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Abstract
1. Decades of environmental DNA (eDNA) method application, spanning a wide va-

riety of taxa and habitats, has advanced our understanding of eDNA and under-
lined its value as a tool for conservation practitioners. The general consensus is 
that eDNA methods are more accurate and cost- effective than traditional survey 
methods. However, they are formally approved for just a few species globally (e.g., 
Bighead Carp, Silver Carp, Great Crested Newt). We conducted a meta- analysis of 
studies that directly compare eDNA with traditional surveys to evaluate the asser-
tion that eDNA methods are consistently “better.”

2. Environmental DNA publications for multiple species or single macro- organism 
detection were identified using the Web of Science, by searching “eDNA” and “en-
vironmental DNA” across papers published between 1970 and 2020. The meth-
ods used, focal taxa, habitats surveyed, and quantitative and categorical results 
were collated and analyzed to determine whether and under what circumstances 
eDNA outperforms traditional surveys.

3. Results show that eDNA methods are cheaper, more sensitive, and detect more 
species than traditional methods. This is, however, taxa- dependent, with amphib-
ians having the highest potential for detection by eDNA survey. Perhaps most 
strikingly, of the 535 papers reviewed just 49 quantified the probability of detec-
tion for both eDNA and traditional survey methods and studies were three times 
more likely to give qualitative statements of performance.

4. Synthesis and applications: The results of this meta- analysis demonstrate that 
where there is a direct comparison, eDNA surveys of macro- organisms are more 
accurate and efficient than traditional surveys. This conclusion, however, is based 
on just a fraction of available eDNA papers as most do not offer this granularity. 
We recommend that conclusions are substantiated with comparable and quantita-
tive data. Where a direct comparison has not been made, we caution against the 
use of qualitative statements about relative performance. This consistency and 
rigor will simplify how the eDNA research community tracks methods- based ad-
vances and will also provide greater clarity for conservation practitioners. To this 
end suggest reporting standards for eDNA studies.
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1  | INTRODUC TION

Environmental DNA (eDNA) is genetic material extracted from 
environmental samples. It can be used to infer the presence of 
single or multiple species (metabarcoding) and estimate pop-
ulation abundance and density (Doi, Takahara, et al., 2015; Doi, 
Uchii, et al., 2015; Dunn et al., 2017; Evans et al., 2016; Knudsen 
et al., 2019; Tillotson et al., 2018). The application of eDNA for 
ecology and conservation research has increased at an expo-
nential rate over the last 20 years (Jiang & Yang, 2017), with 
more than 50 papers published year on year since 2016 (Beng & 
Corlett, 2020), from eDNA use for the detection of zooplankton 
(Yang & Zhang, 2020) to large mammals (Hauger et al., 2020) and 
many taxa in between. Creative and diverse sample types, such 
as salt licks (Ishige et al., 2017), blood meal (Rodgers et al., 2017), 
snow tracks (Franklin et al., 2019), as well as more conven-
tional sampling of water (Brys et al., 2020), sediment (DiBattista 
et al., 2019) and soil (Marquina et al., 2019), have been taken from 
all major types of habitats: terrestrial (Abrams et al., 2019), ma-
rine (Closeket al., 2019), estuarine (Siegenthaler et al., 2019), lentic 
(Parsley et al., 2020), and lotic (Takahara et al., 2019).

The eDNA method has been described as more sensitive 
(Biggs et al., 2015; Dejean et al., 2012; Fernández et al., 2019; 
Hinlo et al., 2017; Jerdeet al., 2011; Pilliod et al., 2013; Schneider 
et al., 2016) and cheaper (Akre et al., 2019; Miya et al., 2015; Stoeckle 
et al., 2016) than traditional survey methods. Environmental DNA 
surveys are, therefore, recognized as a powerful tool for monitor-
ing endangered species (Akamatsu et al., 2020; Brozio et al., 2017; 
Day et al., 2019; Laramie et al., 2015; Schmelzle & Kinziger, 2016; 
Thomsen et al., 2012) with the advantage of being nondestructive 
(Grealy et al., 2015; Hunter et al., 2015; Knudsen et al., 2019; Li 
et al., 2019). Environmental DNA methodologies are also considered 
less prone to morphological identification bias (Buxton et al., 2018; 
Li et al., 2019) and spatial autocorrelation (Deiner et al., 2016) than 
traditional monitoring methods.

Although eDNA methods have many advantages, detection prob-
ability is dependent on the life history of target species (Takeuchi 
et al., 2019), behavior (Dunn et al., 2017), and on population density 
(Baldigo et al., 2017). Detection of eDNA is also affected by envi-
ronmental conditions (Harper, Buxton, et al., 2019; Harper, Griffiths, 
et al., 2019), the presence of polymerase chain reaction (PCR) inhib-
itors, distance from shedding source (Goldberg et al., 2016), primer 
degeneration, or variable PCR efficacy (Nester et al., 2020). These 
factors can all result in inference errors (Bohmann et al., 2014; Casey 
et al., 2012; Darling & Mahon, 2011; Goldberg et al., 2016) and false– 
negatives (Cowart et al., 2015; Mauvisseau et al., 2019; Piaggio 
et al., 2014; Rice et al., 2018).

In contrast to traditional survey methods (Stoeckle et al., 2016), 
eDNA techniques can also lead to false- positives (Cowart 
et al., 2018; Dejean et al., 2012; Ficetola et al., 2015; Gueuning 
et al., 2019), which might occur due to resuspension of eDNA from 
sediment (Buxton et al., 2018), transfer of eDNA from its origi-
nating environment to a sampling site (i.e., allochthonous eDNA) 
(Goldberg et al., 2016; Harper, Buxton, et al., 2019; Harper, Griffiths, 
et al., 2019), or equipment contamination (Bohmann et al., 2014). 
Compared to traditional methods, eDNA is currently less able to 
provide complete information about population status and stability 
(Bailey et al., 2019; Rose et al., 2019; Ulibarri et al., 2017), sex, size, 
or health condition (Goldberg et al., 2016).

The limitations could explain why eDNA methods are not widely 
approved to survey biodiversity (Evans et al., 2017), with notable 
exceptions of priority conservation species Great Crested Newt 
(Triturus cristatus Laurenti) in the UK (Biggs et al., 2015), as well 
as highly destructive invasive Bighead Carp (Hypophthalmichthys 
nobilis Richardson) and Silver Carp (Hypophthalmichthys molitrix 
Valenciennes) in the United States (Amberget al., 2015).

One way to test the eDNA method's validity is to directly 
compare it with traditional monitoring methods, as pioneered by 
Thomsen et al. (2012). Many comparative studies have been con-
ducted (e.g., Fernández et al., 2019; Ficetola et al., 2015; Hinlo 
et al., 2017; Jo et al., 2020; Pilliod et al., 2013; Rice et al., 2018; 
Wilcox et al., 2016), encompassing a variety of traditional method 
types, shown in Table 1. However, there have been few attempts to 
synthesize the results of comparative analyses.

There are several reviews of eDNA research (Beng & 
Corlett, 2020; Hering et al., 2018; Lamb et al., 2019; McElroy 
et al., 2020; Yates et al., 2019), but to our knowledge, there has been 
no attempt to address the question of whether eDNA consistently 
outperforms traditional methods nor whether that outcome is influ-
enced by the taxon studied, habitat type, or methodology (Buxton 
et al., 2017; Furlan et al., 2019; Klymus et al., 2015).

Therefore here, we conducted a meta- analysis of studies that 
directly compare eDNA with traditional survey methods to (i) deter-
mine whether eDNA performs “better” than traditional methods and 
(ii) to understand what factors influence this outcome.

2  | MATERIAL S AND METHODS

2.1 | Identifying relevant papers

The database of papers was created by searching the terms “envi-
ronmental DNA” and “eDNA” using ISI Web of Science in topic (exact 
search). Search results were limited to English language studies 
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published between 1st January 1970 and 5th May 2020. The search 
was performed between 22nd April and 5th May 2020.

The database was manually refined (Figure 1) by scanning title, 
abstract, and methods section of the main text to identify and re-
move papers that were out of scope: microbiological, metabolic, 
protein- based detection, nonempirical, and purely technical pa-
pers (e.g., development of markers or amplification assays tested 
ex- situ).

2.2 | Extracting key data

Information about the publication year, taxa studied, habitat, method 
used, and results obtained were extracted from the refined data-
base. Details about the methods, including sampling depth, capture 
technique, pore size of filter membrane, volume of water filtered, 
source of eDNA sampled, DNA extraction, amplification, and se-
quencing techniques and amplification markers, were recorded and 

are available in Table S1. Two types of result data were collected: 
quantitative continuous (probability of detection) and categorical 
(comparison of eDNA and traditional methods outcome).

The probability of detection (PeDNA for eDNA probability of de-
tection and Ptrad for traditional methods probability of detection) is 
a parameter that accounts for environmental stochasticity and im-
perfect detection (Schmidt & Pellet, 2009) and varies depending on 
the species as well as the method used, hence it can be utilized as a 
proxy to infer sensitivity (Schmidt & Pellet, 2009). Across the papers 
analyzed in this study, PeDNA and Ptrad were estimated from the spe-
cies occupancy models (Dougherty et al., 2016; Rose et al., 2019), 
where the presence or absence of the species is described as the 
Bernoulli trial (Schmidt et al., 2013), the N- mixture models of popu-
lation abundance (Kéry, 2018), or as a number of positive observa-
tions/replicates divided by a total amount of trials/samples collected 
(Pilliod et al., 2013).

Categorical data for eDNA versus traditional methods were 
either based on results from the same study (83% of papers), or 

TA B L E  1   Types of traditional biodiversity surveys, which have been compared to eDNA method

Capture- based surveys Visual search surveys Acoustic surveys

Angling (O'Sullivan et al., 2020)
Baited trapping (Riascos et al., 2018)
Blacklight traps (Maslo et al., 2017)
Bottle trapping (Cai et al., 2017)
Bottom trawling (Thomsen et al., 2012
Cast netting (Fujii et al., 2019)
Dip netting (Fujii et al., 2019)
Electrofishing (Fernández et al., 2019)
Fungi fruiting body collection (Shirouzu et al., 2016)
Fyke netting (Harper, Griffiths, et al., 2019)
Gill netting (Gillet et al., 2018)
Hand picking (Doi et al., 2020)
Host necropsy (Trujillo- González et al., 2019)
Kick netting (Rice et al., 2018)
Minnow traps (Fujii et al., 2019)
Mosquito magnets (Boerlijst et al., 2019)
Night aquatic funnel traps (Rose et al., 2019)
Pollen analysis (Sjögren et al., 2017)
Seine hauls (Johnston & Janosik, 2019)
Surber sampling (McInerney & Rees, 2018)
Tow netting (Minegishi et al., 2019)
Zooplankton netting (Walsh et al., 2019)

Baited remote underwater video station 
(BRUVS) (Stat et al., 2019)

Camera traps (Sales et al., 2020)
Diving (Wood et al., 2019)
Egg search (Harper et al., 2018)
Fossil analysis (Parducci et al., 2019)
Scat (Thomsen et al., 2012)
Snorkelling (O’Sullivan et al., 2020)
Snow tracks (Franklin et al., 2019)
Tadpole search (Dejeanet al., 2012)
Torchlight surveys (Rees et al., 2014)
Underwater visual census (UVC) 

(Alsoset al., 2018)
Water binocular (Trebitz et al., 2019)
Visual encounter surveys (VESs) (Schütz 

et al., 2020)

Audio strip transects (ASTs) (Dejean 
et al., 2012)

Calling surveys (Lopes et al., 2017)
Hydroacoustics (Coulter et al., 2018)
Telemetry (Mize et al., 2019)

F I G U R E  1   Workflow of this 
study consisted of three main steps: 
building paper database, extracting key 
information from papers, and conducting 
analysis of quantitative and categorical 
data
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a comparison made by the authors with historical traditional sur-
vey methods (17% of papers). Authors of comparative studies used 
three criteria: sensitivity, cost- effectiveness, and number of detect-
able species. The outcome of the comparison was then assigned 
to “better,” “equal,” or “worse” for the criteria of sensitivity and 
number of detectable species; and “cheaper,” “equal,” or “more ex-
pensive” for the cost- effectiveness criterion. In some instances, au-
thors reported that the results of two methods correlated; however, 
they could not conclude that the methods performed equally well. 
In such case, the term “correlated” was assigned. If the authors did 
not provide a clear outcome of the comparison, the term “unclear” 
was given.

2.3 | Analysis of quantitative data

The Shapiro- Wilk test was used for checking the distribution nor-
mality of PeDNA and Ptrad. The comparison of PeDNA and Ptrad was per-
formed by the Wilcoxon signed- rank test for dependent samples.

The influence of abiotic and biotic factors on eDNA versus 
traditional methods was evaluated by the Kruskal- Wallis one- 
way analysis of variance and the subsequent Conover- Iman post 
hoc test among the PeDNA of different groups (taxa, habitat, and 
methods).

To test whether variation in PeDNA was explained by filter mem-
brane pore size, the volume of water filtered or the date of publi-
cation, a generalized linear model (GLM) was developed, assuming 
quasi- binomial error distribution and using link logit canonical func-
tion. GLM was used instead of linear model due to PeDNA being pro-
portion data, varying from 0 to 1. Quasi- binomial error distribution 
was assumed because binomial fitting resulted in under- dispersion 
(Equation S1). Pseudo R2 parameter (Equation S2) was calculated as 
in Zuur et al. (2013).

Correlation between volume of water filtered and filter mem-
brane pore size was investigated by Spearman's correlation test.

2.4 | Analysis of categorical data

For each category of eDNA versus traditional methods comparison 
outcome (“better,” “equal,” “worse,” “cheaper,” “more expensive,” 
“correlated,” “unclear”) the number of studies falling into the catego-
ries was counted. To test whether the outcome of eDNA and tradi-
tional surveys comparison was affected by abiotic and biotic factors, 
the χ2 test of independence was performed for contingency tables of 
comparison outcomes and different categories of methods, taxa, and 
habitats. Where χ2 test indicated a significant relationship between 
comparison outcomes and factors tested, a multiple correspondence 
analysis was subsequently performed to visualize that relationship.

All data analysis were performed using R version 3.6.1. (R 
Development Core Team, 2019).

3  | RESULTS

A total of 535 papers were identified as providing results of em-
pirical eDNA studies for macroscopic species detection. Out of 
these 535, 230 papers (43%) report quantitative results (PeDNA 
and/or Ptrad) or qualitative results (categories of eDNA perform-
ing “better,” “worse,” or “equally well” as traditional methods) that 
were analyzed in this study. A total of 194 papers (36%) describes 
a comparison between eDNA and traditional methods (Figure 2). 
A total of 115 papers gives PeDNA results, of which 76 also conduct 
a comparison of eDNA and traditional methods. Of these, only 49 
papers also report the Ptrad, meaning that just 9% of the 535 pa-
pers could be used for a quantitative comparison of eDNA and 
traditional method sensitivity.

The 49 studies that provided both PeDNA and Ptrad were mainly 
conducted in freshwater lentic (47%) or lotic (38%) systems and 
mostly studied fish (25%) and amphibians (25%). These papers es-
timated the probability of detection by using both eDNA and tradi-
tional methods at the same study sites.

F I G U R E  2   A Venn diagram of different 
paper classes analysed in this study, based 
on the type of results they reported. 
Papers that reported any probability of 
detection, were used for quantitative data 
analysis, while those that did not report 
probability of detection but compared 
eDNA and traditional methods, were used 
for categorical analysis. Papers that both 
reported PeDNA and did comparison were 
used for both quantitative and categorical 
analysis
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3.1 | Does eDNA perform “better” than traditional 
methods?

3.1.1 | Analysis of quantitative data

A collection of all PeDNA and Ptrad extracted from the 49 studies 
mentioned above were not normally distributed, as detected by 
the Shapiro- Wilk test (for PeDNA: W = 0.86, p- value < .001, for Ptrad: 
W = 0.93, p- value < .01). Wilcoxon's signed- rank test, for comparing 
probabilities of detection mean ranks, revealed a significant differ-
ence between eDNA and traditional methods (W = 1,487, p = .04, 
neDNA = 49, ntrad = 49), suggesting that PeDNA had higher median than 
Ptrad (Figure 3a,b).

3.1.2 | Analysis of categorical data

Of the 194 papers that directly compare eDNA with traditional 
methods, 170 used sensitivity as the main criterion, 19 focused on 
cost- effectiveness, and 75 reported results in terms of the num-
ber of detectable species. Across all three criteria, the majority of 
studies (61 for sensitivity, 15 for cost, and 29 for detectable spe-
cies) found that eDNA performed better than traditional methods 
(Figure 4).

3.2 | What factors influence the comparison of 
eDNA and traditional methods?

3.2.1 | Analysis of quantitative data

Kruskal- Wallis analysis of variance indicated a significant differ-
ence among the PeDNA values obtained by using different amplifica-
tion methods (Kruskal- Wallis χ2 = 11.74, p = .002, n = 150) and by 

sampling various eDNA sources (Kruskal- Wallis χ2 = 14.45, p = .04, 
n = 152). Other factors had no effect on PeDNA (Table S2).

Subsequent Conover- Iman post hoc analysis detected a signif-
icant difference between quantitative polymerase chain reaction 
(qPCR) and conventional PCR PeDNA values (z- statistic = −2.79, 
p = .02, nPCR = 46, nqPCR = 93). The test indicated that the qPCR 
resulted in significantly higher PeDNA values than PCR (Figure 5a). 
Among the qPCR group, 82 studies used probe- based qPCR, and 11 
performed SYBR- based qPCR. Other amplification types, such as 
ddPCR and LAMP had insufficient sample sizes (n < 10), hence could 
not be included in the analysis.

Although Kruskal- Wallis analysis of variance suggested significant 
differences between different eDNA sample types, the volume of 
sample used was rarely reported (n < 10) (with the exception of water) 
and it was not possible to perform the Conover- Iman post hoc analysis.

The effect of filter membrane pore size and volume of water 
filtered was tested by modeling approach, which suggested a sig-
nificant positive association (p = .04, n = 117, Pseudo R2 = 0.051) 
between eDNA probability of detection and filter membrane pore 
size (ranging from 0.2 to 5 μm) (Figure 5b). Adding random factors 
to the model, such as filter membrane type, did not result in a better 
explanation of the variation in PeDNA.

Spearman's correlation test indicated a significant positive cor-
relation between filter membrane pore size, volume of water filtered 
(Spearman ρ = 0.12, p = .02), and the probability of detection.

The time series modelling indicated that with time PeDNA values 
decreased and this negative association was significant (p = .048, 
n = 115, Pseudo R2 = 0.026). Adding habitats and taxa as explana-
tory factors did not significantly improve the model. Figure 6 shows 
that between 2015 and 2020 the number of studies reporting PeDNA 
for terrestrial and freshwater lotic habitats increased. Similarly, stud-
ies reporting PeDNA shifted from fish dominated to more taxonomi-
cally diverse, applying the eDNA method to the detection of reptiles, 
insects, and mammals.

F I G U R E  3   PeDNA and Ptrad as reported 
in 49 studies that compared eDNA and 
traditional methods at the same study 
sites for: (a) different habitats and (b) taxa. 
Notches indicate medians
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3.2.2 | Analysis of categorical data

Due to insufficient sample sizes across other factors, only the 
effect of taxa, habitats, and sampling depth were investigated 
(Table S3). A χ2 test detected a significant association between 
taxa and sensitivity (χ2 = 58.17, p = .009, n = 153). Subsequent 
multiple correspondence analyses indicate that eDNA methods 
are (a) more sensitive than traditional methods for the detec-
tion of amphibians, insects, and invertebrates (such as tunicates, 
branchiopods, bryozoans, hydrozoans), (b) are on a par with tradi-
tional methods for mammals and molluscs, and (c) perform worse 
for reptiles and annelids (Figure S1). These conclusions mirror 
relative research effort (Figure 7), with amphibians and inverte-
brates among the most studied (67 and 74 studies, respectively) 
and reptiles and annelids among the least (22 and 10 studies, 
respectively).

4  | DISCUSSION

This study indicates that eDNA outperforms traditional sur-
vey methods, but also highlights that broad statements about 
eDNA survey effectiveness in the literature are based on limited 
evidence. Just over one- third of papers directly compare eDNA 
with traditional survey methods and only 9% give a quantitative 
measure of relative sensitivity. Comparisons of method sensitiv-
ity (170 papers), number of detectable species (75 papers), and 
cost- effectiveness (19 papers) are made, with the latter being an 
underrepresented, but key consideration for conservation practi-
tioners (Evans & Lamberti, 2018; McInerney & Rees, 2018; Qu & 
Stewart, 2017).

Our overall conclusion that environmental DNA is more sensi-
tive, cheaper, and results in a higher number of detectable species 
may reflect a publication bias, as Beng and Corlett (2020) suggest 

F I G U R E  4   Comparison of eDNA and traditional methods by sensitivity, cost- efficiency, and number of detectable species, as counted 
from 194 publications

F I G U R E  5   (a) eDNA probabilities 
of detection by using two different 
amplification methods— PCR and qPCR 
(nPCR = 46, nqPCR = 93). The latter is 
differentiated into probe- based qPCR 
(blue points, n = 82) and SYBR- based 
qPCR (orange points, n = 11). Notches 
indicate medians. (b) Relationship 
between PeDNA and the filter membrane 
pore size. Model fit is plotted as a solid 
line, with 95% confidence level as dashed 
lines
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that eDNA failures are less likely to be published. More recently 
(since 2018) there has been a decrease in PeDNA values, which could 
be associated with the diversification of eDNA applications.

Here, comparisons of PeDNA versus Ptrad, and the use of PeDNA as a 
response variable in modeling and analysis of variance was hindered 
by the inconsistency in probability estimates. Authors either used oc-
cupancy models, calculated a ratio of positive and total observations 

or did not specify a method. Outcomes are variously described in 
terms of detection rate (Amberg et al., 2015; Biggs et al., 2015 ; Doi 
et al., 2017) or the probability of detection (Minamoto et al., 2017; 
Pilliod et al., 2013). Inconsistently described methods, terminology 
(Hunter et al., 2015), and results also limit the extent to which we 
could examine the factors influencing the outcome of compara-
tive studies (Koricheva et al., 2013). Methodological information, in 

F I G U R E  6   The time series model of PeDNA for different taxa (a) and habitats (b). Model fit is plotted as a black line, with 95% confidence 
level as grey band

F I G U R E  7   Number of studies 
that used eDNA method for different 
taxonomic groups and proportion of 
different comparison outcomes for 
each group, shown as stripes, where 
red signifies that eDNA outperformed 
traditional methods, green— method 
groups were equal, blue— traditional 
outperformed eDNA and grey— no 
comparison has been conducted
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particular, lacked standardization, for example, sampling depth, filter 
membrane pore size, and whether qPCR was probe or SYBR- based, 
despite the latter being important to report for qPCR studies (Bustin 
et al., 2009). The publication of Goldberg et al. in 2016 provided 
guidelines for reporting eDNA studies, and it would be interesting to 
track the progress of this in future meta- analyses.

Results from our study support the view that qPCR results in a 
significantly higher PeDNA than PCR (Amberg et al., 2015; Fernandez 
et al., 2018; Piggott, 2017; Thomsen et al., 2012; Turner et al., 2014; 
Wilcox et al., 2013; Williams et al., 2017). Quantitative PCR is more 
sensitive to low concentrations of eDNA in environmental sam-
ples, and samples that have been diluted to decrease amplification 
inhibition (Turner et al., 2014; Williams et al., 2017). Novel eDNA 
amplification methods, such as droplet digital PCR (ddPCR) and 
loop- mediated isothermal amplification (LAMP), did not have a suf-
ficient sample size for the purpose of our analysis. However, ddPCR 
has been shown to perform better than qPCR by Doi, Takahara, 
et al. (2015), Doi, Uchii, et al. (2015), Hamaguchi et al. (2018), Uthicke 
et al. (2018), and Brys et al. (2020) and is likely to become a popular 
method for future eDNA- based surveys.

Although a significant difference in PeDNA was detected for dif-
ferent environmental samples, we were not able to draw reliable con-
clusions about which related to the highest PeDNA. Only water had a 
sufficient sample size, while sediment, snow, saliva, soil, and other 
sources were understudied. This mirrors Jiang and Yang's (2017) 
conclusion that eDNA research has primarily focused on detecting 
species in aquatic environments. Genetic material can disperse due 
to water polarity and movement (Jeunen, Knapp, Spencer, Lamare, 
et al., 2019; Jeunen, Knapp, Spencer, Taylor, et al., 2019). Sediment 
and soil samples typically have more humic substances than water 
samples, and this might result in increased amplification inhibition 
(Buxton et al., 2017).

For samples of water, PeDNA was positively associated with fil-
ter membrane pore size from 0.2 to 5 μm, however, the number of 
studies using pores larger than 3 μm was low. Smaller pore mem-
branes can become clogged by organic matter and debris, limiting 
the volume of water that can be sampled. This issue has been re-
ported several times (Franklin et al., 2018; Robson et al., 2016; 
Turner et al., 2014) and may account for the positive association be-
tween pore size and eDNA sensitivity. Prefiltering using larger pores 
has been suggested as a possible solution (Djurhuus et al., 2018; Li 
et al., 2018). In contrast, Turner et al. (2014), Robson et al. (2016), 
Kamoroff and Goldberg (2018) and Jeunen, Knapp, Spencer, Lamare, 
et al. (2019), Jeunen, Knapp, Spencer, Taylor, et al. (2019) detect a 
negative association between PeDNA and membrane pore sizes, pre-
sumably due to the most abundant particles of eDNA being less than 
0.2 μm (Turner et al., 2014). The relationship between pore size, 
water volume, and eDNA sensitivity continues to vary from case- 
to- case and sampling protocols should, therefore, be informed by 
the results of pilot studies (Goldberg et al., 2016; Harper, Buxton, 
et al., 2019; Harper, Griffiths, et al., 2019).

The results of χ2 test of independence and multiple correspon-
dence analysis indicate that eDNA methods are more sensitive for 

invertebrates and amphibians, perform worse for reptiles and anne-
lids, and are as good for mammals and molluscs. This could be due to 
different eDNA shedding rates (Sansom & Sassoubre, 2017), differ-
ent habitat types affecting eDNA dispersal (Andersen et al., 2012), 
or uneven research effort for these taxa, with amphibians studied 
more than mammals and reptiles.

Our study did not include all possible comparison criteria, such 
as how accurately abundance is estimated by eDNA and traditional 
methods (Buxton et al., 2017; Yates et al., 2019), how spatial scale 
coverage and sampling effort differ, and whether eDNA has a better 
carbon footprint. The effect of environmental factors such as season 
(Matsuhashi et al., 2019; McGee & Eaton, 2015) and physicochem-
ical properties of habitat, can all contribute to eDNA degradation 
(Buxton et al., 2017) or increase eDNA shedding rates (Goldberg 
et al., 2018) and remain to be investigated in meta- analyses. The re-
cent reporting by Jeunen et al. (2020), indicating that primers used in 
parallel can improve eDNA performance will be an interesting factor 
to consider for future meta- analyses of comparative studies.

To conclude, we recommend that further studies: (a) are more 
explicit with regard to comparison criteria, specifically what aspects 
of the eDNA and traditional methods are being compared; (b) pro-
vide quantitative evidence for all methods compared, for example, 
cost, number of detectable species, carbon footprint and probability 
of detection; (c) describe how quantitative measures were derived; 
and (d) for quantitative results, such as probability of detection or 
eDNA quantity, indicate sample size, measures of spread, for exam-
ple, range, and units. Not all studies we looked at met these recom-
mendations. We also recommend that eDNA community continue 
to test underrepresented amplification methods, such as ddPCR and 
LAMP, use diverse sample types such as sediment, snow, saliva, soil, 
or iDNA, and apply eDNA methods to a wide range of taxa, such as 
mammals, birds, reptiles, corals, plants, and fungi.
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