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Abstract

Background: Invariant Natural Killer T (iNKT) cells represent a determinant in the course of infections and diseases, however,
their role in the pathogenesis of non-infectious co-morbidities in HIV-positive patients is unknown.

Methods: Flow cytometry was used to investigate iNKT cell frequency, phenotype and function in HIV-infected patients on
HAART with bone and/or cardiovascular disorders and in HIV-positive controls free from co-morbidities.

Results: iNKT cells from subjects with bone and cardiovascular impairment expressed high levels of CD161 and
predominantly secreted TNF. iNKT cells from individuals with bone disease alone did not show any distinctive phenotypical
or functional characteristics. The functional capacity of iNKT cells in patients with cardiovascular disorder was impaired with
no cytokine release upon stimulation.

Conclusion: iNKT cells may have a role in non-infectious co-morbidities in treated HIV disease, possibly through the
exacerbation of inflammation. Further studies are needed to investigate iNKT cells in the pathogenesis of non-
communicable disorders in HIV infection.
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Introduction

HIV-positive patients on virologically-suppressive treatment are

at risk of non-infectious co-morbidities [1]. Indeed, HIV infection

is characterized by a state of persistent inflammation/immune

activation [2–4] known to predict clinical progression [5–8]; such

abnormalities are a distinctive characteristic of a senescent

immune system [9] which may accelerate the aging process in

the HIV-infected population [10–12]. In keeping with these

observations, HIV-positive patients with reduced Bone Mineral

Density (BMD) have been shown to feature a hyperactivated

peripheral T-cell phenotype [13]; similarly, HIV-infected subjects

with increased carotid Intima Media Thickness (IMT) and/or

positive history for cardiovascular disease show expansion of

activated CD8+CD38+ cells [14–17]. Most interestingly, T-cell

activation has been described an independent risk factor for

osteopenia/osteoporosis [13] and subclinical carotid abnormalities

[17,18].

While T-cell and monocyte activation has been extensively

investigated in the setting of non-infectious co-morbidities in

course of treated HIV disease and postulated as a possible marker

of ‘‘immunosenescence’’ in this patient population, very few

studies have investigated the role of other lymphoid cells in the

pathogenesis of non-infectious co-morbidities in HIV-infected

subjects.

Invariant natural killer T (iNKT) cells are a rare population of

T cells that possess qualities of both the innate and adaptive arms

of the immune response; iNKT cells recognize glycolipid antigens

presented by the non-classical MHC molecule CD1d [19–21] and

represent key components in the pathogenesis of many clinical

conditions [22–30].

Frequency and function of iNKT cells are impaired in the

course of HIV disease [31–35]. Indeed, iNKT cells express both

CD4 and the CXCR4/CCR5 co-receptors, thus representing a

target for the virus [36]. Accordingly, the CD4+ iNKT cell subset

is preferentially depleted in HIV disease [31,33,34,37] with a

parallel loss of IL-4 and IFN-c production [38] and such defects

are only partially restored by HAART [38–40]. Interestingly, the

production of Th1 cytokines from iNKT cells, such as IFN-c and

TNF has been inversely correlated with cell surface expression of

CD161 [32], thus suggesting that this molecule may represent a

marker of iNKT exhaustion in course of HIV [32].
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iNKT cells have also been implicated in atherogenesis [41–43];

indeed, in the mouse model, CD4+ iNKT cells are recruited to the

atherosclerotic lesions within arterial walls [44,45] and contribute

to the formation of fatty streaks [45–47]. Of note, CD1d is also

expressed in human atherosclerotic lesions [48,49] and lower

frequencies of iNKT were found in circulating blood of patients

with symptomatic atherosclerosis [49,50]. More specifically, iNKT

cells infiltrating human atherosclerotic tissue express CD4, CD161

and produce IFN-c [51] and seem to be implicated in plaque

stability through the interaction with vascular smooth muscle cells

[51].

Furthermore, in the mouse model, a-GalCer-activated iNKT

cells have been demonstrated to increase the frequency of

osteoclast progenitor cells and favour their maturation into

osteclasts [52]. The pro-osteocalstogenic effect of iNKT cells is

positively regulated by TNF, while IFN-c negatively affects this

process [52]. While specific iNKT subsets have been linked to

overt cardiovascular disease in humans [49,50], to our knowledge,

clinical findings on iNKT and osteopenia/osteoporosis in humans

have yet to be described.

In this report we investigated iNKT cell frequency, phenotype

and function in HIV-positive patients on virologically-suppressive

HAART with bone and/or cardiovascular impairment.

Our study is the first to show that iNKT cells from HIV-infected

individuals with cardiovascular and bone co-morbidities express

high levels of CD161 and predominantly secrete TNF, suggesting

a role in the pathogenesis of immunosenescent disorders in treated

HIV infection.

Materials and Methods

Study Patients
We consecutively recruited HIV-positive patients on virologi-

cally-suppressive HAART (HIV-RNA,40 cp/ml) with available

Bone Mineral Density (BMD; Dual-energy X-ray Absorptiometry-

DXA) and carotid Intima Media Thickness (IMT; ultrasonogra-

phy) measures for the screening of non-communicable disorders.

The research has been approved by the Ethical Committee of San

Paolo Hospital, Milan. All study participants provided written

informed consent. All study participants provided written

informed consent.

Bone disease was defined by the presence of osteopenia or

osteoporosis upon DXA scan: According to WHO criteria,

osteopenia and osteoporosis were defined by T-scores at the

lumbar spine and/or femoral neck that were ,21 SD and $2

2.5 and ,22.5, respectively [53]. Cardiovascular disease was

defined by either right and/or left carotid IMT.1 mm [54,55] or

presence of a carotid plaque upon ultrasonographic evaluation.

On the basis of lumbar/femoral BMD and carotid IMT values,

patients were divided into the following 4 groups: a) Double

Positive (DP) patients with both bone and cardiovascular

impairment (n = 10); subjects with Bone Disease (BD) (n = 10) or

Cardiovascular Disease (CD) (n = 10) alone; Double Negative

(DN) patients with neither bone nor cardiovascular disorders

(n = 10).

Human Lymphocyte separation and stimulation assays
Human peripheral blood (8 mL) was collected into EDTA tubes

and PBMCs were isolated using ficoll-paque (Biocoll separating

solution, BIOSPA). Cells of all patients were cultured in R10

medium alone (composition per 100 mL R10:88 mL RPMI,

10 mL fetal bovine serum, 1 mL [100 UI/mL] L-glutamine, and

1 mL [100 UI/mL] penicillin/streptomycin; Euroclone, Italy)

(unstimulated, US), or in medium supplemented with Phorbol

12-myristate 13-acetate (PMA, 50 ng/mL; Sigma-Aldrich, Milan,

Italy)/ionomycin (500 ng/mL; Sigma-Aldrich, Milan, Italy). In a

subgroup of 20 patients PBMCs were stimulated also with a-

GalactosylCeramide (a-GalCer, 200 ng/mL; Enzo Life Sciences,

NY, USA). Dose response curves were performed to determine the

optimal concentration of both stimuli.

Flow Cytometry
Parameters for inclusion of Natural Killer T surface

phenotype and functional data. As iNKT cell levels are very

low in peripheral blood, particularly during HIV infection, 1

million of total events (and never less than 500,000) were acquired

for each sample. Moreover, as previously performed [32] a

minimum of 20 events collected within the iNKT gate was

required for the data to be considered for functional data analysis.

Surface staining. For the measurement of iNKT cell

frequency and CD161 expression, freshly-isolated PBMCs were

incubated with CD1d-tetramer-a-GalCer-PE (a-GalCer) (Proim-

mune, Oxford, UK), anti-CD3-PE Cy7 (Beckman Coulter,

Fullerton, California, USA), anti-CD161-FITC (Mylteni Biotec,

Bologna, Italy) anti-Va24-biotin (Beckman Coulter, Fullerton,

California, USA), for 30 minutes at 4uC. Cells were then washed

with buffer (PBS with 0.5% bovine serum albumin and 2 mmol/

EDTA) and stained with streptavidin-Qdot 655 (Invitrogen,

Carlsbad, California, USA) for 30 minutes at 4uC, in the dark.

Cells were washed again and run on a FACS CANTO 2.6

cytometer (BD Bioscences, San Jose, California, USA).

Intracellular staining. For the measurement of intracellular

cytokine production, a separate aliquot of PBMCs was incubated

with R10 (unstimulated), PMA and ionomycin (n = 40) or a-

GalCer (n = 20), as described above. After 1 h at 37uC in 5% CO2,

Brefeldin A (BRFA) (10 mg/mL; Sigma-Aldrich, Milan, Italy,) was

added. After incubation for 14 h, the cells were washed and

surface stained as described above, with the exception of anti-

CD161. Cells were washed again and incubated with 1 mL of

FACS Lysing Solutions (BD Bioscences, San Jose, California,

USA) for 45 minutes at room temperature, in the dark and washed

prior to intracellular staining with anti-TNF-a-FITC (BD

Bioscences, San Jose, California, USA)/IFN-c-FITC (Beckman

Coulter, Fullerton, California, USA). After 30 minutes of

incubation at 4uC in the dark, samples were washed, run on a

FACS CANTO 2.6 cytometer and analyzed with FACS Diva

6.1.3 software.

Statistical analysis
Data were analyzed with GraphPad 5 PRISM software. Fisher’s

exact test, Chi-squared test, Mann-Whitney U-test, Kruskall-

Wallis followed by Dunn’s post hoc analysis and Wilcoxon tests

were used for statistics. Differences were considered statistically

significant at p,0.05.

Results

Patient characteristics
Forty HIV-positive patients with available BMD and carotid

IMT measurements were consecutively recruited at the Clinic of

Infectious and Tropical Diseases, San Paolo Hospital, University

of Milan. Subjects were divided into the following 4 groups

(Table 1): 10 Double Positive (DP) patients; 10 Bone Disease (BD);

10 Cardiovascular Disease (CD); 10 Double Negative (DN)

patients (Table 1). 3 patients in the BD group were diagnosed

with osteoporosis and 7 subjects in the CD group presented a

carotid plaque upon ultrasonography.
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Study subgroups were comparable in terms of demographic and

HIV-related parameters (Table 1).

Differences in BMD and IMT values were registered among

groups as per inclusion criteria (Table 1).

HIV-infected DP patients display high levels of CD161-
expressing iNKT cells

We used a tetramer-based gating strategy (Fig. 1A) to measure

iNKT cell frequencies in HIV-positive patients with bone and

cardiovascular impairment (Double Positive, DP) and in HIV-

infected subjects free from co-morbidities (Double Negative, DN).

The frequency of iNKT cells in peripheral blood was similar in

the two patient groups (DP:.007% [IQR:.003–.021]; DN:.005%

[IQR:.003–.015]; p = .88; Fig. 1C); interestingly, however, DP

patients exhibited significantly higher CD161-expressing iNKT

cells in comparison to DN patients (DP: 87.8% [IQR: 80.6–92] vs

DN: 56.3% [IQR 37.4–76.1]; p = .001; Fig. 1D), suggesting an

exhausted iNKT phenotype in HIV-infected subjects with bone

and cardiovascular impairment.

HIV-positive DP patients display high TNF production
from iNKT cells both constitutively and following
stimulation

Given that iNKT cells are able to produce a wide range of Th1

and Th2 cytokines, we determined the functional status of

circulating iNKT by measuring TNF and IFN-c directly ex vivo
and after stimulation with PMA/ionomycin (Figure 1E, F) and the

iNKT-specific stimulus a-GalCer (Fig. 1G, H).

Table 1. Patient characteristics.

Characteristic DP (n =10) BD (n=10) CD (n=10) DN (n=10)

Age, years (IQR) 50 (44–57) 44 (38–62) 45 (43–54) 42 (38–50)

Sex, F (%) 3 (30) 3(30) 3 (30) 5 (50)

Duration of HIV infection, mths (IQR) 82 (67–323) 96 (44–183) 198 (141–263) 189 (71–225)

HIV epidemiology, n (%)

MSM 2 (20) 2 (20) 3 (30) 4 (40)

Heterosex 6 (60) 3 (30) 3 (30) 6 (60)

IVD use 2 (20) 3 (30) 4 (40) 0 (0)

HCV-Ab, n (%) 1 (10) 3 (30) 3 (30) 0 (0)

Nadir CD4, cells/mmc (IQR) 89 (60–222) 210 (109–362) 232 (80–280) 321 (54–397)

White blood cells (1000/mmc) 5.6 (4.7–7.9) 5.6 (5.1–6.5)c 6.0 (5.4–8.1)e 4.7 (4.5–5.6)

Neutrophils (%) 56 (48.0–64.0) 56 (50.0–59.0) 56 (49.0–68.0) 52 (45.0–64.0)

Lymphocytes (%) 32 (26.0–39.0) 34 (30.0–40.0) 37 (24.0–41.0) 34 (26.0–40.0)

Monocytes (%) 7.8 (7.2–9.1) 7.2 (6.3–8.0) 8.2 (7.7–8.8) 9 (6.8–11.4)

Eosinophils (%) 2.7 (1.6–4.1) 1.8 (1.3–2.6) 1.9 (1.4–2.6) 1.6 (1.0–3.6)

Basophils (%) 0.6 (0.4–0.6) 0.7 (0.5–0.7) 0.5 (0.4–0.6) 0.5 (0.3–0.6)

Lymphocytes (n) 1928 (1375–2049) 1862 (1332–2179) 1919 (1675–2551) 1733 (1317–2239)

Zenith HIV RNA, log10 cp/mL (IQR) 5.4 (4.6–5.9) 5.6 (4.9–5.9) 5.3 (5.2–5.7) 5.0 (4.5–5.4)

AIDS diagnosis n (%) 4 (40) 3 (30) 0 (0) 3 (30)

Current CD4 counts, cells/mmc (IQR) 515 (308–575) 583 (379–716) 570 (517–798) 532 (354–614)

Current CD4 counts, % 26 (23–30) 33 (26–39) 32 (24–39) 30 (22–40)

Current HIV RNA, log10 cp/mL (IQR) 1.59 1.59 1.59 1.59

HAART duration, mths (IQR) 72 (63–149) 88 (45–123) 164 (56–180) 76 (52–130)

HAART regimen

PI (%) 2 (20) 3 (30) 3 (30) 6 (60)

NNRTI (%) 6 (60) 6 (60) 6 (60) 4 (40)

Other (%) 2 (20) 1 (10) 1 (10) 0 (0)

Tenofovir use (%) 7 (70) 8 (80) 8 (80) 9 (90)

DXA (IQR)

T-score femoral neck 21.55 (22.00221.10)a,f 21.80 (22.15221.35)c,d 20.25 (20.9021.35) 20.55 (20.9520.80)

T-score lumbar spine 21.75 (22.15221.48)a,f 22.10 (22.73221.45)c.d 20.25 (0.25–1.08) 0.00 (20.2520.43)

Carotid IMT, mm (IQR)

Left 1.04 (0.93–1.11)a,b 0.82 (0.6520.96) 1.05 (0.98–1.21)e 0.85 (0.8020.93)

Right 1.05 (0.96–1.25)a 0.87 (0.6520.97)c 1.11 (1.00–1.38)e 0.89 (0.8320.91)

DP: Double Positive; BD: Bone Disease; CD: Cardiovascular Disease; DN: Double Negative. MSM: Males Who Have Sex With Males. IVD: Intravenous Drug. HCV: Hepatitis C
Virus. HAART: Highly Active Antiretroviral Therapy; PI: Protease Inhibitor; NNRTI: Non-Nucleoside Retroscriptase Inhibitor. DXA: Dual-energy X-ray absorptiometry. IMT:
Intima Media Thickness. Data presented as: median (interquartile range, IQR) for continuous variables; absolute number (percentage) for categorical variables. p,0.05:
aDP vs DN; bDP vs BD; cBD vs DN; dBD vs CD; eCD vs DN; fCD vs DP.
doi:10.1371/journal.pone.0110287.t001
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Figure 1. iNKT cell phenotype and function in HIV-positive ‘‘Double Positive’’ (DP) and ‘‘Double Negative’’ (DN) patients. Gating
strategy of flow cytometry analysis for staining of iNKT cell frequencies, phenotype and intracellular cytokine production in a representative HIV-
positive individual (A); an example of staining for intracellular cytokines is also shown of a representative HIV-negative subject (B). PBMCs were gated
on lymphocytes, and iNKT cells were visualized as CD3+, Va24+ and CD1d-tetramer+. An example of CD161 surface staining is shown in the far right

iNKT in Non Infectious Co-Morbidities in Treated HIV
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Both DP and DN patients displayed a significant increase in

TNF production following PMA/ionomycin (p = .002 and

p = .027 respectively; Fig. 1E). Interestingly however, DP patients

showed higher, spontaneous release of TNF both prior to

stimulation (75.8% [IQR: 46.3–92.1] vs 49.1% [IQR: 24.4–

62.9]; p = .049; Fig. 1E) and following PMA/ionomycin stimula-

tion (DP: 82.6% [IQR: 65.9–93.9]; DN 59.4% [IQR: 41–76.1];

p = .019; Fig. 1E).

The functional capacity of iNKT in terms of INF-c production

did not differ between groups. Indeed, neither DP nor DN patients

displayed a significant response to PMA/ionomycin (DP us: 83.3%

[IQR: 52.2–87.1]; DP stim: DP: 84% [IQR: 48.6–100]; p = .58;

DN us: 73.3% [IQR: 24–84.7]; DN stim: 62.2% [IQR: 27.2–88];

p = .38; Fig. 1F); moreover, INF-c release from iNKT cells was

comparable between subjects both prior to (p = .24) and following

PMA/ionomycin (p = .19; Fig. 1F).

Given the differences in TNF production upon PMA/

ionomycin, we decided to evaluate iNKT functional capacity in

response to iNKT-specific stimulation with aGalCer in 5 patients

per group.

In keeping with the above mentioned findings, significantly

higher spontaneous TNF release was noted in DP patients (DP:

80% [IQR: 63.5–93.1]; DN: 52% [IQR: 37.8–69.8]; p = .047;

Fig. 1G), who tended to significant TNF production after a-

GalCer (p = .063). Accordingly, TNF release from a-GalCer-

activated iNKT cells was greater in DP subjects (DP: 92.3% [IQR:

88.3–100]; DN: 62.3% [IQR: 51.1–78.5]; p = .021; Fig. 1G).

While no differences were observed in terms of IFN-c
production upon PMA/ionomycin, a non-significant trend to

higher cytokine release was noted following a-GalCer stimulation

in DP compared to DN subjects (92.9% [IQR: 82–100]; 75%

[IQR: 60.3–89.5] respectively; p = .059; Fig. 1G).

Taken together, these findings suggest that iNKT cells from

HIV-infected patients with concurrent bone and cardiovascular

disease selectively produce high levels of TNF, both constitutively

and upon stimulation.

HIV-positive BD patients display normal iNKT cell
frequencies and CD161 expression

Given that HIV-positive patients with bone and cardiovascular

impairment present higher levels of CD161-expressing and TNF-

producing iNKT cells, we aimed to investigate the phenotype and

functional capacity of these cells in the two disorders separately.

We thus measured the frequency of total and CD161-expressing

iNKT cells in patients with Bone Disease (BD) and compared

them to patients free from co-morbidities (DN subjects).

Differently from what observed in patients with both bone and

cardiovascular disease, the frequency of total (BD:.007%

[IQR:.005–.019]; DN.005% [IQR:.003–.015], p = .34 Figure 2A),

and CD161-expressing iNKT cells (BD: 62.3% [IQR: 50.7–90.7];

DN 56.3% [IQR 37.4–76.1]; p = .25; Fig. 2B) were comparable in

the two groups.

HIV-positive BD patients display high levels of TNF and
IFN-c from iNKT cells following stimulation

The functional capacity of iNKT cells in patients with bone

disease was measured through the production of TNF and IFN-c
prior to and following stimulation with PMA/ionomycin (Fig. 2C,

D) and a-GalCer (Fig. 2E, F).

Both BD and DN patients displayed a significant increase in

TNF-producing cells following stimulation with PMA/ionomycin

(BD us: 72.8% [IQR: 48.7–77.6]; BD stim: 76.7% [IQR: 60.2–

89], p = .002: see above for DN values; Fig. 2C). A non-significant

trend to higher spontaneous TNF release was observed in BD

patients (p = .075) with no differences between study individuals

upon PMA/ionomycin (p = .11) (Fig. 2C).

In reference to IFN-c production, BD patients alone responded

significantly to PMA/ionomycin (BD us: 70.5% [IQR: 31.1–83.3],

BD stim: 81.6% [IQR: 48.3–89.4]; p = .049; Fig. 2D), with no

differences among groups prior to and following stimulation

(Fig. 2D).

Upon iNKT-specific a-GalCer activation, BD patients dis-

played a non-significant trend to an increase in TNF production

(BD us: 76.5% [IQR: 66.7–84]; BD stim: 87.5% [IQR: 78.2–

99.1]; (p = .063), (Fig. 2E), with a tendency to higher cytokine

release compared to DN subjects (p = .056; see above for DN

values) (Fig. 2E). Of note, the finding of higher spontaneous TNF

release in the BD patient group prior to a-GalCer stimulation

which was not detected prior to PMA/ionomycin may reflect the

smaller sample size in the former experimental condition (n = 5 vs

n = 10, respectively) (Fig. 2E).

Similarly, BD patients were characterized by a non-significant

trend to higher IFN-c production (DB us: 83.3% [IQR: 75–88.7];

BD: stim: 87.5% [IQR: 84.1–97.1]; p = .063; Fig. 2F) with no

differences in cytokine release upon specific iNKT-activation

(p = .095; Fig. 2F).

Taken together, the present findings suggest that HIV-positive

subjects with bone impairment, display a tendency to a more

activated functional profile of iNKT cells compared to DN

individuals.

HIV-positive CD patients display normal iNKT cell
frequencies and CD161 expression

We next evaluated the frequency of total and CD161-expressing

iNKT cells in HIV-infected patients with CD.

Similarly to what registered in patients with bone impairment

alone, CD and DN subjects displayed similar iNKT frequencies

(CD: 0.004% [IQR: 0.002–0.005]; see above for DN values

p = .17: Figure 2G) and proportion of CD161-expressing cells

(CD: 47.1% [IQR: 41–79.5]; see above for DN values p = 1.0)

(Fig. 2H).

HIV-positive CD patients display a highly activated and
functionally exhausted iNKT-cell phenotype

iNKT cell function was measured ex vivo and following PMA/

ionomycin (Fig. 2I, J) and a-GalCer stimulation (Fig. 2K, L).

plot. iNKT frequency were comparable in DP and DN groups (C). iNKT cell phenotype was analyzed through the ex vivo expression of CD161 in DP
(n = 10) and DN (n= 10) patients (D). DP subjects exhibited significantly higher levels of CD161 on iNKT cell surface compared to DN patients
(p = .001). iNKT cell function was measured through the production of TNF and IFN-c ex vivo (US) and following stimulation with PMA/ionomycin
(n = 10 per group) (E, F) and a-GalCer (n = 5 per group) (G, H). Although DP and DN patients significantly increased TNF production upon PMA/
ionomycin stimulation (p = .002 and p= .027 respectively), DP subjects showed higher TNF release both prior to (p = .049) and following PMA/
ionomycin (E). Study groups exhibited similar frequencies of IFN-c-producing iNKT cells both ex vivo and after stimulation with PMA/ionomycin (F).
DP patients were characterized by significantly higher TNF release both prior to (p = .047) and following stimulation with a-GalCer (p = .021) (G).
Similar results were obtained in terms of IFN-c production, with a trend to higher cytokine production in DP subjects following iNKT-specific
stimulation (p = .059) (H). FSC, Forward Scatter: SSC, Side Scatter. Each symbol represents an individual.
doi:10.1371/journal.pone.0110287.g001

iNKT in Non Infectious Co-Morbidities in Treated HIV

PLOS ONE | www.plosone.org 5 October 2014 | Volume 9 | Issue 10 | e110287



Figure 2. iNKT cell phenotype and function in HIV-positive ‘‘Bone Disease’’ (BD), ‘‘Cardiovascular Disease’’ (CD) and ‘‘Double
Negative’’ (DN) patients. iNKT frequency was comparable among BD and DN groups (A). BD (n = 10) and DN (n= 10) showed similar CD161-
expressing iNKT cell frequencies (B) and a significant increase in TNF production following PMA/ionomycin stimulation (p = .002 and p= .027
respectively). Despite a trend to higher spontaneous TNF release in BD patients (p = .075), comparable cytokine levels were recorded upon PMA/

iNKT in Non Infectious Co-Morbidities in Treated HIV
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Compared to DN subjects, patients with CD presented

significantly higher TNF levels both prior to (CD us: 73.7%

[IQR: 66.2–84.7]; DN see above; p = .005; Fig. 2I) and following

mitogen stimulation (CD post PMA/ionomycin: 80.2% [IQR:

69.6–90.2]; DN see above p = .029; Fig. 2I). Of note however,

healthy patients alone were able to induce significant TNF release

upon PMA/ionomycin, suggesting a highly activated and

exhausted iNKT phenotype in HIV-patients with cardiovascular

disease.

Similarly, CD patients presented a non-significant trend to

higher post-stimulation IFN-c production from iNKT cells (86.9%

[IQR: 79.3–90.8]; p = .052; Fig. 2J; see above for DN values)

despite similar spontaneous cytokine release between groups (CD:

82.85% [IQR: 76.7–88.3]; see above for DN values p = .15;

Fig. 2J).

The study of the functional capacity of iNKT cells following

specific stimulation with a-GalCer revealed comparable TNF and

IFN-c production between subjects in all experimental conditions

(Fig. 2K, 2L).

Discussion

The objective of the present study was to assess whether HIV-

positive individuals on virologically-suppressive HAART with

bone and cardiovascular co-morbidities are characterized by

specific iNKT cell phenotype and function.

The key finding of our analysis is the expansion of CD161-

expressing and, TNF-secreting iNKT cells in subjects with

coexisting bone and cardiovascular impairment; a less clear iNKT

fingerprint was found in patients affected by single co-morbidities.

HIV-related T-lymphocyte activation has been postulated as a

possible driving force of premature osteopenia/osteoporosis [13]

and coronary heart disease [14–18]. HIV infection is also featured

by impaired iNKT cell frequency [31,33,34,36,37] and function

[32,35]. In HIV-negative cohorts, iNKT cells have been involved

in the pathogenesis of cardiovascular disease; recently a correlation

between the loss of an anti-inflammatory subset of gut-residing

CD4+ iNKT cells and systemic immune activation has been

described in HIV infection [37], providing evidence for the

contribution of this particular cell subset in the pathogenesis of

HIV disease and non-communicable co-morbidities.

This is the first report to describe a peculiar iNKT phenotype in

HIV-positive patients with concomitant early bone and cardio-

vascular disease, consisting of heightened CD161 expression. In

our cohort, DP patients appear to be older and present a lower

CD4 T-cell nadir, albeit not statistically significant when

compared to the other subject groups; these findings are in line

with literature data showing a higher prevalence of non-infectious

co-morbidities in the aging population and in patients with a

history of advanced HIV infection [10], thus reinforcing our

findings on a peculiar iNKT phenotype in this setting. Interest-

ingly, when analyzing subjects with either bone or cardiovascular

impairment, we did not observe differences in terms of iNKT

surface expression of CD161 between diseased and healthy

individuals. Given that CD161 up-regulation reflects a more

mature iNKT cell phenotype [56,57], our finding suggests the

preferential expansion of senescent circulating iNKT cells in HIV-

infected patients with multiple co-morbidities and not in individ-

uals with only one non-communicable disorder, although the

smaller sample size may affect data analysis in the latter groups.

CD161 is also expressed on NK and CD8+ T cells [58].

Interestingly CD161+ NK cells have been reported to infiltrate the

human atherosclerotic plaque [51]; to our knowledge, studies on

CD161-expressing CD8+ T cells in bone and cardiovascular co-

morbidities in course of physiological aging are currently lacking

and it would be interesting to assess the role of this subset in these

settings.

Heightened CD161 expression was also associated with

increased iNKT TNF release in patients with bone and

cardiovascular impairment. This is in contrast to previous reports

describing an inverse correlation between CD161 and cytokine

production from iNKT cells [32]; however participants in the

present study were all on virologically-suppressive HAART and

may have undergone iNKT restoration [38–40]. Indeed, our

findings suggest that these cells are capable of producing high

levels of TNF, which, in turn, may represent the major driver of

iNKT-mediated inflammation and exacerbate bone/cardiovascu-

lar co-morbidities.

In order to evaluate the role of iNKT cells in the pathogenesis of

bone and cardiovascular disease alone, we investigated their

functional capacity in patients with either bone or cardiovascular

impairment.

In keeping with the evidence of a pro-inflammatory milieu in

the pathogenesis of non-infectious diseases in course of HIV

[1,10,11], subjects with bone impairment showed a trend to higher

spontaneous ex vivo TNF secretion and a significant IFN-c
increase release after stimulation, Given the limited number of

patients enrolled and the weak statistical significance of such

findings we cannot draw definitive conclusions on the role of

iNKT cells in bone disease. iNKT cell expression of other

members of the TNF superfamily such as RANKL, known to be

involved in bone homeostasis, should be explored in such setting.

Finally, we concentrated on the role of iNKT cells in the

pathogenesis of cardiovascular disease. Individuals with athero-

sclerosis displayed higher TNF secretion, both constitutively and

after stimulation. However, upon stimulation, iNKT cells from

patients with vascular damage were not able to further release

TNF, possibly suggesting exhausted functional capacity.

In line with the role of IFN-c–producing iNKT cells in the

pathogenesis of atherosclerosis and plaque stability [45,51], we

also found a trend to higher IFN-c secreting iNKT in patients with

endothelial damage; this finding did not reach statistical signifi-

cance, possibly due to limited sample size.

In the attempt to control for differences in antigen presenting

cells in the PBMC mixtures, white blood cell count and formula

were analyzed in our study population. The finding of similar

percentages of circulating monocytes in all study patients suggests

that iNKT phenotype and function may not be affected by diverse

ionomycin (C). BD patients alone responded to PMA/ionomycin with significant IFN-c production following stimulation (p = .0488) (D). Significantly
higher TNF production was detected in BD subjects (p = .031) prior to a-GalCer stimulation. Upon a-GalCer stimulation, BD patients displayed a trend
to significant increases in TNF release (p = .063), leading to higher cytokine levels in this population (p = .056) (E). No significant differences were
noted in terms of IFN-c production following a-GalCer, although BD patients tended to significant cytokine production (p = .063) (F). CD and DN
showed comparable iNKT cell frequencies (G). CD (n = 10) and DN (n= 10) showed similar CD161-expressing iNKT cell frequencies (H). CD subjects
showed higher TNF release both prior to (p = .005) and following stimulation with PMA/ionomycin (p = .029). Of note, DN patients alone responded to
stimulation by significantly increasing TNF release from iNKT cells aspecific stimulation (p = .027) (I). In keeping with these results, the CD group
displayed a trend to higher IFN-c release after PMA/ionomycin stimulation (p = .052) (J). No statistical differences were noted between groups in
terms of iNKT function following specific activation with a-GalCer (K, L). Horizontal lines indicate median values. Each symbol represents an individual.
doi:10.1371/journal.pone.0110287.g002
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monocyte frequencies, albeit not ruling out possible differences

other antigen presenting cells.

Several limitations exist in this study. First, the lack of HIV-

negative controls; second, individuals with co-morbidities repre-

sent a heterogeneous population ranging from patients with

preclinical damage (i.e. osteopenia/increased IMT) to subjects

with overt disease (i.e. osteoporosis/carotid plaque). In this respect

however, our findings were confirmed even when comparing

patients with advanced disease (osteoporosis, n = 3; carotid plaque,

n = 7) to individuals free from both co-morbidities. Further, our

finding of similar iNKT function following mitogen and CD1d-

antigen (a-GalCer) stimulation is in contrast to previous literature

reports showing enhanced iNKT response to the former stimulus

[32], and possibly reflects the different sample size used in the 2

experimental conditions. Finally the present work cannot establish

a cause-effect relationship between activated iNKT and co-

morbidities in the absence of a temporal relationship; moreover we

cannot exclude that T-cell immune activation is driving the

changes within the iNKT subset, as recently suggested by

Fernandez et al. [59]. Future studies should also assess whether

CD4- and CD8-expressing iNKT cells play a different role in the

pathogenesis of non-infectious co-morbidities.

Despite these limitations, we show an increase in CD161-

expressing and TNF secreting iNKT cells in HIV-positive

individuals with bone and cardiovascular impairment, setting the

basis for future studies specifically designed to investigate the role

of iNKT cells in the pathogenesis of non-communicable co-

morbidities in course of HIV infection.
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