
RESEARCH ARTICLE

Gene expression plasticity across hosts of an

invasive scale insect species

Nicholas Christodoulides1☯*, Alex R. Van Dam2☯¤, Daniel A. Peterson3‡,

Rasmus John Normand Frandsen2, Uffe Hasbro Mortensen2, Bent Petersen4,

Simon Rasmussen4, Benjamin B. Normark3‡, Nate B. Hardy1☯

1 Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of

America, 2 Biosynthetic Pathways Engineering, Department of Bioengineering, Denmark Technical

University, Søltofts plads, Lyngby, Denmark, 3 Department of Biology and Graduate Program in Organismic

and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America,

4 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of

Denmark, Kemitorvet, Lyngby, Denmark

☯ These authors contributed equally to this work.

¤ Current address: Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico
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Abstract

For plant-eating insects, we still have only a nascent understanding of the genetic basis of

host-use promiscuity. Here, to improve that situation, we investigated host-induced gene

expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata

(Hemiptera: Keriidae). We were particularly interested in the differential expression of detox-

ification and effector genes, which are thought to be critical for overcoming a plant’s chemi-

cal defenses. We collected RNA samples from P. pseudolobata on three different host plant

species, assembled transcriptomes de novo, and identified transcripts with significant host-

induced gene expression changes. Gene expression plasticity was pervasive, but the

expression of most detoxification and effector genes was insensitive to the host environ-

ment. Nevertheless, some types of detoxification genes were more differentially expressed

than expected by chance. Moreover, we found evidence of a trade-off between expression

of genes involved in primary and secondary metabolism; hosts that induced lower expres-

sion of genes for detoxification induced higher expression of genes for growth. Our findings

are largely consonant with those of several recently published studies of other plant-eating

insect species. Thus, across plant-eating insect species, there may be a common set of

gene expression changes that enable host-use promiscuity.

Introduction

The overwhelming majority of plant-eating insect species are host-specialists that consume

only one or a few closely-related plant species [1, 2]. But plant-eating insect communities pre-

dictably include a few species that are host-generalists, some of which can have extremely

broad diets [2, 3]. These generalists are critical elements in terrestrial food webs; their high
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degree of ecological connectedness is a critical part of what makes ecosystems resilient and

many specialist niches possible [4]. Generalists are also enriched in invasive and pest insect

faunas, which gives them more economic weight than their species richness might suggest [5].

What genetic systems enable host-use promiscuity in plant eating insects? Some key host-use

genes and proteins have been identified [6], and in the last few years there has been a number

of studies examining how gene expression varies across hosts [7, 8]. Nevertheless, at this stage,

few plant-eating insect species and host interactions have been studied, and we still know little

with confidence about the genetic architecture of generalism in plant-eating insects.

We typically assume that the main limiters on plant-eating insect diets are plant defenses,

and that a plant-eating insect’s diet breadth is determined by how many of those defenses it

can overcome [9]. Researchers have paid particular attention to a plant-eating insect’s ability

to detoxify plant defensive chemicals with a core suite of enzymes in a handful of large gene

families: carboxylesterases, UDP-glycosyltransferases, glutathione-S-transferases, cytochrome

oxygenase P450s, glutathione peroxidases, and ATP-binding cassette transporters (ABC trans-

porters) [9, 10, 11]. However, this list may be too restrictive. For example, zinc-binding dehy-

drogenases have been implicated in plant-defense compensation in peach aphids [12]. And

recently, researchers have come to recognize that the fitness of some plant-eating insects on

their host plants depends on effectors, that is, secreted macromolecules that attenuate a plant’s

inducible defenses [13, 14]. Disrupting a host plant’s inducible defenses may be especially

important for phloem-sap-sucking insects—such as aphids, whiteflies and scale insects—as

they have close and persistent contact with their hosts [15]. Less attention has been paid to

how factors other than plant defense, such as nutrition, could limit a plant-eating insect’s diet,

but non-defensive factors may be important.

The recent spate of comparative transcriptomics studies indicates that broad diets are, in

fact, facilitated by differential expression of detoxification genes [8, 16, 17]. However, those

studies also indicate that detoxification genes are only a small part of the picture. Most of the

significant host-induced changes in gene expression do not appear to be related to detoxifica-

tion. For example, researchers have found consistent host-dependent expression of many

genes involved in primary metabolism [8, 18]. Furthermore, some studies have recovered evi-

dence of a trade-off between expression of genes for detoxification and primary metabolism

[7, 18]; for some plant-eating insects, increased investment in the expression of detoxification

genes may come at the cost of reduced investment in growth and reproduction. But this is not

the case for all insects. In the silverleaf whitefly, Bemisia tabaci, we find just the opposite:

expression of genes for detoxification and primary metabolism rise and fall together [19].

Thus, the generality of this trade-off is not clear. Also unclear is the extent to which expression

of effector genes varies across host plant species (but see [16] for evidence that it is important

in host-use adaptation). Effector genes are involved in many biological processes and have

many molecular functions. Consequently, there is no effector category in standard gene ontol-

ogies, and researchers would not detect enriched differential expression of effectors across

hosts using standard enrichment analyses. Furthermore, with one exception [20], the pub-

lished RNAseq-based differential expression analyses of insect diet variation have studied spe-

cies with transient connections with their host plants (at least in comparison to sap-sucking

insects), and might not be expected to strongly manipulate their host’s induced defenses.

The lobate lac scale, Paratachardina pseudolobata (Hemiptera: Coccoidea: Kerriidae), is a

good example of host-generalism (polyphagy) in plant-eating insects, and why it is worth

studying. Thought to be native to Southeast Asia [21], the lobate lac scale is invasive and wide-

spread in nearly all areas of Florida. It has been recorded from more than 307 plant species,

including several of ecological and economic importance. Females are parthenogenic and ses-

sile phloem feeders. They form dense aggregations on branches and stems, and excrete sugar-
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rich waste that feeds harmful sooty molds [22]. Some native plant species seem to be particu-

larly vulnerable to lobate lac scale infection, including wax myrtle (Myrica cerifera), a favorite

nesting area for many water-wading birds [23]. Controlling lobate lac scale populations has

proven difficult; natural enemies are lacking in Florida, and thick resinous wax protects

females from many insecticides [21].

In this study we investigated the genetic architecture of host-generalism in Paratachardina
pseudolobata. Specifically, we examined gene expression variation across field-collected sam-

ples taken from multiple locations and hosts in southern Florida. We were particularly inter-

ested in 1) determining how expression of effector genes depends on host species, 2)

confirming the importance of the differential expression of detoxification genes across hosts,

and 3) assessing if there are trade-offs between the expression of genes involved in primary

metabolism and those involved in plant defense compensation.

Materials and methods

Sample collection

P. pseudolobata samples of whole, adult females were collected from four locations in southern

Florida (Table 1). No specific permissions were required for these collections, and the insects

are not protected or endangered species. Each sample was made up of about twenty specimens.

A total of nine samples were taken from three host plants: two samples from Tetrazygia bicolor
(Melastomataceae), three samples from Myrsine cubana (Myrsinaceae), and four samples from

Psychotria nervosa (Rubiaceae). Specimens were plucked from their host plants and immedi-

ately homogenized in tubes filled with Trizol reagent. The ~20 specimens in each tube were

pooled.

RNA extraction, library, preparation, and sequencing

Each RNA sample was homogenized using the Fast Prep FP120 Homogenizer Cell Disrupter

(Thermo Fisher) for three pulses of 20 seconds using small steel beads. Then, 700μL of each

sample was transferred to a fresh centrifuge tube with 200μL of chloroform and shaken vigor-

ously for 15 seconds and then incubated on ice for 20 minutes, shaking every 10 minutes. Sam-

ples were then centrifuged for 15 minutes at 14,000rpm at 4˚C. Approximately 400μL of each

sample was added to an equal amount of 100% EtOH at 4˚C. This mixture was then passed

through the standard protocol of the TRIzol1 Plus RNA Purification Kit (Thermo Fisher).

RNA yields and qualities were assessed using a Qubit fluorometer and an Agilent 2100 Bioana-

lyzer at the Denmark Technical University Multi-Assay Core (DMAC). CDNA Libraries were

prepared at the University of California Davis Genome Center DNA Technologies Core.

Table 1. Samples of lobate lac scales.

Location Host species

Hugh Taylor Birch State Park, Ft Lauderdale, FL Psychotria nervosa

IFAS Fort Lauderdale Research & Education Center, Davie, FL Tetrazygia bicolor

IFAS Fort Lauderdale Research & Education Center, Davie, FL Myrsine cubana

IFAS Fort Lauderdale Research & Education Center, Davie, FL Psychotria nervosa

IFAS Fort Lauderdale Research & Education Center, Davie, FL Psychotria nervosa

Navy Wells Pineland Preserve, Homestead, FL Tetrazygia bicolor

Navy Wells Pineland Preserve, Homestead, FL Myrsine cubana

Tree Tops Park, Davie, FL Myrsine cubana

Tree Tops Park, Davie, FL Psychotria nervosa

https://doi.org/10.1371/journal.pone.0176956.t001
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Samples were poly-A tailed, normalized, and pooled using Illumina TruSeq adapters. Samples

were then loaded across three lanes of a single flow cell and sequenced in 100 base paired-end

reads using an Illumina HiSeq3000.

Quality control and transcriptome assembly

We removed adapters and low-quality sequences (quality score cutoff = 25) from the raw

sequence reads using Trimmomatic 0.35 [24] and discarded reads less than 36 bp long. We

then merged and normalized the quality-trimmed reads by kmer coverage and length using

Khmer [25]. We assembled normalized reads into transcriptomes de novo using both Velvet

1.2.08 and Trinity [26, 27]. We constructed the Trinity assembly using default parameters

(kmer = 25). We constructed eight Velvet assemblies, each with scaffolding enabled, and a

minimum transcript length of 200bp, but with eight different kmer lengths: 27, 29, 31, 33, 35,

43, 53, 63. We then combined all assemblies from both programs into a single Fasta file and

passed it through the EvidentialGene pipeline [28] to cluster sequences based on similarity,

and find the best consensus transcripts for a final assembly. We assessed the quality of the

assembly with BUSCO and Transrate [29, 30]. The Transrate assembly score was 0.30, which is

considered a passing score based on the number of input reads mapping to the assembly.

BUSCO found that 89% of highly conserved arthropod sequences were present as single-copy

or duplicated transcripts in the assembly, suggesting that it is mostly complete. For annotation

and gene ontology assignments we passed the assembly through Annocript, BLASTing against

the Uniref90, SwissProt and Conserved Domain databases with an e-value cut-off value of 1e-

5 [31, 32]. We used these annotations for all subsequent analysis.

Differential expression and GO enrichment analysis

We quantified the number of each transcript represented in the quality-trimmed read libraries

by mapping them to the final assembly using eXpress and Bowtie2 [33, 34]. To determine how

gene expression in lobate lac scale populations varied across host plant species, we first created

a matrix of transcript counts using Trinity scripts. Next, we used the Bioconductor package

Limma to convert the transcript counts to log-counts per million and the voom function to

model the mean-variance relationship with precision weights across the three host plant spe-

cies with three pair-wise comparisons [35]. We excluded low-abundance transcripts from the

analysis. We used a false discovery rate (FDR) cutoff value of 0.05 to classify transcripts as dif-

ferentially expressed, and made an expression heat map via Trinity scripts. We also used

TopGO with gene ontology (GO) annotations provided by Annocript to perform GO term

enrichment analysis [36]. TopGO categorizes differentially expressed transcripts under GO

terms relating to general biological processes and molecular functions. We summarized these

results with REVIGO [37].

We then looked specifically at the expression of detoxification and effector genes across

hosts. For detoxification genes, we examined transcripts which had been annotated as carboxy-

lesterases, UDP-glycosyltransferases, glutathione-S-transferases, cytochrome oxygenase P450s,

glutathione peroxidases, and ABC transporters. Investigation of insect effector genes was less

straightforward, as they have only recently been characterized, fall into a variety of gene ontol-

ogy classes, and are unlikely to be in curated protein databases. We began with a list of 67 can-

didate effector genes in the aphids Acrythosiphon pisum and Myzus persicae provided by [38].

We then extended this list to include 20 predicted effectors from aphid salivary gland tran-

scriptomes [10]. We collated sequences for the genes in this list and identified lobate lac scale

homologs in our assembly using the tblastx function in BLAST+ with an e-value cutoff of

0.00001.
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Results

Assembly and annotation

Sequencing generated ~120 million paired-end reads per library. The final, consensus assem-

bly contained 113,670 transcripts, with a contig N50 of 1055 base pairs and a longest contig

length of 33,906 base pairs. Annotation yielded 82,024 transcripts with at least one database

hit. In comparison to published transcriptomes, the lobate lac transcriptome is most similar to

those of the two-spotted spider mite, Tetranychus urticae, and the pea aphid, Acrythosiphon
pisum. The most diverse genes in the assembly included sugar transporters, protein kinases,

Ras family proteins, ubiquitins, and cytochrome P450s. Transcripts annotated as detoxification

genes in the assembly included 354 cytochrome P450 oxygenases, 12 carboxylesterases, 96 glu-

tathione S-transferases, 78 UDP-glycosyltransferases, 10 glutathione peroxidases, and 646

ABC transporter transcripts. Additionally, we found 1015 transcripts closely matching candi-

date aphid effectors.

Differential expression

We identified 2,028 transcripts as differentially expressed across all comparisons. Most differ-

entially expressed transcripts were upregulated on M. cubana relative to the other two plant

species, but 280 and 58 genes were upregulated in T. bicolor and P. nervosa respectively (Fig 1).

Only 23 transcripts matching detoxification genes were significantly differentially expressed: 3

UDP glycosyltransferases, 4 cytochrome P450s, 2 glutathione S-transferases, 1 glutathione

Fig 1. Heatmap showing differential expresssion across host plants. (Purple: Tetrazygia bicolor, Green:

Psychotria nervosa, Red/: Myrsine cubana). Heatmap colors correspond to log2-transformed RPKM

(Fragments Per Kilobase of transcript per Million mapped reads) values for each transcript. Yellow genes are

upregulated in at least one pairwise comparison between the three host plants and purple genes are

downregulated.

https://doi.org/10.1371/journal.pone.0176956.g001
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peroxidase, and 13 subunits of ABC transporters. Each was upregulated in M. cubana, except

for 2 ABC transporter subunit transcripts and 1 glutathione S-transferase, which were upregu-

lated in T. bicolor compared to P. nervosa. Of the 1015 transcripts which closely resemble pos-

sible aphid effectors, 8 were significantly differentially expressed (Table 2). Seven effector

homologs were upregulated on M. cubana and one on T. bicolor.

Functional enrichment analysis

The genes upregulated in lobate lac scale feeding on M. cubana were enriched for GO terms

related to functions such as ion transport, ATP hydrolysis-coupled proton transport, regula-

tion of gene expression, GTP binding, oxidoreductase activity on NADPH, phosphatase activ-

ity, ion binding, and metalloendopeptidase activity (Table 3). In contrast, on P. nervosa,

upregulated expression was significantly enriched for macromolecule localization and protein

catabolism. Enriched GO terms on T. bicolor included actomyosin structure, cellular compo-

nent organization, and regulation of gene expression.

Many of the GO terms enriched for differential expression on M. cubana are thought to be

involved in detoxification (Table 3). Specific mechanisms are not clear, but increased expres-

sion of these genes has been associated with exposure to plant chemical defenses [44]. By con-

trast, these GO terms are not enriched on T. bicolor and P. nervosa. Instead, on those host

plant species, we saw increased expression of genes involved in primary metabolism.

Table 2. Differentially expressed aphid effector homologs and what is known about their function.

Comparison &

Upregulation

Contig ID Effector Blast Hit Protein Name Mode Of Action References

P. nervosa vs T.

bicolor

Upregulated on T.

bicolor

c60978_g1_i1 ACYPI009755-RA Disulfide isomerase Increases salivary protein formation in

nematodes

Geldhof et al.

(2003)[39]

M. cubana vs P.

nervosa

Upregulated on M.

cubana

c29924_g1_i1 ACYPI002622-RA Calreticulin May circumvent calcium-mediated wound

responses of host plant, prevents sieve tube

occlusion

Carolan et al.

(2011)[10]

Upregulated on M.

cubana

c38772_g1_i1 ACYPI008001-RA ARMET/

Endopeptidase

inhibitor

Found in pea aphid saliva to assist aphid

feeding

Wang et al.

(2015)[40]

Upregulated on M.

cubana

c38738_g1_i1 ACYPI003917RA SCP GAPR-1 Similar to plant pathenogenesis protein (PR-

1), alters defense mechanisms

Carolan et al.

(2009)[41]

Upregulated on M.

cubana

c94746_g1_i1 ACYPI008370-RA CLIP-domain serine

protease

Inhibits phenol oxidase-based innate

defenses of plants

Carolan et al.

(2011)

Upregulated on M.

cubana

c37751_g1_i1 ACYPI009427-RA M1 zinc

metalloprotease

Deactivation of plants defense signaling

peptides and dietary plant protease inhibitors

in insect gut

Carolan et al.

(2011)

Upregulated on M.

cubana

c30871_g1_i1 ACYPI000288-RA Glucose

dehydrogenase

Suppresses plant defense mechanism Nicholson et al

(2012)[42]

Upregulated on M.

cubana

c41723_g1_i1 Gi|109195254|gb|

EC388700.1 |EC388700

Retinol

dehydrogenase

Binds retinols and fatty acids and has been

described to bind to lipid jasmonate

precursors in M. javanica

Iberkleid et al.

(2013)[43]

These homologs are significantly upregulated on one host plant in comparison to their average expression level on the other host plant. Host plant

comparisons are in bold.

https://doi.org/10.1371/journal.pone.0176956.t002
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Discussion

The recent comparative genomics work is beginning to show us general features of the genetic

architecture of host-use variation in plant-eating insects. In this study, we find additional sup-

port for the importance of host-dependent expression of detoxification genes. We also find

further evidence that detoxification genes account for only a small part of all host-induced

gene expression changes, and that there is a trade-off between expression of genes for detoxifi-

cation and those for primary metabolism. We recover evidence of a striking diversity of effec-

tor proteins in lobate lac scale; more than a thousand transcripts, ~ 1% of all transcripts in the

sample, are near matches to one of 87 putative aphid effectors, and several of these transcripts

are differentially expressed in the lobate lac scale across host plant species. Nevertheless, effec-

tors as a group were not enriched for differential expression; most of them are expressed at the

same level across hosts.

Detoxification genes

Of the 1196 putative detoxification genes that were expressed, only 23 were significantly upre-

gulated on any one host. Pervasive host-insensitivity in the expression of detoxification genes

appears to be the rule across plant-eating insects [18, 45]. However, we did find that ABC

transporters were more differentially expressed across hosts than expected by chance. The

pool of differentially expressed genes was significantly enriched for genes involved in ATP

hydrolysis-coupled proton transport (p-value = 1.6e-5) (Table 3), a process carried out by

Table 3. Functional enrichment analysis.

Host Plant Comparison Upregulated Genes Top Enriched Biological Processes Top Enriched Molecular Functions

Myrsine cubana vs Psychotria nervosa M. cubana

• 1738

P. nervosa

• 57

M. cubana

• Membrane fusion

• Ion transport

• Cellular protein modification

P. nervosa:

• Ubiquitin-dependent protein catabolism

• Macromolecule localization

M. cubana

• GTP binding

• Oxidoreductase activity on NADPH

• Phosphoprotein phosphatase activity

• Phospholipid binding

• Endopeptidase inhibitor activity

Myrsine cubana vs Tetrazygia bicolor M. cubana

• 1521

T. bicolor

• 195

M. cubana

• Post-transcriptional regulation of gene

expression

• ATP hydrolysis coupled proton transport

• Response to external stimulus

T. bicolor

• Actomyosin structure organization

• Gene silencing by RNA

M. cubana

• Protein binding

• Metalloendopeptidase activity

• Ion binding

• Zinc binding

• Calcium binding

T. bicolor

• Structural molecule activity

Psychotria nervosa vs Tetrazygia

bicolor

P. nervosa

• 36

T. bicolor

• 246

P. nervosa

• Macromolecule localization

T. bicolor

• Negative regulation of gene expression

• Cellular component organization

P. nervosa

• Translation factor activity, RNA

binding

T. bicolor

• Motor activity

• ATP binding

Enriched GO terms among genes significantly upregulated on a host plant species relative to another in a pairwise comparison. GO terms potentially related

to detoxification are italicized. GO terms that are potentially related to effector activity are in bold. Terms related to primary metabolism are underlined.

https://doi.org/10.1371/journal.pone.0176956.t003
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ATPase proteins, which are subunits of ABC transporter proteins. ABC transporter expression

is associated with xenobiotic elimination and insecticide resistance in several insect species

[44].

Only a few of the genes that we identified a priori as being involved in detoxification were

found to be differentially expressed, but perhaps our a priori assignments were too exclusive.

In fact, some of the enriched GO terms in lobate lacs scale from M. cubana could be indicative

of host-induced differences in the expression of genes involved in detoxification pathways

(Table 3). Most notably, oxidoreductase activity on NADPH is often linked to detoxification,

as several detoxification proteins use NADPH as an electron acceptor [46]. These proteins

include cytochrome P450 oxygenases, and glutathione peroxidases [47]. In other words, we

found significantly enriched differential expression of some genes that are adjacent to detoxifi-

cation genes in metabolic networks. Furthermore, oxidoreductase activity and zinc binding,

other enriched GO terms, are functions of zinc-binding dehydrogenases, which appear to be

important for plant defense compensation in peach aphids [12]. Thus, if we consider a more

inclusive set of genes involved in plant-defense compensation, our expression data provides

more support for the importance of host-induced differential expression.

Aphid effectors on M. cubana

Each of the differentially expressed effector transcripts is likely to have a similar function to its

closest matching aphid transcript (Table 2). These effectors have several functions. M1 zinc

metalloprotease is one of the most well-understood effector proteins. Sap-sucking insects use

it to destroy plant signaling defense peptides and improve phloem sap quality by increasing

free amino acid content [10]. A second effector that we know something about is calreticulin.

Calcium ions transmit information in plant signaling pathways. Calreticulin binds calcium

ions and disrupts these signals. This prevents plants from closing off compromised sieve tube

elements, which would cut off the supply of phloem sap [10]. The over-expression of a calreti-

culin homolog may account for the enrichment of calcium binding processes we found in

lobate lac scale on M. cubana. A third effector with characterized function is retinol dehydro-

genase. It attracts retinols and fatty acids and can bind lipid jasmonate precursors to prevent

jasmonate pathway defenses [43]. This may relate to the enriched lipid and phospholipid bind-

ing we observe in lobate lac scale on M. cubana.

Induction of effectors and detoxification genes in M. cubana

The great majority of differentially expressed genes were upregulated on M. cubana. This

could indicate that M. cubana is simply better defended than the other plant species. Plants in

the Myrsinaceae family are known to produce a variety of benzoquinone compounds, charac-

terized by an aromatic ring and two carbonyl groups [48]. Benzoquinones and their derivatives

have antibacterial, insecticidal, and anti-feeding properties [49]. Benzoquinones are toxic to

several species of aphid as well as the extremely polyphagous red spider mite, which shows that

they could be difficult to process by generalist insect species [50]. Many species of Myrsinaceae

also accumulate saponins in their tissues. Saponins are cytotoxic chemicals composed of a

hydrophobic aglycone (non-sugar) attached to glycoside (sugar residue) [48]. They play an

important role in plant defense against insects and parasites, and they also elicit immune

responses in people [51]. Myrsinaceous plants can also be induced to produce proteinase

inhibitors known as phytostatins in response to wounding [52]. These proteinase inhibitors

make their way to the insect gut and inhibit digestion. In comparison to M. cubana, P. nervosa
and T. bicolor are thought to be less protected by defensive chemistry [53, 54]
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DE of gene expression regulation

We found that some of the most conspicuous changes in gene expression across hosts occurs

at genes involved in regulating gene expression. In lobate lac scale on T. bicolor, we found

enrichment of genes for gene silencing by RNA. This was previously shown on some hosts of

Myzus persicae (in which case miRNA activity is negatively correlated with the abundance of a

P450 enzyme) [55]. In lobate lac scales on P. nervosa, we found enriched expression of genes

for RNA binding and translation factor activity, both of which are thought to play a role in

eukaryotic post-transcriptional regulation [56]. Previous RNA-seq studies of how gene expres-

sion differs across hosts of plant-eating insect species have also found differential expression of

genes for ribosomal proteins and nucleic acid binding. This kind of differential expression

may integrate across GO categories and be indicative of broad-scale expression changes that

may nonetheless not amount to significant enrichment of differential expression within GO

categories.

Caveats

In this study, some of the gene expression variation that we observed across hosts could be due

to biotic and abiotic factors that covary with hosts across sites. For example, gene expression

variation could correspond to variation in local light and soil conditions, or assemblages of

other plant-eating insects and natural enemies. In future studies, we could minimize the noise

caused by such factors by using common garden experimental designs, or sampling much

more intensively across wild populations. The strictly bioinformatics approach that we have

taken to functional analysis also has limitations. The function of candidate genes for host-gen-

eralism could be more accurately characterized with genome editing approaches such as RNA

interference. And that may yield insights that could yield new tools to control populations of

pests.

Conclusion

For decades, we assumed that host use in a plant-eating insect is limited by their capacity to

cope with the chemical defenses of plant species, but we knew little about the details. In the last

few years, comparative transcriptomics analyses of plant-eating insects have identified hun-

dreds of genes that are differentially expressed across hosts, including many genes suspected to

be involved in the detoxification of plant chemicals. They have also shown us that host-use

adaptation is much more complex than activating or silencing the expression of a few detoxifi-

cation genes, and may entail gene expression trade-offs between plant-defense compensation

and primary metabolism. Here, by analyzing gene expression plasticity across three host spe-

cies of the lobate lac scale insect, we find further support for each of these insights. Moreover,

we find evidence that the genes that are directly involved plant-defense-compensation may

vary across plant-eating insect species, and may be more diverse than commonly thought. We

also find evidence that in some cases, host-defense compensation may depend on differential

expression of genes that are adjacent to detoxification enzymes in metabolic pathways. These

insights have the potential to pave the way for a more useful theory of host-use adaptation, and

for new, more economical and sustainable tools for managing pest insect populations.
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