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Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the
magnetization transfer (MT) effect and defined as a relative amount of protons bound
to biological macromolecules with restricted molecular motion, which participate in
magnetic cross-relaxation with water protons. MPF attracted significant interest during
past decade as a biomarker of myelin. The purpose of this mini review is to provide
a brief but comprehensive summary of MPF mapping methods, histological validation
studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained
using a variety of quantitative MT methods. Some of them enable clinically reasonable
scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping
using standard clinical MRI pulse sequences, thus substantially enhancing the method
availability. A number of studies in animal models demonstrated strong correlations
between MPF and histological markers of myelin with a minor influence of potential
confounders. Histological studies validated the capability of MPF to monitor both
demyelination and re-myelination. Clinical applications of MPF have been mainly focused
on multiple sclerosis where this method provided new insights into both white and gray
matter pathology. Besides, several studies used MPF to investigate myelin role in other
neurological and psychiatric conditions. Another promising area of MPF applications
is the brain development studies. MPF demonstrated the capabilities to quantitatively
characterize the earliest stage of myelination during prenatal brain maturation and
protracted myelin development in adolescence. In summary, MPF mapping provides a
technically mature and comprehensively validated myelin imaging technology for various
preclinical and clinical neuroscience applications.

Keywords: macromolecular proton fraction (MPF), myelin, magnetization transfer (MT), central nervous system,
brain, spinal cord, MRI, quantitative imaging

INTRODUCTION

Investigation of myelin damage, repair, and development in the central nervous system (CNS) for
the understanding of pathological mechanisms and treatment monitoring in various neurological
and psychiatric conditions using non-invasive imaging methods attracted substantial attention
over past two decades (Heath et al., 2018; Piredda et al., 2021). Myelin has been recognized as
a key source of brain tissue contrast in MRI due to its strong effect on the nuclear magnetic
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resonance relaxation times T1 and T2 (Piredda et al., 2021).
However, conventional MRI does not allow quantitation of
the myelin content changes and lacks specificity to myelin.
Recent progress in quantitative MRI methods resulted in the
development of several specialized techniques with improved
specificity to myelin, which potentially can be used as sources
of myelin biomarkers. The underlying biophysical tissue
properties affected by myelin include single- or multi-component
relaxation, magnetization transfer, anisotropic diffusion, and
magnetic susceptibility (Heath et al., 2018; Piredda et al., 2021).
Extensive overview of the current myelin imaging methods can
be found in recent reviews (Heath et al., 2018; Piredda et al.,
2021). Several recently published meta-analyses (Mancini et al.,
2020; Lazari and Lipp, 2021; van der Weijden et al., 2021)
compared multiple histological validation studies of prospective
myelin imaging biomarkers. While there is no evidence of a
superiority of any single myelin imaging method to date, the
above studies consistently identified the macromolecular proton
fraction (MPF) among the parameters enabling the strongest
correlations with myelin histology.

MPF is a parameter describing the magnetization transfer
(MT) effect and defined as a relative amount of protons
bound to biological macromolecules with restricted molecular
motion, which participate in magnetic cross-relaxation with free
water protons (Yarnykh, 2012). MPF offers several important
advantages as a myelin biomarker. Particularly, MPF has fewer
physiological confounders as compared to myelin measures
based on diffusion, relaxation, and susceptibility. Diffusion
indexes associated with myelination, such as radial diffusivity
and fractional anisotropy (Song et al., 2002), are affected by
microstructural tissue organization and spatial orientation of
myelinated fibers (Wheeler-Kingshott and Cercignani, 2009),
whereas MPF is independent of these factors (Underhill et al.,
2009; Stikov et al., 2011). Relaxation times T1, T2, and T2

∗ and
magnetic susceptibility in neural tissues are mainly determined
by both myelination and concentration of iron (Stüber et al.,
2014; Duyn and Schenck, 2017). As a consequence, a popular
myelin biomarker, myelin water fraction measured from multi-
component relaxation analysis (MacKay et al., 1994; Deoni et al.,
2008; Hwang et al., 2010) is also influenced by the iron content
(Birkl et al., 2019). In contrast, MPF is not affected by iron
or other paramagnetic ions in tissues (Li et al., 2016; Trujillo
et al., 2017a; Yarnykh et al., 2018a). MPF is also independent
of magnetic field strength. In vivo MPF measurements in the
brain white matter (WM) and gray matter (GM) appeared
quantitatively consistent in a wide range of magnetic fields from
0.5 T (Anisimov et al., 2020) to 11.7 T (Naumova et al., 2017).
Therefore, MPF provides an attractive approach as a uniform
quantitative scale of myelin measurements across a variety of
human and animal MRI platforms. Finally, MPF maps can be
obtained using routine MRI equipment without modification
of original manufacturers’ pulse sequences (Yarnykh et al.,
2018b; Korostyshevskaya et al., 2019; Smirnova et al., 2021) thus
facilitating clinical translation of this technology.

While MPF mapping has been in use for almost 20 years,
the current literature lacks a review specifically focused on MPF
as a myelin biomarker. In this review, we sought to provide

a brief but comprehensive summary of existing MPF mapping
techniques, histological validation studies, and MPF applications
in neuroscience. The review is based on PubMed literature search
including synonyms of MPF (such as “bound pool fraction,”
“bound proton fraction,” “semisolid pool fraction," “semisolid
proton fraction,” and “bound water fraction”) and a similar
quantity, pool size ratio (PSR) (Gochberg and Gore, 2003)
related to MPF as PSR = MPF/(1−MPF). The term MPF is
uniformly used below, although different notations can be found
in original publications. The search methodology is detailed in
Supplementary Material.

LITERATURE REVIEW

Macromolecular Proton Fraction
Mapping Methods
The group of methods allowing reconstruction of MPF maps
alone or in combination with other MT parametric maps is
commonly referred to as quantitative MT (qMT). The two-
pool model of MT (Morrison and Henkelman, 1995) provides
a general theoretical framework for all qMT techniques. Within
this model, tissue is represented by two proton magnetization
reservoirs (free water and macromolecular pool), where the
process of magnetization exchange is described by the cross-
relaxation rate constant and MPF. Each pool has own transverse
and longitudinal relaxation times. We recommend reviews
(Henkelman et al., 2001; Sled, 2018) for more details of biophysics
of the MT effect. The model parameters can be estimated using
the two basic strategies: analysis of a signal behavior in response
to off-resonance radiofrequency (RF) saturation with variable
offset frequency and power (Z-spectroscopy) and analysis of
temporal signal evolution after initial semi-selective perturbation
of either water or macromolecular magnetization, which is
described by the bi-exponential function (cross-relaxometry).
In the contemporary formulation, the two-pool model for
tissues includes the super Lorentzian spectral line-shape of the
macromolecular pool and Lorentzian line-shape of the free
water pool (Morrison and Henkelman, 1995). This model was
adapted to the pulsed steady-state saturation regimen, which
are achieved using MRI pulse sequences, and enabled the first
experimental demonstrations of MPF maps of the human brain
along with the maps of other model parameters using multi-
parameter voxel-wise fit of Z-spectral images (Sled and Pike,
2001; Yarnykh, 2002). Also, several methods based on the analysis
of bi-exponential longitudinal relaxation were reported. The RF
pulse excitation schemes in these techniques may vary and may be
preferentially targeted at either the free water or macromolecular
protons. Within this paradigm, the techniques based on selective
inversion of free water magnetization (Gochberg and Gore,
2003, 2007; Dortch et al., 2011; Cronin et al., 2020), stimulated
echo preparation (Ropele et al., 2003; Soellinger et al., 2011),
and broadband saturation of the macromolecular pool (van
Gelderen et al., 2017) were developed. On-resonance saturation
of water protons caused by readout RF pulses in fast gradient-
echo sequences also can be used as a tool for MPF mapping
(Gloor et al., 2008; Garcia et al., 2010; Bayer et al., 2021) based
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on steady-state models, where the signal is sampled as a function
of the excitation pulse duration and flip angle.

The two-pool model contains six independent parameters.
None of existing qMT methods can simultaneously measure all of
them, and certain assumptions are required. In Z-spectroscopic
methods, T1 of the pools are unavailable from the model fit and
are mathematically coupled with cross-relaxation parameters.
Accordingly, separate T1 mapping is usually performed, and T1
of the free water pool (T1

F) is calculated under some assumption
about T1 of the macromolecular pool (T1

M). The common
assumptions include equating them (Yarnykh, 2002) or setting
T1

M = 1 s (Morrison and Henkelman, 1995). T1 measurements
also may need to be corrected for the cross-relaxation effect
(Mossahebi et al., 2014). In cross-relaxometric experiments, T2 of
the pools cannot be extracted from data and are usually estimated
by simulations in order to approximate the initial magnetization
state (Gochberg and Gore, 2003; Ropele et al., 2003; Gloor et al.,
2008; van Gelderen et al., 2017).

Simultaneous estimation of many parameters (usually 4 or 3)
in qMT techniques requires a large number of source images,
which result in impractically long data acquisition (>30 min
for the human whole-brain examination), particularly in earlier
methods (Sled and Pike, 2001; Ramani et al., 2002; Yarnykh,
2002; Gloor et al., 2008; Dortch et al., 2011). Additional B0
and B1 maps are also frequently used for correction of errors
caused by field non-uniformities (Sled and Pike, 2001; Gloor
et al., 2008; Yarnykh, 2012; Boudreau et al., 2018), thus further
increasing examination time. Reduction of the acquisition time
can be achieved using several strategies including optimized
schedules of variable experimental parameters (Cercignani and
Alexander, 2006; Li et al., 2010; Levesque et al., 2011; Battiston
et al., 2018; Boudreau and Pike, 2018; Cronin et al., 2020),
specialized sequences enabling acquisition of several data points
within a single scan (Soellinger et al., 2011; van Gelderen
et al., 2017; Battiston et al., 2019), and a reduction of the
model dimension by constraining certain parameters or their
combinations (Ropele et al., 2003; Yarnykh and Yuan, 2004;
Cercignani et al., 2005; Yarnykh, 2012). The last approach
resulted in the most radical solution providing MPF estimation
from a single spoiled gradient-echo image with off-resonance
saturation (Yarnykh, 2012) and a T1 map calculated using
the two-point variable flip angle method (Deoni et al., 2005).
The single-point method exploits negligible variability of the
cross-relaxation rate constant (in the macromolecules-to-water
direction), T2 of macromolecular protons, and the product
of observed R1 = 1/T1 and T2 of the free water pool in
brain tissues (Yarnykh, 2012). These quantities are fixed in the
reconstruction algorithm, thus making MPF the only adjustable
parameter. Further acceleration of the single-point technique
included elimination of a reference image (Yarnykh, 2016),
which is usually needed in most qMT techniques, exclusion
of B0 mapping due to a negligible effect of B0-related errors
(Yarnykh et al., 2020), and a new data-driven algorithm for
B1 non-uniformity correction (Yarnykh, 2021), which obviates
commonly used in qMT protocols B1 mapping sequences.
With these improvements, the entire single-point MPF mapping
protocol consists of only three spoiled gradient-echo sequences

providing MT-, T1-, and proton-density-weighted images.
Acceleration achieved with the single-point MPF mapping
method can be converted into either high-resolution acquisition
with a generally acceptable for human neuroscience applications
scan time (about 15 min for a whole-brain dataset with
isotropic 1.25 mm3 resolution; Yarnykh, 2021) or fast clinically
targeted protocols (3.5 min for a whole-brain dataset with
1.5 × 1.5 × 5.0 mm3 resolution; Yarnykh et al., 2018b).
Due to lesser sensitivity to noise, single-point MPF mapping
showed improved reproducibility compared to multi-parameter
techniques. Particularly, reported coefficients of variation of
repeated measurements in the human brain were 1–2% for the
single-point method (Yarnykh et al., 2020; Smirnova et al., 2021)
and about 5% for multi-parameter qMT (Davies et al., 2004;
Levesque et al., 2010b).

Software availability is an important aspect of future
MPF mapping applications. While most studies to date
utilized custom-written software tools, we identified two
open-source freely available software packages enabling MPF
map reconstruction. Quantitative MRI analysis MATLAB
(MathWorks, Inc.; Natick, MA, United States) library “qMRLab”
(Karakuzu et al., 2020; qMRLab, 2021) allows MPF map
reconstruction based on several widely used multi-parameter
qMT fit models (Sled and Pike, 2001; Gloor et al., 2008; Li et al.,
2010). Specifically targeted at the single-point method (Yarnykh,
2012, 2016) C++ language software “MPF_map” is available from
the website (Macromolecular Proton Fraction [MPF], 2022).

Validation in Animal Models
Macromolecular proton fraction measurements were compared
with histological myelin assessment in a variety of animal
models including normal animal brain (Underhill et al., 2011;
Khodanovich et al., 2017) and spinal cord (Dula et al., 2010),
cuprizone-induced demyelination in mice (Thiessen et al., 2013;
Turati et al., 2015; Khodanovich et al., 2017, 2019; Soustelle
et al., 2019, 2021), experimental autoimmune encephalomyelitis
in rats (Rausch et al., 2009), lipopolysaccharide-induced focal
demyelination in rats (Janve et al., 2013), hexachlorophene-
induced intramyelinic edema in rats (Harkins et al., 2013), genetic
hypomyelination (Ou et al., 2009a,b; West et al., 2018) and
hypermyelination (West et al., 2018) in mice, ischemic stroke
in rats (Khodanovich et al., 2018, 2021), spinal cord injury
in primates (Wang et al., 2016, 2019; Wu et al., 2020), and
demyelinated peripheral nerve ex vivo (Odrobina et al., 2005;
Ou et al., 2009a). All studies reported qualitative correspondence
of demyelinated anatomical zones with a reduced MPF and/or
MPF reduction associated with demyelination relative to a
control sample. When histology was quantitatively assessed,
MPF demonstrated strong correlations with histological myelin
markers characterized by correlation coefficients in a range 0.7–
0.99 (Underhill et al., 2011; Janve et al., 2013; Thiessen et al., 2013;
Turati et al., 2015; Khodanovich et al., 2017, 2018, 2019, 2021;
West et al., 2018; Soustelle et al., 2019, 2021).

Several works focused on validation of MPF as a tool
for monitoring re-myelination that is of critical importance
for therapeutic intervention studies. An increase in MPF was
correlated with re-myelination after withdrawal of cuprizone
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TABLE 1 | Summary of MPF applications in human conditions other than multiple sclerosis (MS).

Condition Measurement technique Main findings

Alzheimer’s disease
(AD)

Multipoint off-resonance (Ridha et al., 2007; Kiefer et al., 2009;
Giulietti et al., 2012).

Decreased hippocampal combined index MPF/[(1 - MPF)R1] (Ridha et al., 2007). Increased
hippocampal MPF (Kiefer et al., 2009). No significant effect on MPF according to voxel-based
analysis but a reduced forward exchange rate constant in multiple cortical regions (Giulietti et al.,
2012).

Genetic risk
variants of AD

Multipoint off-resonance (Mole et al., 2020a,b). Reduced MPF in the right parahippocampal cingulum (Mole et al., 2020a) and left thalamus (Mole
et al., 2020b) in participants with APOE-ε4 genetic risk factor and family history of AD.

Interferon-α
induced fatigue

Steady-state multipoint on-resonance (Dowell et al., 2016). No significant effect on MPF according to voxel-based analysis but an increased forward exchange
rate constant in the striatum and insula (Dowell et al., 2016).

Huntington’s
disease

Multipoint off-resonance (Bourbon-Teles et al., 2019; Casella et al.,
2020).

MPF decrease in whole-brain WM (Bourbon-Teles et al., 2019; Casella et al., 2020). Motor training
induced a significant MPF increase in the corpus callosum and motor pathways (Casella et al.,
2020).

Mild traumatic brain
injury

Single-point (Petrie et al., 2014). Significant MPF reduction in whole-brain WM and GM (Petrie et al., 2014).

Normal aging Multipoint off-resonance (Metzler-Baddeley et al., 2019b; Coad
et al., 2020; Mole et al., 2020a).

Significant negative correlations between MPF and age in the fornix (Metzler-Baddeley et al., 2019b;
Coad et al., 2020) and whole-brain WM (Mole et al., 2020a).

Obesity Multipoint off-resonance (Metzler-Baddeley et al., 2019a). MPF in the fornix negatively correlated with markers of obesity (Metzler-Baddeley et al., 2019a).

Brain tumors Multipoint off-resonance (Yarnykh, 2002; Tozer et al., 2011;
Mehrabian et al., 2018a,b); steady-state multipoint on-resonance
(Garcia et al., 2015); single-point (Korostyshevskaya et al., 2018).

Variable MPF decrease relative to normal WM in all studied tumors including gliomas (Yarnykh,
2002; Tozer et al., 2011; Garcia et al., 2015; Mehrabian et al., 2018a,b), meningiomas (Garcia et al.,
2015), and brain metastases (Garcia et al., 2015). Increased MPF relative to fetal brain tissue in fetal
collagen-rich medulloblastoma (Korostyshevskaya et al., 2018).

Parkinson’s disease Single-point and multipoint off-resonance (Trujillo et al., 2017b). Increased MPF in the substantia nigra, good agreement between single- and multi-point techniques
(Trujillo et al., 2017b).

Adrenomyeloneuropathy Multipoint off-resonance (Smith et al., 2009). Significantly decreased MPF in the dorsal column of the spinal cord with no differences in the lateral
columns and GM (Smith et al., 2009).

Fabry disease Multipoint off-resonance (Underhill et al., 2015). MPF reduction in left posterior brain WM, which was negatively associated with age (Underhill et al.,
2015).

Myotonic dystrophy
type 1

Multipoint off-resonance (Leddy et al., 2021). Reduced MPF in WM lesions, no differences between patients and controls in NAWM (Leddy et al.,
2021).

Schizophrenia Multipoint off-resonance (Kiefer et al., 2004; Kalus et al., 2005);
single-point (Smirnova et al., 2021; Sui et al., 2021).

No significant effect on MPF in the hippocampus (Kiefer et al., 2004) and amygdala (Kalus et al.,
2005). Significant MPF decrease in whole-brain WM and GM associated with negative symptoms.
Significant negative correlation between MPF in WM and disease duration (Smirnova et al., 2021).
Voxel-based patterns of variable increase and decrease in cortical MPF depending on the disease
duration. Geometric non-linearity of the cortical MPF profile decreased in patients and negatively
correlated with disease duration (Sui et al., 2021).

Small vessel
disease (white
matter
hyperintensities)

Non-conventional estimation as MT ratio/T1 (Iordanishvili et al.,
2019).

Decreased MPF in WM hyperintensities. Periventricular hyperintensities had lower MPF than deep
WM ones. A decrease in MPF corresponds to lesion severity according to Fazekas scale
(Iordanishvili et al., 2019).

Systemic
inflammation

Steady-state multipoint on-resonance (Harrison et al., 2015). No significant effect on MPF according to voxel-based analysis but an increased forward exchange
rate constant in the insula (Harrison et al., 2015).
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FIGURE 1 | Study-specific template derived from macromolecular proton fraction (MPF) maps of 146 adolescent study subjects (reprinted from Corrigan et al.
(2021); free PMC article).

(Turati et al., 2015; Khodanovich et al., 2019) and replicated
restoration of oligodendrogenesis (Khodanovich et al., 2019)
in WM and GM of cuprizone-pretreated mice. In the stroke
model, MPF showed a unique capability to identify local
post-ischemic remyelination, which was unobservable with
conventional imaging techniques (Khodanovich et al., 2021).

Animal studies provided important insights into specificity
of MPF to myelin and a role of potential confounders. MPF
in normal brain tissues is largely independent of the total cell
count and axonal density (Underhill et al., 2011). The loss
of axons and neurons in ischemic stroke did not affect MPF
(Khodanovich et al., 2018). MPF in the ischemic infarct was also
found to be insensitive to microglial (Khodanovich et al., 2018)
and astroglial (Khodanovich et al., 2021) proliferation, which
represent pathological hallmarks of sub-acute and chronic stroke
lesions. At the same time, due to dilution of the macromolecular
content, MPF is affected by edema (Stanisz et al., 2004; Harkins
et al., 2013; Khodanovich et al., 2018), which may cause up
to 10–15% overestimation of myelin loss by MPF in acute
stroke (Khodanovich et al., 2018). Multi-modal approaches were
proposed to correct the effect of water content changes on
MPF, particularly using proton density (Giacomini et al., 2009;
Mossahebi et al., 2015) or T2 measurements (Khodanovich et al.,
2018), but they need more rigorous validation.

Animal models of brain development were not studied
as extensively as demyelination models. Nevertheless, several
publications indicate utility of MPF for monitoring normal
or abnormal myelin development (Samsonov et al., 2012; Lu
et al., 2018; Goussakov et al., 2019). Using MPF, these studies
demonstrated dramatic distinctions in temporal myelination
trajectories between the genetic canine demyelination model
and normal animals (Samsonov et al., 2012), widespread effect
of ischemia-hypoxia on postnatal myelination in murine WM
and GM (Goussakov et al., 2019), and alterations in age-
dependent myelin development caused by microbiota in mice
(Lu et al., 2018).

Neuroscience Applications
The most common primary demyelinating disease, multiple
sclerosis (MS) attracted significant interest as an area of clinical
MPF applications. The earliest technical development studies
(Sled and Pike, 2001; Yarnykh, 2002) demonstrated that MPF

maps clearly depict MS lesions in WM as areas of low
MPF. Subsequent reports identified the capability of MPF to
detect microscopic demyelination in normal-appearing WM
(NAWM) (Davies et al., 2003, 2004; Tozer et al., 2003, 2005;
Narayanan et al., 2006; Cercignani et al., 2009; Spano et al.,
2010; Yarnykh et al., 2015, 2018a; Bagnato et al., 2020). However,
some studies did not find significant NAWM MPF differences
between patients and controls (Bagnato et al., 2018; McKeithan
et al., 2019), probably due to methodological distinctions in
acquisition protocols. MPF provided new insights into lesion
pathology in MS enabling studies of demyelination heterogeneity
(Levesque et al., 2005; Clarke et al., 2021) and temporal evolution
(Giacomini et al., 2009; Levesque et al., 2010a). Post-mortem
MPF and histology studies of MS (Schmierer et al., 2007; Bagnato
et al., 2018) confirmed good agreement between demyelination
and a reduced MPF. The majority of MS studies utilized
multipoint techniques with either off-resonance saturation (Sled
and Pike, 2001; Yarnykh, 2002; Tozer et al., 2003, 2005; Davies
et al., 2003, 2004; Levesque et al., 2005; Narayanan et al.,
2006; Schmierer et al., 2007; Cercignani et al., 2009; Giacomini
et al., 2009; Levesque et al., 2010a; Spano et al., 2010) or
selective inversion-recovery preparation (Bagnato et al., 2018,
2020; McKeithan et al., 2019; Clarke et al., 2021) to obtain MPF
maps. The single-point method (Yarnykh, 2012) extended the
area of MPF applications to GM (Yarnykh et al., 2015, 2018a)
and demonstrated strong associations of GM MPF with MS
disability scales and disease phenotype (Yarnykh et al., 2015). The
single-point method was also adapted to the spinal cord imaging
(Smith et al., 2014) and showed a significant reduction of both
NAWM and GM MPF in MS (Smith et al., 2017).

Applications of MPF in other conditions are scarce. The
summary of non-MS clinical applications of MPF and key
findings is provided in Table 1. Collectively, these studies
indicate growing usage of MPF as an exploratory myelin imaging
tool in diseases not primarily related to myelin pathology and
suggest that MPF mapping adds a new dimension in quantitative
clinical neuroimaging.

Brain development is another promising area of MPF
applications since myelination is a fundamental component of
CNS maturation. Fast single-point MPF mapping was used
to investigate the earliest stage of myelin development in the
fetal brain and showed close correlations with gestational age
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in the anatomic regions with known prenatal myelination onset
(Yarnykh et al., 2018b; Korostyshevskaya et al., 2019). It was
also demonstrated that the single-point method enables reliable
measurements of very low MPF values in the fetal brain, which
are about fivefold lower than MPF in adult WM (Yarnykh et al.,
2018b; Korostyshevskaya et al., 2018, 2019). A recent large-
scale study investigated spatiotemporal trajectories of protracted
myelin development during adolescence using high-resolution
MPF maps and identified that GM myelination is characterized
by a significantly faster rate as compared to WM and correlates
with puberty (Corrigan et al., 2021). In the technical aspect, MPF
maps used in this study demonstrated unprecedented anatomical
contrast, as illustrated by the study template in Figure 1.

DISCUSSION

Substantial body of evidence confirms high sensitivity and
specificity of MPF to myelin. At the same time, early brain
development (pre- or postnatal) remains an area where animal
model studies could provide an important background for
future clinical applications. Water content alterations remain
a sole major confounder of MPF according to prior studies.
Development of multimodal imaging approaches to mitigate
the effect of water content changes would be of crucial
value for MPF application in pathological conditions involving
significant edema component, such as acute stroke or brain
injury. In the perspective of clinical translation, MPF mapping
should enable sufficiently fast acquisition and independence
of a particular imaging platform. The last requirement can
be met, if a technique employs standard pulse sequences
provided by most MRI equipment manufacturers. In the
current state of development, only two approaches [single-
point synthetic-reference method (Yarnykh, 2016) and selective
inversion-recovery with optimized sampling and accelerated

acquisition (Cronin et al., 2020)] allow designs of MPF mapping
protocols based on unmodified sequences and provide whole-
brain acquisition in less than 10 min. Since fast MPF mapping
employs constrained reconstruction algorithms, consensus is
needed regarding the details of the fit procedure and values
of constrained parameters to facilitate comparisons between
multiple studies. This aspect may involve further model
refinements, such as more accurate parameters modeling
macromolecular protons (Helms and Hagberg, 2009; van
Gelderen et al., 2016, 2017). Finally, multi-platform protocol
harmonization and repeatability studies are needed to enable
MPF applications in multicenter clinical trials.
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