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Oxidized cholesterols have emerged as important signaling molecules of immune
function, but little is known about the role of these oxysterols during mycobacterial
infections. We found that expression of the oxysterol-receptor GPR183 was reduced in
blood from patients with tuberculosis (TB) and type 2 diabetes (T2D) compared to TB
patients without T2D and was associated with TB disease severity on chest x-ray.
GPR183 activation by 7a,25-dihydroxycholesterol (7a,25-OHC) reduced growth of
Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis BCG in primary human
monocytes, an effect abrogated by the GPR183 antagonist GSK682753. Growth
inhibition was associated with reduced IFN-b and IL-10 expression and enhanced
autophagy. Mice lacking GPR183 had significantly increased lung Mtb burden and
dysregulated IFNs during early infection. Together, our data demonstrate that GPR183
is an important regulator of intracellular mycobacterial growth and interferons during
mycobacterial infection.

Keywords: Mycobacterium tuberculosis, diabetes, oxysterols, 7a,25-dihydroxycholesterol, GPR183, EBI2, host-
direct therapies, autophagy
org November 2020 | Volume 11 | Article 6015341

https://www.frontiersin.org/articles/10.3389/fimmu.2020.601534/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.601534/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.601534/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.601534/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.601534/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:katharina.ronacher@mater.uq.edu.au
https://doi.org/10.3389/fimmu.2020.601534
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.601534
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.601534&domain=pdf&date_stamp=2020-11-06


Bartlett et al. GPR183 Modulates IFNs During Mtb-Infection
INTRODUCTION

Patients with tuberculosis and type 2 diabetes (TB–T2D) co-
morbidity have increased bacterial burden and more severe
disease, characterized by higher sputum smear grading scores
and greater lung involvement on chest x-ray compared to TB
patients without T2D (1, 2). TB–T2D patients are also more likely
to fail TB therapy and to relapse (3). The reason for the increased
disease severity has largely been attributed to hyperglycemia-
mediated immune dysfunction, but hyperglycemia alone does
not fully explain these observations (3, 4). We recently showed
that independent of hyperglycemia, cholesterol concentrations in
T2D patients vary greatly across different ethnicities (5). However,
how cholesterol and its metabolites contribute to Mycobacterium
tuberculosis (Mtb) infection outcomes remains to be elucidated.

To gain novel insights into the underlying immunological
mechanisms of increased susceptibility of T2D patients to TB
and to identify novel targets for host-directed therapy (HDT), we
performed whole blood transcriptomic screens on TB patients
with and without T2D and identified differential regulation of the
transcript for oxidized cholesterol-sensing G protein-coupled
receptor (GPCR), GPR183. Also known as Epstein Barr virus-
induced gene 2 (EBI2), GPR183 is primarily expressed on cells of
the innate and adaptive immune system (6–8). Several oxysterols
can bind to GPR183 with 7a,25-hydroxycholesterol (7a,25-OHC)
being the most potent endogenous agonist (6, 9, 10). GPR183 has
been studied mainly in the context of viral infections (11), immune
cells (6, 7, 9, 12–18), and astrocytes (19, 20); it facilitates the
chemotactic distribution of lymphocytes, dendritic cells and
macrophages to secondary lymphoid organs (12, 15, 16, 21, 22).
Little is known about the biological role of GPR183 in the context
of bacterial infections, including TB. We show here that GPR183 is
a key regulator of intracellular bacterial growth and type-I IFN
production during mycobacterial infection and reduced GPR183
expression is associated with increased TB disease severity.
METHODS

Study Participants
TB patients and their close contacts were recruited at TB clinics
outside Cape Town (South Africa). TB diagnosis was made based
on positive GeneXpert MTB/RIF (Cepheid; California, USA)
and/or positive MGIT culture (BD BACTED MGIT 960 system,
BD, New Jersey, USA) and abnormal chest x-ray. Chest x-rays
were scored, based on Ralphs score (23), by two clinicians
independently. Participants with LTBI were close contacts of
TB patients who tested positive on QuantiFERON-TB Gold in
tube assay (Qiagen, Hilden, Germany). All study participants
were screened for T2D based on HbA1c ≥6.5% and random
plasma glucose ≥200 mg/dl or a previous history of T2D. Further
details are available in the Supplementary Materials.

RNA Extractions and Nanostring Analysis
Total RNA was extracted from cell pellets collected in
QuantiFERON-TB gold assay tubes without antigen using the
Ribopure Ambion RNA isolation kit (Life Technologies,
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California, USA) and eluted RNA treated with DNase for
30 min. Samples with a concentration of ≥20 ng/µl and a 260/
280 and 260/230 ratio of ≥1.7 were analyzed at NanoString
Technologies in Seattle, Washington, USA. Differential
expression of 594 genes, including 15 housekeeping genes, was
performed using the nCounter GX Human Immunology kit V2.
NanoString RCC data files were imported into the nSolver 3
software (nSolver Analysis software, v3.0), and gene expression
was normalized to housekeeping genes.

Cell Culture
Peripheral blood mononuclear cells (PBMCs) were obtained
from healthy donor blood by Ficoll-Paque (GE Healthcare,
Illinois, USA) gradient centrifugation and monocytes (MNs)
isolated using the Pan Monocyte Isolation kit (Miltenyi Biotec,
Bergisch Gladbach, Germany), with >95% purity assessed by
flow cytometry. MNs were plated onto Poly-D-lysine coated
tissue culture plates (1.3 × 105 cells/well) and rested overnight at
37°C/5%CO2 in RPMI-1640 medium supplemented with 10%
heat-inactivated human AB serum (Sigma Aldrich, Missouri,
USA), 2 mM L-glutamine and 1 mM sodium pyruvate before
infection. THP-1 cells (ATCC #TIB-202) were differentiated with
25 ng/ml PMA for 48 h and rested for 24 h prior to infection.

In Vitro Mtb (H37Rv)/M. bovis (BCG)
Infection
Mtb H37Rv orM. bovis BCG single cell suspensions were added at
a multiplicity of infection (MOI) of 1 or 10 with/without 100 nM
7a,25-dihydroxycholesterol (Sigma Aldrich) and with/without
10 µM GSK682753 (Focus Bioscience, Queensland, Australia),
followed by 2 h incubation at 37°C/5%CO2 to allow for
phagocytosis. Non-phagocytosed bacilli were removed by
washing each well twice in warm RPMI-1640 containing
25 mM HEPES (Thermo Fisher Scientific). Infected cells were
incubated (37°C/5%CO2) in medium with/without GPR183
agonist and/or antagonist and CFUs determined after 48 h.

To quantify bacterial growth over time, CFUs at 48 h were
normalized to uptake at 2 h. Percentages of mycobacterial
growth were determined relative to untreated cells. For RNA
extraction, MNs were lysed by adding 500 µl of TRIzol reagent.
Further details are provided in the supplementary information.

Western Blotting
THP-1 cells were infected with BCG with/without 100 nM
7a,25-OHC and with/without 10 µM GSK682753 and lysed at
6 or 24 h post infection (p.i.) in ice-cold RIPA buffer (150 mM
sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate,
0.1% SDS, 50 mM Tris, pH 8.0; Thermo Fisher Scientific),
supplemented with complete Protease Inhibitor Cocktail
(Sigma Aldrich) (120 µl RIPA/1 × 106 Cells). Protein
concentrations were determined using Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific) as per manufacturer’s
protocol. 10 µg of protein per sample was loaded on NovexTM
10–20% Tris-Glycine protein gels (Thermo Fisher Scientific) and
transferred onto iBlot2 Transfer Stacks PVDF membrane
(Thermo Fisher Scientific). Membranes were blocked with
Odyssey Blocking buffer (Milennium Science, Victoria,
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Australia) for 2 h, probed with rabbit anti-human LC3B (1:1,000,
Sigma L7543) and rabbit anti-human GAPDH (1:2,500, Abcam
9485) overnight, followed by detection with goat anti-rabbit
IgG DyLight 800 (1:20,000; Thermo Fisher Scientific). Bands
were visualized using the Odyssey CLx system (LI-COR
Biosciences, Nebraska, USA) and analyzed with Image Studio
Lite V5.2 (LI-COR Biosciences).

Immunofluorescence
Differentiated THP-1 cells were seeded onto a poly-D-lysine coated,
96-well glass-bottom black tissue culture plate (4.5 × 104 cells/well)
and kept in RPMI-1640 mediumminus phenol red (Thermo Fisher
Scientific) supplemented with 10% heat-inactivated FBS at 37°C/5%
CO2. Cells were infected with BCG at a MOI of 10, with/without
100 nM 7a,25-OHC, with/without 10 µM GSK682753 for 2 h,
washed and incubated for a further 4 h with agonists and
antagonists. Cells were then fixed with 4% paraformaldehyde in
PBS for 15 min, permeabilized with 0.05% saponin (Sigma Aldrich)
for 20 min and blocked with 1% BSA, 0.05% saponin (Sigma
Aldrich) for 1 h. Cells were immunolabeled with rabbit anti-human
LC3B (ThermoFisher L10382; 1:1,000), 0.05% saponin at room
temperature for 1 h followed by Alexa FluorTM 647 goat anti-
rabbit IgG (ThermoFisher A21245; 1:1,000), 0.05% saponin at room
temperature for 1 h followed by nuclear staining with Hoechst
33342 (Thermo Fisher Scientific 62249; 1:2,000) for 15 min. Cells
were washed, and confocal microscopy was performed using the
Olympus FV3000, 60× magnification. Images obtained were
analyzed with the ImageJ software (24).

Murine GPR183 KO vs WT Model
Equal numbers of male and female C57BL/6 WT and
Gpr183tm1Lex (age 18–20 weeks, 10 mice per group/timepoint)
were aerosol infected with 300 CFU Mtb H37Rv using an
inhalation exposure system (Glascol). At 2- and 5-weeks post
infection, lungs and blood were collected for RNA and CFU
determination. Formalin-fixed lung lobes were sectioned and
examined microscopically and scored by a veterinary pathologist.
Further details are available in the supplementary information.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analysis
Statistical analysis was performed using GraphPad Prism v.7.0.3
(GraphPad Software). T-test and Wilcoxon’s test were used to
analyze Nanostring data. Mann–Whitney U test and t-test were
used to analyze in vitro infection, qPCR, and ELISA data. Data
are presented as means ± SEM. Statistically significant differences
between two groups are indicated in the figures as follows ns,
P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Ethics Statement
The human studies were approved by the Institutional Review
Board of Stellenbosch University (N13/05/064 and N13/05/
064A) and all study participants signed pre-approved informed
consent documents prior to enrolment into the studies. All
animal studies were approved by the Animal Ethics Committee
of the University of Queensland (MRI-UQ/596/18) and
conducted in accordance with the Australian Code for the Care
and Use of Animals for Scientific Purposes.
RESULTS

Blood GPR183 mRNA Expression Is
Reduced in Patients With TB–T2D
Compared to TB Patients Without T2D
Blood was obtained from the study participants with latent TB
infection (LTBI, n = 11), latent TB infection with T2D (LTBI +
T2D, n = 14), active pulmonary TB disease (TB, n = 9), and
active pulmonary TB disease with T2D (TB + T2D, n = 7). Total
RNA was extracted and NanoString analyses performed. Among
genes differentially expressed between TB and TB + T2D we
identified a single GPCR, GPR183. We focused on GPR183 as
GPCRs are bona fide drug targets due to their importance in
human pathophysiology and their pharmacological tractability.

GPR183 expression was significantly down-regulated at
diagnosis (p = 0.03, t-test) in blood from TB + T2D patients
compared to TB patients without T2D (Figure 1A). The reduced
GPR183 expression was not driven by diabetes per se, as there
A B C

FIGURE 1 | GPR183 mRNA expression in patients with active and latent TB infection with or without T2D. Total RNA was isolated from whole blood incubated
overnight in QuantiFERON-TB Gold. GPR183 mRNA expression was determined and normalized to reference genes using the NanoString technology. GPR183
expression in whole blood of (A) TB (n = 9) and TB + T2D (n = 7) patients, LTBI (n = 11) and LTBI + T2D (n = 14) patients, Wilcoxon test. (B) TB (n = 9) and TB +
T2D (n = 7) patients at baseline and 6 month’s treatment, t-test. (C) Correlation between GPR183 expression and chest x-ray score, TB + T2D patients (n = 7) filled
squares, TB patients (n =8) open circles. Data are presented as means ± SEM; not significance (ns) P > 0.05; *P ≤ 0.05; ****P ≤ 0.0001.
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were no differences in GPR183 expression between LTBI and
LTBI + T2D (Figure 1A). After 6 months, at the end of
successful TB treatment, we saw GPR183 expression
significantly increased (p = 0.0156) in TB + T2D patients to a
level comparable to the TB patients without T2D (Figure 1B).
Therefore, we speculated that blood GPR183 expression is
associated with extent of TB disease, which is frequently more
severe in T2D patients. We indeed determined an inverse
correlation between GPR183 mRNA expression in the blood
and TB disease severity on chest x-ray (Figure 1C).

In order to identify which cell type is associated with decreased
expression of GPR183 in the blood, we performed flow cytometry
analysis for GPR183 expression on PBMCs from TB patients with
and without T2D. We investigated GPR183 expression on CD4+
and CD8+ T-cells, B cells, dendritic cells, NK cells and monocytes.
We found that the only cell type with a significant reduction in
GPR183 positivity in TB + T2D vs. TB, both in terms of frequency
and median fluorescent intensity, was the non-classical monocyte
population (Supplementary Figures 1A, B). The frequencies of
GPR183 + non-classical monocytes from LTBI and LTBI + T2D
were not significantly different (Supplementary Figure 1C). We
therefore next investigated whether GPR183 plays a role in the
innate immune response during Mtb infection.

Oxysterol-Induced Activation of
GPR183 Reduces Intracellular
Mycobacterial Growth
We investigated whether in vitro activation of GPR183 with its
endogenous agonist impacts the immune response to
mycobacteria in primary human MNs. MNs from 15 healthy
donors were infected with BCG (n = 7) or Mtb H37RV (n = 8)
(Figure 2) at a MOI of one in the presence or absence of the
GPR183 agonist 7a,25-OHC and/or the antagonist GSK682753.
Activation of GPR183 by 7a,25-OHC significantly increased the
uptake of BCG and Mtb H37RV (Figure 2A) at 2 h p.i. This
increase in phagocytosis was abolished by the simultaneous
addition of the GPR183 antagonist GSK682753, confirming
that increased mycobacterial uptake was the result of GPR183
activation. Interestingly, we observed ~50% reduction in the
growth of BCG and Mtb H37RV (Figure 2B) by 48h p.i. in 7a,25-
OHC treated cells, and again, this effect was abrogated by
GSK682753. The addition of 7a,25-OHC and/or GSK682753
had no detrimental effect on the viability of human THP-1 cells
(Supplementary Figure 2A). There was also no effect of 7a,25-
OHC and GSK682753 on BCG growth in liquid culture
(Supplementary Figure 2B), thus confirming that the
significant mycobacterial growth inhibition in MN cultures was
attributable to the immune modulatory activity of 7a,25-OHC
via GPR183. Independently, we observed that H37Rv down-
regulates GPR183 in primary MNs (Supplementary Figure 3).

To confirm the role of GPR183 in phagocytosis and growth
inhibition, we next performed GPR183 siRNA knockdown
experiments. Differentiated THP-1 cells were transfected with
20 nM of GPR183-targeting siRNA (siGPR183) or negative
control siRNA (siControl). We observed ~80% reduction of
GPR183 mRNA level and ~50% reduction of protein expression
Frontiers in Immunology | www.frontiersin.org 4
in cells transfected with siGPR183 when compared to siControl-
transfected cells (Supplementary Figures 4A, B) at 48 h. Forty-
eight hours after transfection the cells were infected with BCG at a
MOI of one.We observed amarked decrease in BCG uptake in cells
transfected with siGPR183 (p = 0.0048) compared to siControl-
transfected cells and a significant increase in intracellular
mycobacterial growth over time (p = 0.0113, Figure 2C).
A

B

C

FIGURE 2 | Oxysterol-induced activation of GPR183 in primary MNs
significantly inhibits intracellular mycobacterial growth, while GPR183
knockdown increases intracellular mycobacterial growth. Primary MNs from
eight donors (A) and seven donors (B) were infected with BCG or Mtb
H37Rv (MOI 1), ± 7a,25-OHC (100 nM), ± GSK682753 (10 µM). Uptake of
(A) BCG and Mtb H37Rv was determined at 2h p.i. Growth of (B) BCG and
Mtb H37Rv was determined at 48h post-infection. Percent of mycobacterial
growth was calculated as the fold change of CFU at 48h compared to CFU at
2h, normalized to non-treated cells. PMA-differentiated THP-1 cells were
transfected with 20 nM of either negative control siRNA or GPR183 siRNA for
48h before infection with BCG (MOI 1). (C) Mycobacterial uptake was
determined at 2h and intracellular mycobacterial growth was determined at
48h p.i. (normalized to uptake). Data are presented as means ± SEM; *P ≤

0.05; **P ≤ 0.01; ***P ≤ 0.001; paired t-test.
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GPR183 Is a Negative Regulator of the
Type I Interferon Pathway in Human MNs
In genome wide association studies GPR183 has been implicated as
a negative regulator of the IRF7 driven inflammatory network (25).
Therefore, we focused subsequent experiments on type-I IFN
regulation. To determine whether GPR183, a constitutively active
GPCR (26), has a direct effect on IRFs and IFNB1 expression, we
performed knockdown experiments in primary MNs. GPR183
knockdown (Supplementary Figure 4C) up-regulated IFNB1
(2.7–5.5 fold; P = 0.0115) as well as IRF1, IRF3, IRF5, and IRF7,
although the latter did not reach statistical significance (Figure 3A).

IRF1, IRF5, and IRF7 transcripts were similarly up-regulated
in whole blood from TB + T2D patients compared to TB patients
(Figure 3B), consistent with the downregulation of GPR183
mRNA expression (Figure 1). IRF3 expression was not
significantly different between TB and TB + T2D patients (data
not shown).
Frontiers in Immunology | www.frontiersin.org 5
GPR183 Activation Induces a Cytokine
Profile Favoring Mtb Control
Next, we investigated whether the reduced intracellular
mycobacterial growth observed in primary MNs treated with
7a,25-OHC was associated with a change in MN secreted
cytokines. Gene expression of IFNB1, TNF, and IL-10 was
measured 24 h following infection with Mtb H37RV at MOI of
one (Figure 4A). The concentrations of the corresponding
cytokines were measured in cell culture supernatant by ELISA
(Figure 4B). Mtb infection significantly up-regulated the
expression of IFNB1 (P = 0.0068), TNF (P = 0.0001), IL-10
(P < 0.0001) (Figure 4A), and IL-1B (Supplementary Figure
5A). 7a,25-OHC significantly down-regulated Mtb-induced
IFNB1 expression (P = 0.0017), while it did not affect TNF, IL-
10 or IL-1B expression. At the protein level, the concentrations of
IFN-b and IL-10, but not TNF-a (P < 0.0001 and P = 0.0090,
respectively, Figure 4B) nor IL-1b (Supplementary Figure 5B)
A

B

FIGURE 3 | GPR183 knockdown increases expression of transcription factors regulating type I interferon responses. (A) Total RNA was isolated from primary MNs
following 48 h incubation with 20 nM GPR183 siRNA (or negative control siRNA). Gene expression of IFNB1, IRF1, IRF3, IRF5, IRF7 was measured by qRT-PCR
using RPS13 as reference gene. Data are normalized to cells transfected with negative control siRNA. (B) NanoString analyses of RNA isolated from TB and TB +
T2D cohort showed similar increase in type I IFN associated genes IRF1, IRF5, IRF7. Data are presented as fold changes ± SEM; *P ≤ 0.05; **P ≤ 0.01; paired t-test.
November 2020 | Volume 11 | Article 601534
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were significantly lower in the culture supernatant of 7a,25-
OHC-treated Mtb-infected primary MNs compared to untreated
infected cells.

The Oxysterol 7a,25-OHC Induces
Autophagy
We aimed to identify whether 7a,25-OHC impacts the
production of reactive oxygen species (ROS) and the
autophagy pathway. ROS production in BCG-infected primary
MNs was not affected by 7a,25-OHC (Supplementary Figure 6);
however, we observed an increase in accumulation of the
autophagosome marker LC3B-II in BCG-infected THP-1 cells
treated with 7a,25-OHC (P = 0.0119, Figure 5A). We next
performed the experiments in the absence and presence of the
lysosomal inhibitor chloroquine in order to determine
autophagic flux. Autophagic flux in BCG-infected cells was
significantly increased with 7a,25-OHC treatment (P = 0.0069,
Figure 5B). The simultaneous addition of the GPR183
antagonist GSK682753 with 7a,25-HC, decreased the levels of
LC3B-II and autophagic flux; however, this did not reach
statistical significance.

We next confirmed the induction of autophagy via
microscopy. The number of LC3B-II puncta per cell increased
in 7a,25-OHC stimulated BCG-infected THP-1 cells compared
to the untreated BCG-infected cells (P = 0.0358, Figure 5C). The
Frontiers in Immunology | www.frontiersin.org 6
7a,25-OHC effect could be reduced by antagonist GSK682753
(P = 0.0196).

GPR183 KO Mice Have Higher Bacterial
Burden During the Early Stage of Infection
To confirm the effect of the GPR183 receptor in vivo, we infected
WT and GPR183 KO mice with aerosolized Mtb. At 2 weeks p.i.,
GPR183 KO mice showed significantly increased mycobacterial
burden in the lungs compared to WT mice (P = 0.0084, Figure
6A), while the bacterial burden was comparable at 5 weeks p.i.
(Supplementary Figure 7). GPR183 KO mice also had higher
lung pathology scores although this did not reach significance
(Figure 6B). GPR183 KO mice had significantly increased Ifnb1
expression in the lungs (P = 0.0256; Figure 6C), along with
increased Irf3 (P = 0.0159); however, Irf5 (Supplementary
Figure 8) and Irf7 (Figure 6C) remained unchanged. Irf7
transcription was increased in the blood from GPR183 KO
compared to WT mice (P = 0.0513; Figure 6D), but Ifnb1, Irf3
and Irf5 expression was not different (Figure 6D, Supplementary
Figure 6). At the RNA level Tnf, Ifng, and Il1b were not significantly
different between GPR183 KO and WT mice (Figure 7A).
Unexpectedly, at the protein level, the concentrations of IFN-b
(P = 0.0232) and IFN-g (P = 0.0232) were significantly lower in
GPR183 KO mice lung, while TNF-a (P = 0.7394) and IL-1b (P =
0.0753) were not statistically different (Figure 7B).
A

B

FIGURE 4 | Activation of GPR183 leads to cytokine production favoring Mtb control. Primary MN from healthy donors (n = 8) were infected for 2 h with Mtb H37Rv
(MOI 10:1), 7a,25-OHC (100 nM), and/or GSK682753 (10 mM). Cells were washed and left with drugs for a further 22 h. Changes in the expression of (A) IFNB1,
TNF, and IL10 were measured by qPCR and normalized to untreated infected cells. Concentrations of (B) IFN-b, TNF-a, and IL-10 in the culture supernatant were
measured by ELISA. Data are presented as mean fold change ± SEM or min to max for box plots; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001; paired t-test.
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DISCUSSION

Historically oxidized cholesterols, so called oxysterols, were
considered by-products that increase polarity of cholesterol to
facilitate its elimination. However, they have recently emerged as
important lipid mediators that control a range of physiological
processes including metabolism, immunity, and steroid hormone
synthesis (27).

Our findings define a novel role for GPR183 in regulating the
host immune response during Mtb infection (summarized in
Figure 8). We initially identified GPR183 through a blood
transcriptomic screen in TB and TB + T2D patients and found
an inverse correlation between GPR183 expression and TB disease
severity on chest x-ray. Although we demonstrate that the decrease
in blood GPR183 in TB + T2D patients is likely due, in part, to a
decreased frequency of non-classical monocytes expressing
GPR183, we cannot rule out that reduced GPR183 expression in
whole blood is partially attributable to neutrophils and eosinophils
as preferential loss of neutrophils and eosinophils occurs upon
PBMC isolation. In our study the TB patients with T2D had more
severe TB compared to those without T2D; therefore we cannot
ascertain whether lower GPR183 expression is linked to TB + T2D
comorbidity or TB disease severity.

We demonstrate that activation of GPR183 by 7a,25-OHC in
primary human MNs during Mtb infection results in significantly
Frontiers in Immunology | www.frontiersin.org 7
better control of intracellular Mtb growth. This is in contrast to a
recently published study showing increasedMtb growth with 7a,25-
OHC when added post-infection in murine RAW264.7 cells (28).
The discrepancies between the studies could also be attributed to the
different cell types and infection dose, which was 25 times higher in
the aforementioned study. Consistent with the findings of Tang
et al. (28) in murine cells we show that mycobacterial infection
down-regulates GPR183 in human MNs, which may be an
immune-evasion strategy specific to mycobacteria since LPS, a
constituent of Gram-negative bacteria, upregulates GPR183 (15).
Whether the observed increase in phagocytosis in the presence of
7a,25-OHC is a non-specific effect driven by internalization of
agonist bound GPR183 and non-specific uptake of bacteria or an
increase in pattern recognition receptors remains to be elucidated.

We further demonstrate that GPR183 activation by 7a,25-
OHC reduces IFN-b expression and secretion in Mtb-infected
primary MNs and targeted GPR183 knockdown significantly
upregulating IRFs and IFNB1. Similarly, gene expression of IRF1,
IRF5, and IRF7 is up-regulated in TB + T2D patients compared to
TB patients and corresponds with down-regulation of GPR183,
thereby demonstrating that GPR183 expression is associated with
IFN regulatory factors during human TB, and GPR183 is a
negative regulator of type I IFNs in Mtb-infected human MNs.

There is mounting evidence that the production of type-I IFNs
is detrimental during Mtb infection (29, 30). Up-regulation
A

B

C

FIGURE 5 | Treatment with 7a,25-OHC induces autophagy. PMA-differentiated THP-1 cells were infected/uninfected and co-incubated with ±7a,25-OHC,
±GSK682753, for 2 h. Extracellular BCG was removed, and cells were incubated for a further 4 h or 22 h in RPMI medium containing drugs. (A) Cells were lysed at
6 h or 24 h (Flux) p.i. (B) The band intensity was then normalized to the reference protein, GAPDH and further normalized to the BCG. Autophagic flux was obtained
by subtracting chloroquine positive values with chloroquine negative values. (C) Cells were visualized using the Olympus FV 3000 confocal microscope. At least 30
cells were counted for every condition. Data are presented as ± SEM; ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; unpaired t-test.
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of type-I IFN blood transcript signatures occurs in TB disease
and correlates with disease severity (31). In macrophages, Mtb
induces up-regulation of IFNB1 expression as early as 4 h p.i. to
limit IL-1b production, a critical mediator in the host defense
against Mtb (32). Although 7a,25-OHC significantly reduced
IFNB1 mRNA, we did not observe an increase in IL1B mRNA,
suggesting that the GPR183-mediated regulation of type-I
IFN does not influence IL1B expression. In addition
to GPR183 mediated reduction in IFN-b, we observed a
decrease in IL-10 in Mtb-infected primary MNs treated with
7a,25-OHC. IL-10 production is induced by type-I IFN signaling
(33, 34) and promotes Mtb growth (35) by reducing the
bioavailability of TNF-a through the release of soluble TNF
receptors and preventing the maturation of Mtb-containing
phagosomes (35–38). Collectively, we show that GPR183 is a
negative regulator of type-I IFNs in primary MNs, and agonist
induced activation of GPR183 reduces Mtb-induced IFN-b
production, while leaving expression of cytokines important
for Mtb control unchanged.
Frontiers in Immunology | www.frontiersin.org 8
Further confirming the role of GPR183, GPR183 KO mice
infected with Mtb had significantly higher bacterial burden in the
lung compared to WT mice 2 weeks p.i. (prior to initiation of the
adaptive immune response to Mtb) with this effect disappearing
at 5 weeks p.i., when T cell responses against Mtb are fully
established. Our results thus strengthen the contention that
GPR183 plays an important role in the innate immune control
of Mtb irrespective of hyperglycemia. We confirmed the
importance GPR183 in regulating type-I interferons during
Mtb infection in vivo. GPR183 KO mice infected with Mtb had
significantly increased lung Ifnb1 and Irf3mRNA. Unexpectedly,
IFN-b and IFN-g secretions were both significantly downregulated
in the lung. These differences between mRNA and protein levels
may be due to kinetic parameters of transcription versus translation
or mRNA stability versus protein consumption.

Furthermore, we demonstrate that the GPR183 agonist
7a,25-OHC promotes autophagy in macrophages infected
with mycobacteria. Autophagy is a cellular process facilitating
the elimination of intracellular pathogens including Mtb (39).
A B

D

C

FIGURE 6 | GPR183KO mice have higher lung CFU, corresponding with increased expression of transcription factors regulating type I interferon responses. Mice
were infected with 300 CFU of aerosol Mtb H37Rv. (A) Bacterial lung burden 2 weeks p.i. (B) Total histology lung score. RNA was isolated from Mtb-infected lung
and blood samples 2 weeks p.i. (C) Gene expression of Ifnb1, Irf3, and Irf7 in the lungs, (D) Ifnb1, Irf3, and Irf7 in the blood, was measured by qRT-PCR using
Hprt1 as reference gene. Data are presented as ± SEM; ns, P > 0.05; *P ≤ 0.05; **P ≤ 0.01.
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Antimicrobial autophagy was shown to be inhibited by
Mycobacterium leprae through upregulation of IFN-b and
autocrine IFNAR activation which in turn increased
expression of the autophagy blocker OASL (2 ′-5 ′-
oligoadenylate synthetase like) (40). Whether there is a link
between the 7a ,25-OHC-induced reduction of IFN-b
Frontiers in Immunology | www.frontiersin.org 9
production and the increase in autophagy remains to be
investigated in future studies.

Several autophagy promoting re-purposed drugs including
metformin are currently being assessed as HDTs for TB (41). We
propose that GPR183 is a potential target for TB HDT, warranting
the development of specific, metabolically stable small-molecule
A

B

FIGURE 7 | Pro-inflammatory cytokine expression at 2 weeks p.i. of Mtb H37Rv-infected mice. Mice were infected with 300 CFU of aerosol Mtb H37Rv. (A) Gene
expression of Ifng, Il1b, and Tnf in the lungs. (B) Concentrations of IFN-b, IFN-g, IL-1b and TNF-a in the culture supernatant were measured by ELISA. Data are
presented as ± SEM; ns, P > 0.05; *P ≤ 0.01.
FIGURE 8 | Schematic summary of the role of GPR183 in Mtb-infected human monocytes.
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agonists for this receptor to ultimately improve TB treatment
outcomes in TB patients with and without T2D co-morbidity.
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