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Abstract: Coarse-grained modeling is an outcome of scientific endeavors to address the broad
spectrum of time and length scales encountered in polymer systems. However, providing a faithful
structural and dynamic characterization/description is challenging for several reasons, particularly in
the selection of appropriate model parameters. By using a hybrid particle- and field-based approach
with a generalized energy functional expressed in terms of density fields, we explore model parameter
spaces over a broad range and map the relation between parameter values with experimentally
measurable quantities, such as single-chain scaling exponent, chain density, and interfacial and
surface tension. The obtained parameter map allows us to successfully reproduce experimentally
observed polymer solution assembly over a wide range of concentrations and solvent qualities. The
approach is further applied to simulate structure and shape evolution in emulsified block copolymer
droplets where concentration and domain shape change continuously during the process.

Keywords: solution self-assembly; implicit solvent coarse-grained model; parameter-properties
relationship

1. Introduction

Self-assembly of polymer systems has been a topic of considerable attention in recent
decades due to its relevance to many advanced nanotechnologies, such as drug deliv-
ery [1,2], medical imaging [3], nanoelectronics [4], and phononic or photonic devices [5-7].
Thus, extensive theoretical and numerical studies have been undertaken to understand
the underlying physical principles [8-12]. Simulations with the atomistic resolution are
not a viable option, even with the continuing advances in computing platforms, due to
the large discrepancies in time and length scales between the model and the obtained
self-assembled structures. Therefore, a range of coarse-grained models in which atoms are
lumped together into coarse-grained segments has been developed [8,12-14]. One such
class of models is bottom-up models that are specific to systems of interest and attempt to
retain as much detail as possible about the polymers under study; these models involve
conducting parameterization studies to derive effective potentials by encoding information
obtained from atomistic simulations [8,9,14,15]. Because of the scale separation between
monomeric repeat units on the atomistic scale and coarse-grained segments, performing
such parameterization studies with sufficient accuracy remains a daunting task. One other
important class is top-down models, the validity, of which at a coarser scale hinges on the
universality of macromolecular systems—that is, systems with significant differences in
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their chemistries and microscopic interactions show similar qualitative behaviors. Physics-
based key interactions represented either through particle- or field-based approaches have
successfully been applied to describe how changes in enthalpic and entropic contributions
affect structure formation [8,11,16].

Despite its benefits, this type of top-down approach faces challenges to accommodate
recent trends in the direction to add complexities that comprise systems with compli-
cated interactions among a large number of polymeric components of diverse types and
molecular architectures along with their interactions with solvent molecules [11,17,18]. In-
teractions between polymers and solvent molecules may result in a wide variety of complex
phenomena, e.g., swelling, deswelling, or plasticizing behaviors due to non-trivial poly-
mer/surrounding solvent interfaces and highly sensitive self-assembled structures [19-21],
the nature of which depends on the amount and strength of selectivity of a solvent. One
example of complex systems involves the confined assembly of polymers in evaporative
emulsified droplets [22-26]. In such systems, the inherent non-equilibrium process of
continuous solvent evaporation from the soft, deformable droplet poses considerable
challenges for researchers attempting to model the system and coherently represent all
relevant parameters.

Even though explicit solvent top-down models allow for a more intuitive understand-
ing of solvent interactions with polymers [27-31], increasing the computational overhead
makes simulations computationally infeasible. Within an implicit solvent approximation,
a coarse-grained model in the framework of field theory, in which energy functional is
approximated in terms of the local order parameter of density fields, has been shown to
qualitatively describe the self-assembly behavior in either incompressible or compressible
polymer systems. The model with a generalized viral equation of local densities up to
the third-order provides the flexibility to describe the qualitative features of the phase
behavior of compressible mixtures. This phenomenological model has been developed
in conjunction with particle-based Monte Carlo (MC) and multi-body dissipative particle
dynamics (MDPD) simulation strategies [32—41].

However, within implicit solvent models, in which effective interactions between
polymer and solvent are modeled without the presence of solvent particles, the selection
of interaction parameters is not trivial. Previous works utilizing the virial model are
limited to small sets of parameters applicable over limited ranges of solvent properties
and concentration, and in some cases, justification of the choice of model parameters is
lacking. As modern synthetic and fabrication methods provide a much broader palette
of constituent polymer system components, selecting appropriate model parameters is of
great importance.

In this report, we present our efforts to expand the capability of an implicit solvent
virial model by obtaining correlations between model parameters and experimentally
measurable quantities, such as single-chain scaling exponent, average chain density, and
interfacial and surface tensions. The strength of the methodical model parameter selection
based on the obtained parameter map is demonstrated by reproducing phase behavior in
block copolymer (BCP) solutions over a wide range of polymer concentrations and solvent
qualities and simulating structure and shape evolution in emulsified BCP droplets. We
approximate the effect of dilution by making the model parameters dependent on the
average concentration of polymer, and the solvent evaporation process is captured by
changing the parameters on the fly during a simulation.

2. Model and Methods
2.1. Coarse-Grained Model with a Generalized Hamiltonian

Interactions in physics-based coarse-grained models of macromolecules comprise two
major categories, bonded interactions and nonbonded interactions. The model adopted
here is a coarse-grained implicit solvent model in which polymer chains are explicitly
modeled with coarse-grained beads connected with harmonic springs, while nonbonded
interactions are modeled in terms of density fields. In a system of n polymeric chains, each
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chain is represented by a total of N beads. As commonly done [42], the bonded interactions
are derived from harmonic springs attached to adjacent beads in a given chain. The total
harmonic potential at a given temperature, T, for the above system is defined as:

3kaN—1

H
b= "o

M

where by (i) is a vector connecting the ith and (i + 1)th bead in a chain, k. R, is the mean-
squared end-to-end distance of an isolated chain with only bonded interactions present,
and ky, is the Boltzmann constant.

The crux of this model lies in defining nonbonded interactions. Using the virial
equation of state approach, nonbonded interactions are expressed in terms of weighted
number densities up to the third-order and are given by the following equation [38]:
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where integration is performed over the entire volume, V, of a simulation box and the
summation within the integral is done over all different types of species present in a system.
The total number of different types of species present in a system is labeled m. The number-
weighted first-, second- and third-order local densities, p1,, p2o and pz,, respectively, are
explained in detail in the next paragraph. The subscript « in these entities refers to species
type. vyp and w,p, are the second- and third-order virial coefficients, respectively, which
describe the interaction between species, «, § and -, in contact with a solvent.

There are two common ways to numerically estimate local densities: grid-less-based
or grid-based approaches [38,42,43]. Under both approaches, the values of local densities
are inferred from bead positions. The grid-based approach involves the use of a particle-to-
mesh (PM) technique, where a regular grid is introduced, and local densities are defined
on each grid site [42]. In the grid-less approach, on the other hand, an off-grid continuous
density is estimated by associating a density cloud with each bead [38,43]. In detail, in a
grid-based approach, the simulation box is split into M number of regular grid sites with
spacing between adjacent sites in all three directions, defined as ALg, and species density
is estimated at these sites. A given bead at position r has a density contribution at one of
the M sites, labeled the pth site. The contribution is given by W(r — r(p)), where r(p) is the
position of the pth site and W(x) is the assignment function. The densities, p1,, P2, and pz,,
at each site are defined using the same formula and are given by:

R3 nN
P (p) = <7 Z W(r Out(i) 3)

where the summation runs over all beads, and i is from 1 to 3 to represent py,, p2, and
03q. t(i) denotes the species of the ith bead, and r; is the position of the ith bead. For the
assignment function, W(r), used in this work, the zeroth-order scheme is used, which
means that the entire weight of a bead is assigned to the nearest grid site, regardless of its
position relative to the site. This type of scheme is commonly referred to in earlier works
as PMO [42]. The prefactor chosen here is the scaling constant to ensure that density does
not depend on the number of beads per chain.
In the grid-less approach, each bead is assigned a cloud density of the form g(r; — r)d,;),

where g is the cloud function. In detail, the following different functional forms are used

for p14, 2o and pz, [38]:
R3 nN

Pltx - N 25 at(z (4)
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where 11 = 2 and 3 for second- and third-order densities, respectively. The first-order density,
01a, 1s simply a summation of delta functions; it has a nonzero value at the positions where
the beads are located and a value of zero for all other locations. Introducing p1, enables us
to decompose the force contribution from the third-order terms (three-body interactions)
into pairwise ones. The weighted second- and third-order densities (02, and p3,) are
defined through weighting functions, w;, which are differentiable and vanish to 0 beyond
a certain interaction range ALg;. Typically, in liquid state theory, second-order terms
in the virial equation of states (Equation (2)) represent attraction, and third-order terms
represent repulsion [44,45]. To represent the harsh short-range repulsions and soft long-
range attractions in liquids, we choose different weighting functions, w, and ws. Following
previous studies [38], the longer-range weighting function, w,, and shorter-range weighting
function, ws, are defined as:

(ALgr —a)® forr < a
wy(r) =A 2r3 —3(a+ ALgp)r*+ (6)
6aALgrr —3aALcr? + ALgr® fora < r < ALgp,

15
~ 27mALg®

where A = —15/[27(2a® — 3a°ALgL + 3aALgr> —2ALg %)] and a = 0.9ALgy.

The use of continuous and differentiable off-grid densities in a grid-less approach al-
lows a straightforward way to estimate the forces on each bead and, as a result, to calculate
thermodynamic quantities like pressure and local stress. This allows us to perform molec-
ular dynamic simulations under any choice of ensembles, such as NVT and NPT [38,43].
However, in the grid-based technique, the use of a grid makes the computation of forces
on each bead impossible. In the grid-less approach, calculating the nonbonded energy
of a certain segment of beads involves explicitly computing the interactions between the
segment and its neighbors, whereas in a grid-based approach, the energy of a segment is
computed from the known grid-based density, which is essentially assigning a segment
to its nearest site; therefore, making a grid-based approach easier to implement with a
computational advantage over a grid-less approach [8,46,47].

ws(r) (ALgp —1)? )

2.2. Simulation Methods

Both MC and MD simulations can be performed to simulate the model described in
the results section. While MC simulations are applied in conjunction with both grid-based
and grid-less approaches, MD simulations are only used with grid-less approaches as the
required estimation of forces is more straightforward. The implementation details for each
of these methods are given below in two separate sections, MC and MD.

2.3. MC-G and MC-GL Simulations

MC simulations in canonical (NVT) ensembles using a grid- and grid-less-based
approaches are referred to as MC-G and MC-GL simulations, respectively. For both
MC-G and MC-GL simulations, to evolve a system to equilibration, we propose a trial
move, which is a standard move used for equilibration of polymeric systems. Examples
include bead displacement and reptation moves. The proposed trial move is accepted
with probability = min(1, e~ AH) where AH is the difference between the initial and final
energies (Metropolis criteria). In a bead displacement move, we randomly select a bead
and propose a move in all three directions by random amounts in the range of [—dg, dq]. In
a reptation move, we randomly select a chain and propose a motion in which randomly
chosen s beads are selected from either end of the chain and then reattached to the opposite
end of the chain. If not explicitly stated otherwise, dq is set as 0.8b, where b is the mean
squared bond length of an ideal chain, and the maximum value of s is 5. An MC cycle
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is then defined as a cycle, which contains a given number of these trial moves, which is
dependent on the system under investigation (see Section 3). The numbers of MC cycles
for equilibration of different systems are also given in Section 3. Both MC-G and MC-GL
simulations are conducted using an in-house serial code written in C++.

2.4. MD-GL Simulations

MD simulations in the NVT ensemble combined with a grid-less approach are referred
to as MD-GL simulations. For MD-GL simulations, the evolution of a system is performed
by estimating forces at a given time and then updating the positions and velocities of
the system using the velocity Verlet algorithm. The force contributions from bonded
interactions are obtained by taking the derivative of Equation (1) with respect to the bead
positions. The force contribution from nonbonded interactions is derived from the density-
dependent Hamiltonian defined in Equation (2). The nonbonded force on bead i is obtained
from taking the derivative of Equation (2) with respect to the position of the ith bead and
can be disintegrated into the sum of pairwise forces and written as [38]:

2Wa(iyt) (j

where the summation is performed over all neighbors of bead i (i.e., all beads, which are
within the interaction range, ALg|, of bead i), and £;; is a unit vector connecting bead i and
its neighbor, j.

Dissipative particle dynamics (DPDs) are combined with MD to maintain a constant
temperature and preserved momentum. In this work, the dissipative and random forces
present in DPD [48] vanish beyond AL, . For distances between particlesiand j, ;; < ALgL,
DPD forces are given by:

A

FP (x5, vij) = —ywP (rij) (xijvij) 1y ©)

F (15, vij) = S’ (1) 0ymy (10)
where FP and FR are the dissipative and random forces, respectively, and v;j is the vector
difference between the velocity of beads i and j. According to the fluctuation-dissipation the-
orem [48,49], the noise coefficient, ¢, is related to the friction coefficient, 7, as &2 = 27k, T.
0;; is a uniformly distributed random number in the range [—1,1]. The standard weighting
functions are used for w” and wR, as defined previously [48]. If not explicitly stated
otherwise, the values of the MD time step and -y are used as 0.005 and 4.5. The value for
the number of MD steps needed to reach equilibration in different systems is given in
Section 3.2. MD-GL simulations are performed by incorporating the virial nonbonded inter-
action potential, H,;, into the source code of highly optimized object-oriented many-particle
dynamics (HOOMD-blue), a general-purpose particle simulation toolkit optimized for
execution on both graphics processing unit (GPUs) and central processing unit (CPUs) [50].

3. Results
3.1. Single-Chain Behavior in a Dilute Solution: Scaling Analysis

We examine the applicability of our coarse-grained implicit solvent model over a full
range of solvent qualities, from extremely poor (including melt condition) to very good
solvents. A connection between a given pair of second- and third-order virial coefficients
(v and w) and solvent quality is established using simple scaling analysis. Grid-less
Monte Carlo (MC-GL) simulations of an isolated homopolymer chain (type A) in a dilute
solution are conducted to estimate the scaling exponent, &, in the power-law relation
Rg o< N* where R is the radius of gyration and N is the degree of polymerization. The
estimated « value allows us to infer the solvent quality based on the well-known relation
stating that, for a flexible polymer chain in dilute solution, « = 0.588 under good solvent
conditions, « = 1/2 under theta (®) solvent or ideal chain conditions, and &« = 1/3 under
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poor solvent conditions [51]. Estimation of « for a given set of virial coefficients (U4, Waaa)
involves obtaining average R, values for systems in which N ranges from 64 to 1960 and
interpolating those values as shown in Figure 1b. In detail, for a given v,, and Wz, MC-GL
simulations are conducted for single-chain systems of different N. The initialization for each
simulation is carried out by randomly placing N beads with bonds between adjacent beads
of length b in a periodic box of Ly = L, = L, = 10 R,. The values of b and R, are set as the
value of bond length and mean a squared end to end distance of an ideal chain of 64 beads,
respectively; those values are basic lengths units used in all the simulations reported in this
work. The value of the interaction range ALgy is set to be 0.16R.. To measure the size of a
chain after equilibration (obtained after at least 500,000 MC cycles), the value of the radius
of gyration, Ry averaged over 100,000 MC cycles, is calculated for each system. The scaling
exponent is then estimated by fitting simulation data points at a fixed solvent quality. The
scaling analysis is performed for values of v,, ranging from —4.0 to 2.0 and values of Wy,
ranging from 0.005 to 0.09.

(b)

0.8
0.6
- =0.581 A
0.4 4 a=0. AX »
0.2 -~
'K; 0.0 = 0.499
$ 0.2
=
2 —0.4 4 -
~0.6 4 a®
084 a=0.2815
-1.04
_1-2 T T T T T T T T T
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.6 18 20 22 24 26 28 30 32 34
W aaa log(N)
Good solvent ®-solvent Poor solvent

(c)

'1:“'\
S %?&\#- &
N

Figure 1. Relationships of model parameters and solvent quality obtained from single chain scaling analysis. (a) Colormap
of the scaling exponent, «, in the power-law relationship Ry o« N*, which is extracted from single-chain MC-GL simulations

of various chain lengths, N, for given sets of virial coefficients (Vaq, Waaa); (b) measured radius of gyrations, R¢, vs. N in the
range 64 to 1960 (log scale) for three different values of v,; = —4.0, —0.5 and 2 with wgq, fixed at 0.02. The scaling exponent,
w, for each pair of v, and wy,, is estimated by fitting the data linearly. The fitted lines and estimated « values are shown as
well; (c) representative chain conformations after equilibration of MC-GL simulations of a single chain (N = 960) under
good, ©, and poor solvent conditions; the (v4q, Waaq) values are (2.0, 0.02), (—0.5, 0.02), and (—3.0, 0.02) for the good, ®, and
poor solvent conditions, respectively. Measured <R¢> are 2.13, 1.54, and 0.26 (R,) for a single chain under the good, ®, and

poor solvent conditions, respectively.
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Figure 1a shows changes in « for different combinations of v,; and wys,. The obtained
colormap shows the complete range of solvent quality, i.e., from a good solvent, represented
by the red region, to a © solvent region, shown in yellow, and a poor solvent region, in
blue. In the ® solvent region, the attractive and repulsive forces among beads, which are
represented by negative values of v, and positive values of wy,,, respectively, completely
compensate for each other; as a result, the ratio <R¢>/Ry igens (Where Ry e igear 1S the
radius of gyration of an ideal chain) is approximately 1, as shown in Figure S1. A chain
conformation under a set of ® conditions is shown in Figure 1c. However, in the good
solvent region, where the net interactions among polymer beads are repulsive in nature,
a “swollen” structure is observed (Figure 1c). Swelling of a random coil can be captured
quantitatively as, for the same N, Figure 1b shows a larger radius of gyration for the good
solvent condition as compared to the © solvent condition. Conditions that produce net
attractive forces are represented by the poor solvent region; such conditions cause the
collapse of the coil to a globule structure with a finite density. The collapsed globule
structure is shown on the far right in Figure 1c. As expected, the radius of gyration of a
globule structure is smaller than that of a coil structure for the same N (Figure 1b). As
shown in earlier studies [52-54], we also observed that, due to the finite size of the chains,
there is no sharp transition from the coil to the globule structure. Identifying the exact
boundary (tricritical ® point) involves performing scaling studies for very-long-chain
lengths [55] and is not the goal of this work. The above scaling studies were repeated using
a computationally cheaper grid-based Monte Carlo (MC-G) simulation; the corresponding
colormap is shown in Figure S2; as can be noticed, there are slight discrepancies in the
locations of the poor theta and good solvent regions.

Along with the scaling analysis that fractionalizes the parametric space of (Vgq,Wgaq) to
regions of different solvent qualities, further refining and narrowing down of our search of
an optimal (Ugq,Waaq) set can be performed by understanding the relationship of those values
with other important experimentally measurable physical quantities. Configurational
properties, such as the radius of gyration, are of great importance in the behavior of a
polymer molecule in a solution. Thus, we begin by measuring the effect of (v4,Wa4q) on the
radius of gyration using single-chain MC-GL simulations. The ratio of the relative average
radius of gyration at various (Uae,Waaa) to the size of an ideal chain, <Rg>/Rg igeq for a chain
length of N = 64, is shown in Figure S1. In contrast to the sudden changes observed in the
behavior of the scaling exponent, «, gradual changes in chain size are observed with a size
ratio of approximately 1 in the @ solvent region, >1 in the good solvent region, and <1 in
the poor solvent region. Figure S1 presents the degree to which a solvent is good or poor,
based on (v4q,Waaq). Polymers in poorer solvents in the dark blue region in Figure S1 have
smaller <R¢> values. Similarly, the <R¢> values are larger (i.e., more swelling of polymers)
in the dark red region in Figure S1, where polymers are more soluble than in the light
red region.

3.2. Collective Properties: Surface Tension and Chain Density

We aim to expand the scope of the model from single-chain systems of dilute solutions
into semi-dilute or concentrated polymer solutions and melts. Surface tension and its
balance with interfacial tension, along with chain conformational entropy, play important
roles in many cases, especially when the polymer solution phase separates into a polymer-
concentrated and polymer-dilute phase with non-trivial geometry. Polymer melts that
coexist with a vapor phase also can form non-flat free surfaces in terraced thin-films
or meniscuses in confined block copolymer (BCP) films [56,57]. Recently, we reported
that BCP thin-film topology at a free surface acts as a guiding template to direct the
assembly of perpendicular lamellae (boundary-directed epitaxy) [56]. In a field dedicated
to building complex anisotropic microparticles from BCPs under the surrounding liquid
solvent medium, previous works [22-24] have shown that by tuning the surface interactions
of the A and B blocks in AB diblock systems, one can prepare either ellipsoid or convex
lens-shaped particles. Here, we explore the relationship between the model parameters
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and experimentally measurable tension values and chain densities. Thus, we are able to
mimic the experimental conditions using the provided comprehensive tool for selecting
model parameters that reflect essential physical phenomena.

The free energy of a phase-separated system has a volume and a surface contribution.
The volume contribution depends on the density of polymer-concentrated phases, whereas
the surface contribution depends on the surface energy/tension of the system. Therefore,
the dependence of two entities, chain density (p) and surface tension (¢), on the strength
of intermolecular interactions, which is controlled by two virial coefficients (Vas, Waqq) in a
homo-polymeric solution, is explored using MD-GL simulations. The solution is prepared
by placing a homopolymer film at the center of the periodic box. The initialization of
a system is carried out by placing 3200 homopolymer chains confined in a thin-film of
thickness 1R,, at a center of the box of thickness 10R,. Each of the homopolymer chains has
N (=64) coarse-grained beads and is initialized with randomly positioned bonds between
adjacent beads of bond length b. The value of the interaction range AL is set to be 0.16R,.
The box dimensions in x and y-direction are 5R,. The size of the box along the z-direction
is large enough to yield a thin-film geometry surrounded by empty regions representing
implicit solvent. Periodic boundary conditions are applied in all three directions. For
a given set of virial coefficients (Vgg, Waag), MD-GL simulations with a time step value
At = 0.005 are conducted. A total of 200,000 MD steps are used to equilibrate the system.
The obtained configuration after equilibration is used to estimate the chain density. Along
the z-direction, the simulation box is discretized into bins of size 0.016R,, and the number
of beads in each bin is computed. The mean value of z over, in which the density is
homogeneous (i.e., mean over the z-values where density is in between its maximum value
and 80% of its maximum value), is then used as the average thickness of the equilibrated
system. The total number of beads in a system divided by both N and average thickness
gives us the value of chain density p (1/Re?). The estimation of ¢ is then carried out
by calculating the difference between normal and tangential pressure tensor across an
interface [48,58]

L Pix + P,
U:?Z<PZZ_¥>

where Pyy, Py, P2, represent the diagonal components of the pressure tensor along the x-,
y-, z-axes, respectively, and the brackets denote a time average. Due to the presence of two
interfaces within the simulation box, a factor of 1/2 is considered. Using the equilibrated
configuration, MD simulations are conducted for additional 100,000 steps, and the values
of the pressure tensor are calculated every 20 steps. The time average of pressure tensor is
then used to obtain ¢ in the unit of pkT/R,’. The above process of estimating the surface
tension ¢ and chain density p is repeated for different sets of (V4,Waaq).

Figure 2a,b displays variations of ¢ and p, respectively, in the unit of pkT/R.? and
1/R,? for different combinations of v, and wgy,, in the poor solvent region. The overall
trends in p and ¢ are qualitatively similar to one another. However, the values of those
variables can still be independently controlled in our simulations through fine-tuning of
virial coefficients. For a given value of attractive strength, v,,, an increase in the strength
of repulsive interactions (increase in w,4,) swells the polymer-rich domain, resulting in
a decrease in p; this behavior of swelling is depicted in Figure 2c with both local density
profiles and snapshots (insets of Figure 2c) of systems with different wg,, values at a fixed
vge value of —4. Figure 2c shows that the interfacial region becomes thicker and more
diffuse, resulting in a decrease in surface tension. Similar behavior is observed when
we weaken the strength of the attractive interaction (decrease in —v,,) when repulsive
interactions are kept constant. The surface tension is reduced as the system approaches
the conditions where effective attraction can no longer stabilize the phase-separated state.
The location of zero surface tension is precisely where a polymer chain transits from the
poor to ® solvent regions [52] (i.e., undergoes an abrupt change in chain size from globule
to coil in the case of a single-chain system (Section 3.1)). We also calculated the interfacial
tension () of immiscible homopolymer blends (homopolymers of species A and B) at

(11)
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various Flory-Huggins parameters between two polymers, x. Using a similar MD-GL
simulation procedure as that used for the estimation of o, the ¢ values of immiscible
homopolymer blends are calculated (Figure S3); full details, including the choice of all
possible virial coefficients, are provided in supplementary materials. Since 7y values of
binary homopolymer blends were predicted in earlier simulation studies using both a
tield-based model SCFT [59] and a particle-based model by Groot et al. [48], the magnitude
of v and ¢ can be compared with each other. Therefore, a subtle balance between interfacial
and surface properties, which plays an important role in deciding the morphology of
self-assembled structures, can be readily controlled in the simulation.

3
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Figure 2. Relationships of model parameters to collective properties obtained from simulations of multichain homopolymer
systems. Colormaps of (a) surface tension (¢) and (b) chain density (p) for different combinations of vs; and wgg, in the poor
solvent region, obtained from MD-GL simulations; (c) variations in chain density along the z-direction of systems simulated

at different wy, values with v, fixed at —4.0. The insets in (c) show snapshots of the obtained equilibrated configurations
for the simulated systems.

3.3. Phase Diagrams of Block Copolymer (BCP) Solutions

One advantage of our model is that it enables us to simulate the behavior of a polymer
system in the entire range of concentrations and solvent qualities. We demonstrate this
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ability by completing the phase diagrams of AB diblock copolymers as a function of A block
composition (f4) and polymer concentration (¢) and by comparing the results with previous
works. In particular, our simulation results are compared with the results of comprehensive
studies by Lodge and coworkers on the phase behavior of PS-b-PI in various solvents,
including di-n-butyl phthalate (DBP: slightly PS selective), diethyl phthalate (DEP: more PS
selective) and n-tetradecane (C14: PI selective) [60,61]. MC-G simulations are conducted
under four different solvent conditions in the order of increasing selectivity; the phase
diagrams in Figure 3a—d correspond to the good, theta, slightly poor, and poor solvents
in relation to the B block, respectively, while the A block is solvable in all cases. In our
implicit solvent model, the virial coefficients are chosen as a function of ¢ to reflect the
effective interactions between beads. In the dilute system (¢ ~ 0), the virial coefficients of
species A and B, (vyg giitutes Waaa,ditute) A0A (Vbb ditute, Whih dilute), are chosen depending on the
solvent quality based on the single-chain study (Figure 1a). Selection of virial coefficients
at the melt condition (¢ = 1) was done such that the vapor pressure of polymer molecules
is negligible and the polymer has finite coarse-grained compressibility [8,38]. The virial
coefficients in the melt condition are set such that they are equal for both A and B blocks
and are labeled (0,01, Wyye1t)- The virial coefficients for the melt condition and for a dilute
solution of each solvent are compiled in Table 1 and marked on the (v, w) colormap of
scaling exponent shown in Figure 4. As the solvent content decreases from the dilute
condition, the effective interactions between polymeric beads gradually recover back to
those in the melt conditions. Thus, we select virial coefficients of i species under various
solvent concentrations based on simple linear interpolation; virial coefficients as a function
of polymer concentration ¢ vary along the line connecting points in the dilute and melt
conditions as vy = V(1 —¢) + vii1¢ and wijiy = wjiip(1 — P) + wiii1¢. The virial
coefficients at any given ¢ are labeled (v;; ¢, wj;; ). Figure 4 shows the trajectories of (v, w)
vs. ¢ value. The cross-second—order virial coefficient between different polymer blocks
at a given value of ¢, vy, ¢, is determined from the Flory-Huggins parameter between
two species, X, Uaq,¢ and vy, ¢, and is given by Vab,p = xXN/p' + (UHM, + Ubh,4>) /2. The cross
third-order virial coefficients, Wggp,p and wyy,, ¢, are expressed as the arithmetic mean of
Waaa,¢ and Wb, s and are given by w,,, = (2w,m,1 + wbbb)/3, Wppa = (Waga + Zwbbb)/?).

Table 1. Virial coefficients used for simulations of diblock copolymer solution self-assembly. Virial
coefficients for A and B blocks under the melt condition and in a dilute solution used to predict phase
diagrams in Figure 3a-d, which corresponds to a good, theta, slightly poor, and poor solvents to the
B block, are compiled in Table. The solvent quality for A block is fixed to be good over all cases; thus,
Uga and wyq, are set to be constant as 2.0 and 0.0, respectively. Melt condition virial coefficients are the
same for all subfigures and for both species A and B.

Vaa Waaa Obb Whbb
Figure 3a—dilute 2.0 0.0 2.0 0.0
Figure 3b—dilute 2.0 0.0 —0.1656 0.00564
Figure 3c-dilute 2.0 0.0 —4.0 0.04
Figure 3d—dilute 2.0 0.0 —1.6094 0.00934
Melt —1.6094 0.00934 —1.6094 0.00934

In each MC-G simulation, 8000 chains of A-B diblock copolymers of YN =20 are placed
in a periodic simulation box, whose dimensions vary depending on polymer concentration
¢. Each chain is represented by N = 64 coarse-grained beads. In melt conditions, the
size of the simulation box is Ly = Ly = L; = 4R,, which is determined to satisfy the preset
averaged melt chain density p’ equals to a total number of chains divided by volume
of simulation box (V = Ly L, L;). In conditions other than melt, the simulation box is
varied along all three directions to reflect a given polymer concentration, ¢ (¢ =1 at melt
condition). For a specific ¢, the initialization of a system is carried out by placing AB
chains in a simulation box, where each chain is initialized with randomly positioned bonds
between adjacent beads of bond length, b. For the values of virial coefficients are set for
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a given concentration, MC-G simulations are performed. 2 x 10 MC cycles are used
for equilibration. For a more efficient equilibration, both single bead-displacement and
reptation moves are implemented during our MC-G simulation.
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Figure 3. Phase diagrams of block copolymer (BCP) solutions obtained from Grid-less Monte Carlo (MC-G) simulations.
Two-dimensional phase diagrams of diblock copolymers in solution as a function of f5 and ¢ for four different systems are
presented. While solvent quality is fixed as good for A block (v, gityte = 20, Wagga ditute = 0.0) for all cases, the solvent quality
for B block varies: (a) good (Vb ditute = Vaa dilutes Wobb,dilute = Waaa dilute); (b) ©-solvent (0pp giyte = —0.1656, Wppp, ditute = 0.00564);
(c) marginally poor (vpp, gitute = —4-0, Wypp ditute = 0.04); (d) POOT (U gitute = Vimeltr Whbb,dilute = Wmelt)- Red circles, orange trian-
gles, green diamonds, pink pentagons, blue inverse triangles, purple triangles, and black squares represent sphere, cylinder,
lamella, bicontinuous, inverse cylinder, inverse sphere, and disordered phase, respectively. Rough phase boundaries in the
black line are also drawn in all subfigures.

Figure 3 presents the phase diagrams of each solvent condition. Observed phases of the
sphere, cylinder, lamellae, bicontinuous, inverse cylinder, inverse sphere, and disordered
are marked with red spheres, orange triangles, green diamonds, pink pentagons, blue
inverse triangles, purple stars, and black squares, respectively. Order-disorder transition
(ODT) and order—order transition (OOT) are also schematically shown (black curves). The
phases are distinguished by visual inspection of the observed morphologies from MC-G
simulations. One could obtain more precise phase boundaries by conducting structures,
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or regions in which the lamella and cylinder phases coexist are not differentiated from
one another; rather, all of these are marked as bicontinuous phases in Figure 3 (a few
representative snapshots of bicontinuous phases are shown in Figure S4). Thus, the
broad ranges of lamella and cylinder phase coexistence observed experimentally in BCP
solutions are represented with wide bicontinuous domains in our phase diagram.a free
energy comparison and packing structure analysis. Perforated lamellae, gyroid structures,
or regions in which the lamella and cylinder phases coexist are not differentiated from
one another; rather, all of these are marked as bicontinuous phases in Figure 3 (a few
representative snapshots of bicontinuous phases are shown in Figure 54). Thus, the broad
ranges of lamella and cylinder phase coexistence observed experimentally in BCP solutions
are represented with wide bicontinuous domains in our phase diagram.
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Figure 4. Trajectory of virial coefficients as a function of ¢ used in MC-G simulations of BCP solution assembly. Virial
coefficients of A and B polymer species at a given polymer concentration ¢, (Vaa,¢,Waaa,¢) and (vps, ¢, Wppp, ¢) used in MC-G
simulations of AB BCPs dissolved in four different solvents are shown on the parametric color map of scaling exponent;
(a—d) correspond to the trajectories of model parameters along ¢ used in simulations for Figure 3a—d in the main text.
Trajectories of virial coefficients for each polymeric species are uniformly distributed on the black dashed line and gray
solid line connecting virial coefficients of the same species in the dilute solution (¢ ~ 0) and the melt state (¢ = 1). For Melt
condition virial coefficients (Vg1 = Vpp,1, Waaa,1 = Wppp,1), Wwhich are same for all subfigures and for both species A and B
are marked as block circles. The virial coefficients of A block in the dilute condition (44,0, Waa4,0), Which are fixed over all
subfigures are marked as white circles. Location of coefficients of B block in the dilute condition (v, g, Wy o) presented as
gray dots varies over subfigures as solvent quality to B varies. Black dashed and gray solid lines represent the trajectories of
virial coefficients for A block and B block, respectively.
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The phase diagram for the nonselective (neutral) good solvent for both blocks is
presented in Figure 3a. In the melt state (¢ = 1), BCP morphology transitions in the
following sequence: disorder (black square), cylinder of A (orange triangle), lamella (green—
diamond), cylinder of B (blue inverted triangle), disorder with increasing f4. Due to the
slightly weak segregation strength between two blocks (YN = 20), sphere phases (red circle
and purple star) are not observed here. Upon lowering the polymer concentration, ¢,
both blocks swell equally, and the incompatibility between blocks is screened out. This
dilution of the effective segregation strength via the addition of a neutral solvent was clearly
observed in the phase diagrams of PS-PI in neutral solvent DOP and PS-PI in DEP and
DOP at high-temperature [61,62] (also, PS-PI in DEP and DOP at high-temperature). Upon
dilution, ODT occurs in the concentrated region of 0.7 < ¢ < 0.9 for all block compositions
and the phase diagram is dominated by the disordered state. The envelope of the ordered
phases is symmetric at f4 = 0.5. ODT presents around ¢ = 0.8 for f4 = 0.5. Effective yN at
this point following the simple dilution approximation of x.#N = ¢xN matches well with
the ODT values given by previous studies using the SCFT model [17].

Figure 3b—d presents phase diagrams of BCP solutions with increasing solvent selec-
tivity. In Figure 3b, the solvent is under ® condition for B block; thus, the solvent is slightly
preferential to A block. Slightly selective solvents preferentially swell the A blocks, thus
causing a lyotropic phase transition analogous to that seen when increasing the effective f4
as solvent volume increases. Starting with f4 = 0.3 and ¢ = 1 in Figure 3b, the observed
phase sequence along the upward vertical direction (increasing solvent concentration)
is cylinder of A, bicontinuous phase, lamellar, cylinder of B, and disordered state; that
sequence matches with the one seen in the right horizontal direction (increasing f4) in the
melt. Thus, the resulting ODT and OOT curves in the phase diagram are tilted to the left
(smaller f4) in comparison to those under the nonselective solvent condition. Isothermal
phase diagrams of PS-b-PI copolymers in DBP and DEP for different temperatures also
show that, as temperature decreases, increasing the selectivity of solvents tilts the bound-
ary between ordered phases. Self-consistent field theory (SCFT) simulation for BCPs in a
selective solvent by Suo et al. [28] presented a similar phase diagram with tilted OOT when
BCP is placed in a moderately selective solvent. Another important phase behavior is the
enhanced stability of self-assembled structures due to solvent selectivity. Compared with
the neutral solvent in Figure 3a, which readily reduces segregation strength upon addition
of solvent, the slight change in solvent quality to B block significantly expands the ordered
phase region and drastically lowers ODT concentration in Figure 3b.

Solvent quality to B block is reduced further such that it becomes a marginally poor
solvent in Figure 3c, while A block remains solvophilic. One noticeable difference from
Figure 3b is the phase reentrance that occurs for asymmetric block compositions. At fs =0.3,
as ¢ decreases, cylinder phase in the melt condition transits into the spherical and then
the disordered state, as the effective x decreases due to dilution. However, as selective
solvents are added into the disordered solution, ordered cylinder phases reappear as the
hydrophobicity of the B block overwhelms the dilution of segregation strength between A
and B blocks. Upon further addition of solvent, the effective f4 continues to increase, and
cylinder, lamellae, inverse cylinder and inverse sphere phases are observed. Representative
snapshots showing the sequence of phases at different ¢ values are shown in Figure S5
(the phase reentrance location is marked in red). Similarly, along the line of f4 = 0.7,
the phase sequence of B cylinders, B spheres, disordered, and B spheres is observed
as ¢ decreases (see snapshots in Figure S5b). Phase reentrance from order—disorder—
order transition in BCP solutions has been observed experimentally. McConnell and Gast
observed lyotropic reentrant order—disorder—order-disorder phase transition in PS-b-PI
solution with increasing decane solvent content [63]. Lodge et al. and Lai et al. [60,64]
did not observe phase reentrance and concluded that the phase reentrance observed by
McConnell and Gast [63] might have been an artifact of insufficiently equilibrated solutions.
However, our simulation shows the possibility of the existence of the phase reentrance for
limited values of asymmetricity and solvent quality. At the low concentration of polymers
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of ¢ = 0.1, over all BCP compositions, hydrophobic B cored sphere phases are stable. With
a sufficient amount of solvent, the A corona block swells further, and the swollen domain
eventually causes the ordered structures to disperse into micelles. In this study, we do not
differentiate between packed spheres and micelles; instead, we classify both as inverse
spheres. When solvent selectivity is further enhanced, the ordered structure is stabilized
over most of the concentration regime, except in the case of highly asymmetric BCPs in
concentrated solution, as shown in Figure 3d. Even in a system with low solvent content,
self-assembled structures are mainly driven by solvent effects that exclude the strongly
solvophobic B block rather than the incompatibility between A /B blocks, which is the main
driving force under the melt condition.

3.4. Evolution of Emulsified BCP Droplets

Another interesting study on the microphase separation of BCP solutions involves the
fabrication of internally ordered microparticles. As shown in Scheme 1a, BCP dissolved in
a nonselective organic solvent is emulsified into droplets on the order of 10 nm-5 um in the
continuous surrounding solvent (surfactant/water) phase [23,25,26]. The organic solvent
evaporates through the aqueous phase, thereby continuously shrinking the droplets and
increasing the polymer concentration (see Scheme 1b). At a critical polymer concentra-
tion, the BCP starts to show microphase separation. The orientation and shape of the
microphase in the deformable but confined microparticles vary according to the energy at
the polymer/water interface, block-block interactions, confinement-induced entropy loss
of the polymer chains, evaporation rate, type of organic solvent, etc. [23,25,26,65]. Thus,
particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate
ellipsoids, and others, were observed. A schematic illustration showing the production
of either onion-shaped particles or ellipsoid particles due to tuning of the interfacial inter-
actions between BCP and the surrounding solvent is shown in Scheme 1c,d. These novel
self-assembled microparticles have potential applications, such as drug delivery, photonic
devices, etc. [66,67]. However, compared to its potential and amount of experimental
efforts, numerical studies are very limited. In a small simulation system box, deformation
of the droplet (e.g., structure elongation in one direction) cannot be properly captured;
however, a very large simulation box in an explicit solvent model must compensate un-
desirable computational load by surrounding solvent (water) whose moves are not in
concern [65]. Hence, most previous simulation-based works were limited to investigating
only the equilibrium morphologies of droplets using relatively inexpensive models, such
as lattice-based models, which possibly underestimated the conformational entropy due to
constrained bond lengths and relatively short-chain lengths [68-70].

Here, we have validated our implicit solvent model for simulating microphase separa-
tion in an evaporating emulsified BCP droplet. MC-G simulations are initiated by placing
a symmetric AB diblock copolymer in a spherical volume surrounded by empty space,
mimicking the experimental condition in which a BCP droplet exists in a surrounding
solvent. We performed simulations in a cubic box of edge length Ly = L, = L, =15 R,,
which is much larger than the volume of emulsified BCP droplet. The total number of
symmetric AB polymer chains is 16,000, where each chain is represented by N = 64 beads.
The presence of organic solvent inside the BCP droplet is captured by defining the variable
¢p, which is the polymer concentration in the droplet. Simulations can start with a ¢p value
close to the concentration of ODT, as we are interested only in the last stage of evaporation,
in which microphase separation and resulting shape changes into anisotropic droplets
occur. Thus, the initial configuration is prepared at the semi-dilute region of ¢p = 0.4,
by placing AB chains in a spherical volume of radius, r with its central location as the
center of the box. Each of the AB chains is initialized with randomly positioned bonds
between adjacent beads of bond length, b. The bonds are placed in a way such that none
of the beads go outside the spherical volume of radius, r. The radius, r is calculated as
7= (3/4(V¢P:0.4) /7)V/3, where V,p=04is obtained as Vp=1 /0.4. ¢pp =1 is the BCP droplet

volume in units of R,?, which is simply the total number of chains divided by the averaged



Polymers 2021, 13, 953 15 of 20

(@

chain density after organic solvent completely evaporates out from the BCP droplet of 128
(chains/R,%). The evaporation process, shown in Scheme 1, is captured in a simulation
through time-varying virial coefficients. The virial coefficients are chosen to be on the line
connecting the points ¢p = 0 and ¢p = 1; the virial coefficients for ¢p = 0, labeled (v;; o, w;;; o)
for species i, correspond to the dilute condition in which an organic (good) solvent is
abundantly present in a droplet and the coefficients for ¢p = 1 correspond to a densely
collapsed polymer under a poor surrounding solvent (labeled (v;; 1,wy;; 1) for species i).
The virial coefficient values are then linearly ramped up from their initial values to the
final values at ¢p = 1 during the course of a simulation, which resembles evaporation of
organic solvent inside the droplet. During this simulation, no spatial variation of virial
coefficients is introduced, assuming that as the organic solvent evaporates, it diffuses and
redistributes quickly enough so that a uniform density is instantaneously achieved inside
the droplet. xN, segregation strength between A and B at ¢p = 1 is set to be 30. Up to
the 5 x 10° MC cycle, virial coefficients are ramped in a linear fashion from their values
at the semi-dilute condition to those at ¢p = 1. Once the ramping is finished, the system
is further equilibrated for an additional 1 x 10 MC cycles. In each MC cycle, both bead
displacement and reptation moves are proposed.

(b) © @)

Evaporation of organic Yasss = ¥YB/ss BCP particle

BCP in surrounding solvent
solvent

1 N Rt [ U %\
/NS n

.

N BCP
J'\'. Yasss <VB/ss
Surrounding solvent (SS)

J\r AB Block copolymer

Emulsion droplet with

) Organic Solvent

Scheme 1. Schematic illustration of the self-assembly of block polymer in evaporative emulsified droplets. (a) BCP droplets
prepared in organic solvent—in—surrounding solvent emulsion by dissolving block copolymer in organic solvent; (b) Organic
solvent is evaporated out from the BCP droplet until critical polymer concentration is reached and polymer chains collapse
and phase separate. One example of such systems is a study done by Hawker and coworkers [22,23], which involve
preparing either ellipsoid or convex lens shaped particles by tuning the interfacial interactions between the BCP droplet and
surrounding solvent. In detail, spherical onion-like polystyrene (PS)-b-poly(2-vinylpyridine) (P2VP) particles were observed
with a PS phase as the outermost layer when the surface tension of PS blocks is lowered by cetyltrimethylammonium
bromide (CTAB) in aqueous solution. The schematic sketch for this case is shown in the bottom portion of (c,d), where
surface tension between A (PS) and surrounding solvent (water), y4/ss is less than surface tension between B (P2VP) and
surrounding solvent, yp/ss. At a specific range of HO-CTAB/CTAB ratios for, which the interfacial interactions between the
surfactant layer and the domains of the BCP were balanced, elongated particles with an axially stacked lamellae structure
were generated (see schematics shown in top portion of (c,d) where 7 4/55 = ¥p/s5)-

Figure 5 presents our simulation results, which capture the effect of interfacial inter-
actions between the droplet and surrounding medium on the shape and morphology of
emulsified BCP droplets. The details of the corresponding experimental study by Hawker
and coworkers are provided in the captions of Scheme 1 [22,23]. A system of AB diblock
droplets with selective interfacial interactions with the surrounding solvent is realized in
our simulation by setting different virial coefficients endpoints at ¢p = 1 for the A and B
blocks. The set of virial coefficients for the ¢p = 0 and ¢p = 1 conditions used for Figure 5
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are marked in Figure S6. The morphologies at different stages of the evaporation process,
along with the corresponding virial coefficient values marked on the (v, w) colormap of the
scaling exponents, are shown in Figure 5. When A (red) has lower surface energy with the
surrounding solvent than B (blue) (i.e., 7455 < ¥p/ss, where SS stands for “surrounding
solvent”), A block wets the surface exposed to surrounding solvent, and concentrically
layered spherical onion structures are observed, as shown in Figure 5a. On the other
hand, when the surrounding solvent is neutral for both blocks, the initial BCP domains
are oriented perpendicular to the surface of the droplet, as shown in Figure 5b. However,
since it is difficult to form perfect lamellar structures perpendicular to the surface in a
spherical object, there are internal defects with curved A/B interfaces (see the morphologies
labeled (2) and (3) in Figure 5b). The defective structure is gradually annihilated, and
elongation in the axial direction starts to occur. Thus, for a certain concentration range,
mixtures of radial layers and axially stacked lamellae (see the morphologies labeled (4)
in Figure 5b) are observed; similar structures were experimentally observed between the
phase transition from onion-like spherical nanoparticles to ellipsoidal stacked lamellae. As
the concentration inside the droplet increases, the effective YN between A and B recovers
back to the value in the ¢p = 1 condition. Enhanced tension at the A /B interface due to
stronger segregation strength drives the particles into a prolate ellipsoid structure with a
flat A/B interface that is axially stacked.
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Figure 5. Morphological evolution of emulsified BCP droplets obtained from MC-G simulations. Evaporation of organic
solvents from droplets to the surrounding solvent (SS) is mimicked by updating the virial coefficients on the fly. The
simulation shown in (a) is for a droplet in which B block has a higher surface tension with the surrounding solvent compared
to A, whereas in the simulation shown in (b), A and B have the same surface tension value. The right sides of (a,b) show
front view (left), center-cut (middle), and 2D projection of center-cut (right) view of the morphologies observed at different
stages of the evaporation process labeled as numbers ranging from 1 to 7. On the left sides of (a,b), the virial coefficients

corresponding to each of the morphologies are marked on the (v,w) colormap of scaling exponents. The virial coefficients
are chosen to be on the line connecting the points ¢p = 0 and ¢p = 1; the virial coefficients for ¢p = 0, labeled (v;; g,w;;; o) for
species i, correspond to a dilute condition in which an organic (good) solvent is abundantly present in a droplet and the
coefficients for ¢p = 1 correspond to the densely collapsed polymer under a poor surrounding solvent (labeled (v;; 1,w;;; 1)
for species i). The virial coefficient values are then linearly ramped up from their initial values to the final values at ¢p =1

during the course of the simulation, which resembles the evaporation of organic solvent inside the droplet.
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4. Conclusions

Using a soft coarse-grained model combining bead-based chain representation and
density field-based energy functional representation, we have proposed a simulation
framework that allows for optimal model parameter selection by exploring the relationship
between the parameters and important experimentally measurable quantities. In particular,
the relationship between the model parameters in our implicit solvent model and solvent
quality, surface (interfacial) tension, and structural (radius of gyration) and bulk proper-
ties (density) is successfully obtained. The model’s flexibility under different simulation
methods was shown by using both MC and MD formalisms in grid-based and grid-less
representations. Our investigation demonstrates that the suggested approach captures BCP
phase behavior in solutions over a broad range of experimental conditions. Furthermore,
simulations updating model parameters on the fly mimicking the self-assembly process
and morphological changes in evaporating emulsified BCP droplets have shown good
agreement with experimental observations. The parameter selection approach applied to
an implicit solvent soft coarse-grained model may, therefore, provide a simple, efficient
route to understand the collective motion of chains at large spatial and temporal scales,
which then determines the kinetic and thermodynamic behavior of polymeric systems in
both solutions and melts. Although we focused only on applying the model to flexible
block copolymer systems, our parameter selection approach is versatile and can easily be
extended to address different systems, including systems with semiflexible chains or liquid
crystalline materials and systems with different chains architectures, such as bottlebrush
systems. The developed model also has the potential to be extended to simulations of charged
systems via the incorporation of electrostatic potential in our nonbonded Hamiltonian.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2073-436
0/13/6/953/s1, Figure S1: Single-chain size variation upon model parameters, virial coefficients,
Figure S2: Relation of model parameters with solvent quality obtained from a single-chain scaling
analysis using MC-G simulations, Figure S3: Macrophase separated binary homopolymer blend,
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