. However, this is still far
from adequate because manual parameter tuning is still required to achieve satisfying results for a
specific scene, which is always a really cumbersome and tricky task for researchers. In addition, if the
algorithm needs to be run for long periods of time, the parameters should be automatically adjusted
according to the environmental changes. What is more important for our research objective, when
using the multispectral sequences, is that the parameters should change with different numbers of
bands. Therefore, there is a need for further research with regard to realizing an automatic selection
for optimal parameters.

Motivated by the work of [9], which has proposed the statistical parameter estimation method
in YCbCr color space, we propose a multispectral self-adaptive method for automatically optimal
parameter selection. That is to say, those parameters do not need to be obtained by burdensome
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experiments, but to be estimated from the data themselves statistically, which can help to save a lot of
efforts and time.

Firstly, the statistical information is calculated iteratively and recorded for each codeword during
the process of constructing the background model. In spite of the vector of average spectral values of
the pixel vm and the six-tuple auxm, we record another vector named Sm, which represents the set of the
variance of the separate spectrum σ2

i . At the same time, for vm and Sm, one more dimension is added
to record the average Îm and the variance σ2

I of brightness σI . Thus, for the n-channel combination out
of multispectral sequences, the vm and Sm vectors are of n+1 dimension. The extra one channel stands
for the numerical information of the brightness. Referring to the algorithm illustrated in Algorithm 1,
the initialization and update strategy are kept the same for the six-tuple vector auxm, while they are
modified a little for vm. Specifically speaking, for a new codeword of a given pixel, the initialization of
vm is:

v0 = (X1, X2, . . . , Xn , I) , (6)

and when there is a match with this certain codeword, vm is updated as below:

vm ←
(

fmXm1 + X1

fm + 1
,

fmXm2 + X2

fm + 1
, . . . ,

fmXmn + Xn

fm + 1
,

fm Im + In

fm + 1

)
. (7)

Meanwhile, the Sm of the new codeword is initialed with

S0 =
(

X2
1 , X2

2 , . . . , X2
n, I2

)
(8)

and updated with

Sm

←
(

fmσ2
m1+(X1−Xm1)

2

fm+1 ,
fmσ2

m2+(X2−Xm2)
2

fm+1 , . . . ,
fmσ2

nm+(Xn−Xmn)
2

fm+1 ,
fmσ2

mI+(I−Im)
2

fm+1

)
(9)

Then, these statistics are used to build the self-adaptive Codebook algorithm, where the definitions
of brightness and spectral distortion are kept the same with those in the last section, as shown in
Equations (1), (4) and (5). During the matching process, the statistical information calculated and
recorded above for each codeword is used to estimate both the brightness bounds and spectral
distortion threshold. To be specific, the bounds of brightness can be estimated by

Ilow = Ǐm − σI , Ihi = Îm + σI , (10)

where σI is the standard deviation of brightness in the current codeword, whose square is the last
element of Sm. In addition, the threshold ε for the spectral distortion for both phases is calculated by

ε = max ([σ1 σ2 . . . . . . σn ]), (11)

where is the standard deviation of the ith band value in the current codeword, whose square is the
corresponding i th element of Sm.

With the self-adaptive mechanism, brightness bounds and spectral distortion threshold are able
to adjust themselves with statistical properties of the input sequences. In the phase of background
construction, for each pixel, when a new image arrives, the brightness and spectral distortion are
first computed using Equations (1), (4) and (5); then, the matching process is conducted codeword by
codeword. If (a) the brightness of the new pixel lies in the current interval of the brightness bounds
and (b) the spectral distortion is smaller than the current threshold of a certain codeword, the new
pixel will be modeled as a perturbation on this background codeword, whose brightness bounds
and the spectral distortion threshold will subsequently be updated using Equations (10) and (11).
Unless, a new codeword will be seeded. Later on, the similar task is performed in the detection phase.
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The new pixel is classified as background if an acceptable matching codework exists and the codeword
will be also updated using Equations (10) and (11) at the same time. Otherwise, the pixel is detected
as foreground.

3.2. Spectral Information Divergence

As illustrated above, the main idea of Codebook background model construction is that, if the
pixel vector of the current image is close enough to the average vector of the tested codeword in the
background model, it will be regarded as a perturbation on that codeword, unless it will establish a
new codeword to be associated with that pixel. However, how can this closeness, or in another way of
comprehension, distance be measured?

In the aforementioned Codebook algorithm, two criteria have been adopted to evaluate the
distance between two vectors, the brightness (B) and the spectral distortion (SD). Specifically speaking,
the brightness is simply the L2-norm of the related bands, and the spectral distortion is measured as
a function of the brightness-weighted angle between the current and reference spectral vectors, as
illustrated in Equations (4) and (5). We should be aware that the brightness and spectral distortion
defined previously are only one way of estimation criteria.

Here, we adopt another information-theoretic spectral measure, referred to as Spectral Information
Divergence (SID) [25], which is applied to determine the spectral closeness or distance between two
multispectral vectors. SID models the spectral band-to-band variability as a result of uncertainty
caused by randomness, which is based on the Kullback–Leibler divergence to measure the discrepancy
of probabilistic behaviors. That is to say, it considers each pixel as a random variable and then defines
the desired probability distribution by normalizing its spectral histogram to unity, which is expressed
by Equation (12)

Px(i) =
xt(i)

∑n
i=1 xt(i)

Pv(i) =
vm(i)

∑n
i=1 vm(i)

, (12)

where n is the number of bands. Then, the spectral information divergence dSID between the current
spectral vector xt and the background model vm can now be defined with Equation (13)

dSID(xt, vm) =
n

∑
i=1

Px(i)log
Px(i)
Pv(i)

+
n

∑
i=1

Pv(i)log
Pv(i)
Px(i)

. (13)

If the spectral information divergence is employed to replace the spectral distortion in the previous
Codebook model to be the judging criteria together with the brightness condition, the brightness
and spectral information divergence are first computed when a new frame arrives and the main
construction and detection procedures are similar. The threshold updating strategy for spectral
information divergence is kept the same with that for spectral distortion. That is to say, in the matching
process, we do not need to search the parameters. To further utilize the information, the three
criteria mentioned in this paper can be employed together. This step forward opens a door for other
possibilities to seek a novel kind of feature-measuring methods in the construction of the Codebook
background model.

4. Experiments

4.1. Dataset

To evaluate the performance of the proposed approach, a multispectral dataset [20], which is
composed of five challenging video sequences containing between 250 and 2300 frames of size
658 × 491, is adopted for testing. This is the first multispectral dataset available for research community
in background subtraction. These sequences are all publicly available, and the ground truth sequences
are already obtained by manual segmentation.
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The acquisition of this dataset is performed with a commercial camera, the FD-1665-MS,
from FluxData, Inc. (Rochester, MN, USA). It can acquire seven spectral narrow bands simultaneously,
six in the visible spectrum and one in the near infrared. In addition, the RGB sequences can be easily
obtained with a linear integration of the original multispectral sequences weighted by three different
spectral envelopes. Therefore, each scene consists of a multispectral sequence of size 658 × 491 × 7 for
each frame and the corresponding RGB sequence of size 658 × 491 × 3. Figure 3 presents examples of
RGB sequences of the five scenes. Note that the first scene is indoors, while the other four are outdoors
with different challenges such as tree shadows, faraway intermittent objects and objects with shadows.Sensors 2019, 19, x 9 of 14 
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Figure 3. Examples of the dataset [20].

4.2. Experiment Results

4.2.1. Multispectral Codebook

Since the traditional Codebook algorithm for RGB, is three-bands-based, we begin with the trials
with three bands. The number of combination composed of three bands out of seven is c3

7 = 35. For fair
comparison, parameters for RGB and these three-dimensional multispectral sequences are the same
for the experiments. The four parameters, which are empiric values determined experimentally and
used for the Codebook algorithms are as the following:

α = 0.7 β = 1.5 ε1 = 0.02 ε2 = 0.04.

The tests are conducted on the five different video sequences. For evaluation, the well-known
F-measure is computed for each combination of each video sequence with its available ground truth
data and illustrated in Table 1. The RGB results are also shown in the last row, acting as a reference.
The largest value in each column is in bold. Some visual examples are shown in Figure 4. For all
sequences, no morphological operation is applied.

Table 1. Average F-Measures on the five videos (3-band case).

Combination Video 1 Video 2 Video 3 Video 4 Video 5 Mean

1 123 0.6505 0.9422 0.7733 0.8037 0.7211 0.7782
2 124 0.8355 0.9420 0.7516 0.8065 0.7864 0.8244
3 125 0.8342 0.9450 0.7515 0.8148 0.7734 0.8238
4 126 0.7104 0.8950 0.7082 0.8047 0.8154 0.7867
5 127 0.7739 0.9396 0.6558 0.8071 0.7247 0.7802
6 134 0.8421 0.9461 0.7921 0.8513 0.7670 0.8397
7 135 0.8402 0.9538 0.7838 0.8350 0.7622 0.8350
8 136 0.7017 0.9040 0.7417 0.8381 0.8031 0.7977
9 137 0.7764 0.9463 0.6908 0.8354 0.7113 0.7920

10 145 0.8636 0.9440 0.7689 0.8475 0.7757 0.8399
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Table 1. Cont.

Combination Video 1 Video 2 Video 3 Video 4 Video 5 Mean

11 146 0.8519 0.8952 0.7296 0.8435 0.8132 0.8267
12 147 0.7932 0.9488 0.6881 0.8084 0.7480 0.7973
13 156 0.8705 0.9038 0.7564 0.8440 0.8091 0.8368
14 157 0.7943 0.9538 0.6908 0.8252 0.7361 0.8000
15 167 0.7839 0.9302 0.6518 0.8105 0.7832 0.7919
16 234 0.8358 0.9434 0.7418 0.8168 0.7810 0.8238
17 235 0.8339 0.9448 0.7345 0.8180 0.7657 0.8194
18 236 0.6959 0.8849 0.6880 0.8104 0.8075 0.7773
19 237 0.7714 0.9459 0.6400 0.8259 0.7248 0.7816
20 245 0.8583 0.9386 0.7099 0.8199 0.7899 0.8233
21 246 0.8437 0.8795 0.6677 0.7901 0.8241 0.8010
22 247 0.7900 0.9467 0.6273 0.8083 0.7662 0.7877
23 256 0.8666 0.8831 0.6832 0.8000 0.8179 0.8102
24 257 0.7893 0.9472 0.6262 0.8211 0.7539 0.7875
25 267 0.7838 0.9050 0.5934 0.8221 0.7923 0.7793
26 345 0.8619 0.9423 0.7409 0.8585 0.7746 0.8356
27 346 0.8436 0.8831 0.7088 0.8423 0.8076 0.8171
28 347 0.7904 0.9455 0.6525 0.8116 0.7634 0.7927
29 356 0.8661 0.8904 0.7187 0.8650 0.8026 0.8286
30 357 0.7894 0.9546 0.6640 0.8298 0.7577 0.7991
31 367 0.7833 0.9169 0.6281 0.8308 0.7773 0.7873
32 456 0.8718 0.8799 0.6992 0.8297 0.8131 0.8187
33 457 0.7897 0.9402 0.6435 0.8140 0.7690 0.7913
34 467 0.7854 0.9060 0.6181 0.8071 0.7904 0.7814
35 567 0.7844 0.9098 0.6095 0.8027 0.7869 0.7787
36 RGB 0.8086 0.9431 0.7578 0.7679 0.7789 0.8113
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five-band-based combinations, seven different six-band-based combinations, and total seven-band, 
together with the RGB for five videos. Then, the largest F-measures are selected and listed in  
Table 2. As a reminder, Brightness (B) and Spectral Distortion (SD) are used for evaluating the 
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Figure 4. Background subtraction results on five videos. The top row is original multispectral sequences.
The second row is the corresponding ground truth. The third and fourth are the results obtained by the
respective best combination of multispectral and RGB sequences.

Table 1 shows the performance comparison between the three-dimensional multispectral
sequences and RGB, whose result is not the best for all five videos. The average of the F-Measure on
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the five videos is calculated and listed in the farthest right column, from which the results (0.8399)
of the best average three-band combination on five videos present nearly 3% improvement than the
result (0.8113) of RGB. As it is shown, the multispectral sequences can represent an alternative to
conventional RGB sequences in the background subtraction.

4.2.2. Multispectral Self-Adaptive Codebook

In this part, the self-adaptive mechanism and spectral information divergence illustrated in
Section 3 have been adopted for n bands from five multispectral sequences.

Firstly, the experiments are conducted on the thirty-five different three-band-based combinations,
thirty-five different four-band-based combinations, twenty-one different five-band-based combinations,
seven different six-band-based combinations, and total seven-band, together with the RGB for five
videos. Then, the largest F-measures are selected and listed in Table 2. As a reminder, Brightness (B) and
Spectral Distortion (SD) are used for evaluating the distance between two pixel vectors, like what are
used in 4.2.1. In Table 2, the largest F-measure for each video is in bold and the average F-measures for
n bands of multispectral sequences on five videos are listed in the last row. From Table 2, multispectral
sequences always outperform the corresponding RGB sequences, among which the seven-band-based
combination performs worst, but still can be nearly 3% more than the RGB result.

Table 2. Best F-measures with B+SD on five videos.

B+SD 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB

Video 1 0.7995 0.8046 0.8060 0.8043 0.7983 0.4789
Video 2 0.9615 0.9624 0.9636 0.9643 0.9631 0.9535
Video 3 0.9231 0.9248 0.9204 0.9051 0.8381 0.9188
Video 4 0.8981 0.9001 0.8999 0.8918 0.8856 0.8871
Video 5 0.9171 0.9198 0.9190 0.9189 0.9110 0.9130
mean 0.8999 0.9023 0.9018 0.8969 0.8792 0.8303

In the following experiment, the spectral information divergence explained in Section 3.2 is used
to replace the spectral distortion in the matching process. The experiments for different n-band-based
multispectral sequences are conducted and the largest F-measures are selected and listed in Table 3.
Here, the judging criteria are brightness (B) and Spectral Information Divergence (SID). With this
new set of criteria, the multispectral sequences still have better performance than the RGB sequences.
The same as in Table 2, the four-band-based combination achieves the best results.

Table 3. Best F-measures with B+SID on five videos.

B+SID 3 Bands 4 Bands 5 Bands 6 Bands 7 Bands RGB

Video 1 0.9208 0.9219 0.9059 0.8676 0.7883 0.6355
Video 2 0.9538 0.9526 0.9504 0.9471 0.9451 0.9479
Video 3 0.8939 0.8914 0.8825 0.8766 0.8351 0.8867
Video 4 0.8784 0.8807 0.8783 0.8728 0.8558 0.8217
Video 5 0.8765 0.8801 0.8842 0.8425 0.7855 0.8447
mean 0.9047 0.9053 0.9003 0.8813 0.8420 0.8273

In the last experiment, brightness (B), spectral distortion (SD) and spectral information divergence
(SID) are adopted together to determine the distance between two spectral vectors, during which the
self-adaptive threshold is shared by spectral distortion and spectral information divergence. From the
results from the five videos and each combination, the best F-measures for each column are extracted
and listed in Table 4.
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Table 4. Best F-measures with B+SD+SID on five videos.

B+SD+SID 3B 4B 5B 6B 7B RGB

Video 1 0.9144 0.9147 0.8971 0.8607 0.7727 0.6555
Video 2 0.9614 0.9623 0.9635 0.9642 0.9631 0.9535
Video 3 0.9213 0.9180 0.8938 0.8634 0.8045 0.9054
Video 4 0.8968 0.8979 0.8972 0.8885 0.8821 0.8867
Video 5 0.8791 0.8800 0.8948 0.8459 0.7853 0.8543
mean 0.9146 0.9146 0.9093 0.8845 0.8415 0.8511

From Tables 2–4, regardless of different judging criteria used in the matching process, multispectral
sequences show an attractively better performance than the traditional RGB sequences. Then, the best
multispectral results from Tables 1–4 are summarized in Table 5, together with the corresponding
RGB results.

Table 5. Best F-measures with different mechanisms and sets of criteria on the five videos.

Mechanism Criteria Sequences Video 1 Video 2 Video 3 Video 4 Video 5 Mean

Static
parameters B+SD

RGB 0.8086 0.9431 0.7578 0.7679 0.7789 0.8113
Multi 0.8718 0.9546 0.7921 0.8650 0.8241 0.8615

Self-adaptive
mechanism

B+SD
RGB 0.4789 0.9535 0.9188 0.8871 0.9130 0.8303
Multi 0.8060 0.9643 0.9248 0.9001 0.9198 0.9030

B+ SID
RGB 0.6355 0.9479 0.8867 0.8217 0.8447 0.8273
Multi 0.9219 0.9538 0.8939 0.8807 0.8842 0.9069

B+SD+SID
RGB 0.6555 0.9535 0.9054 0.8867 0.8543 0.8511
Multi 0.9147 0.9642 0.9213 0.8979 0.8948 0.9186

In Table 5, the first category, using brightness and spectral distortion with a static parameter
mechanism, records the best multispectral and RGB results of each sequence taken from Table 1. In the
self-adaptive mechanism, the same items for three different sets of criteria are also extracted from
Table 2 to Table 4. The corresponding average F-measures on the five sequences are calculated and
listed in the last column.

From Table 5, we can see that, on the Videos 2 to 5, which are outdoor scenes, it performs best to
adopt the multispectral self-adaptive technique using the brightness (B) and spectral distortion (SD)
as matching criteria. What needs to be mentioned is that, in this process, researchers do not have to
take time and effort to search for the appropriate parameters. For the indoor Video 1, the utilization
of the spectral information divergence (SID) does great help. The F-measure shows a great jump
when SD is replaced by SID. When the three criteria are used together, the performance drops a little
from the B+SID combination but is still far better than that of B+SD. If all videos are considered,
judging from the mean F-measures, the three-criteria-based multispectral self-adaptive Codebook is
the most promising choice.

5. Conclusions and Perspectives

In this paper, we have proposed a new framework for background subtraction by investigating
the advantages of multispectral sequences with the Codebook model. Given the pioneering work
of Codebook algorithm, we have achieved significant improvements. Firstly, the original Codebook
algorithm is adapted to multispectral sequences. Furthermore, a self-adaptive mechanism is designed
to obtain the parameters based on the statistical information extracted from the data themselves.
The parameters in the original version are selected empirically and experimentally. This makes the
algorithm not solid, reliable and robust, as the detection results of Codebook are heavily impacted
by the parameters, let alone the time and effort to search for the optimal parameters. Furthermore,
the spectral information divergence is then introduced in the matching process to further improve
the performance. The results clearly show that the multispectral self-adaptive Codebook is more
capable of detecting moving objects and it is very convenient to be applied in other multispectral
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datasets with different numbers of bands. This research framework forward opens a door for future
works for applying multispectral sequences for robust detection and motion analysis of moving targets.
One future work is to explore other powerful feature representations extracted from multispectral
sequences, like texture, to further improve the accuracy of background subtraction. Another potential
direction is to measure the degree of stability via the intensity of the distribution of all the multispectral
bands and select the most stable bands for background subtraction to make better use of multispectral
sequences. In addition, we would like to further investigate the multispectral dataset and improve our
current work comparing with other prior works.
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