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Dragonfly visual evolutionary neural network: A
novel bionic optimizer with related LSGO
and engineering design optimization

Heng Wang1,3 and Zhuhong Zhang1,2,4,*
SUMMARY

Biological visual systems intrinsically include multiple kinds of motion-sensitive neurons. Some of them
have been successfully used to construct neural computational models for problem-specific engineering
applications such as motion detection, object tracking, etc. Nevertheless, it remains unclear how these
neurons’ response mechanisms can be contributed to the topic of optimization. Hereby, the dragonfly’s
visual response mechanism is integrated with the inspiration of swarm evolution to develop a dragonfly
visual evolutionary neural network for large-scale global optimization (LSGO) problems. Therein, a gray-
scale image input-based dragonfly visual neural network online outputsmultiple global learning rates, and
later, such learning rates guide a population evolution-like state update strategy to seek the global opti-
mum. The comparative experiments show that the neural network is a competitive optimizer capable of
effectively solving LSGO benchmark suites with 2000 dimensions per example and the design of an oper-
ational amplifier.

INTRODUCTION

With the rapid development of big data and artificial intelligence, various engineering design optimization problems with unknown large-

scale parameters increase exponentially, e.g., Li-ion battery health prediction,1 offline time-sensitive load scheduling,2 railway passenger

network operation,3 optimal clustering design,4 remote sensing images,5 electronic system design,6 deep neural networks,7 diagnosis of

COVID-19,8 community acquired pneumonia,9 the second-order perturbation delay Lane–Emden model in astrophysics,10 the fifth type of

induction motor model,11 etc. Even though such problems can be well expressed by LSGO models, they will face a great challenge when

solving their optima due to complex variables interaction or hard constraints. The main difficulty involves three points: (1) when the number

of decision variables enlarges, the search space will expand increasingly, which necessarily makes it extremely difficult to seek the optimal

solution because of extensive time consumption and the high requirement of optimization ability; (2) lots of LSGO problems usually share

the property of either multimodality or pathogenicity, and hence their global optima can hardly be found in that usually there exist a great

number of local optima around the global optimal solution; and (3) if an LSGOproblem itself is a black box, the correlation between variables

is unknown, and hence the comparison between candidate solutions gets into trouble.

Whereas some traditional numerical methods such as the Newton’s method12 and conjugate gradient method13 can handle continuously

differentiable convex optimization problems with large-scale decision variables, their convergence speed and accuracy are desired to be

improved greatly. On the other hand, even though metaheuristic approaches such as CSO,14 GPBO,15 JOA,16 RBLSO,17 PSO,18 ACO,19

and NPSO20 with strong competition in the metaheuristics branch can rapidly handle multiple kinds of continuous or non-continuous opti-

mization problems, they, with usually fixed parameter settings, are easily trapped into local optima when confronted with LSGO problems.

For example, CSO, a cooperation-based hybrid particle swarm optimization approach, has the advantages of strong local search ability, few

parameters, and wide applicability, but its performance rapidly deteriorates with increasing dimensionality. Consequently, it is still desired to

explore new-type and effective approaches for seeking the LSGOproblem’s global optima efficiently. These indicate that new computational

models, inspirations from nature, and approaches are urgently needed to cope with LSGO problems. Interestingly, when exploring interdis-

ciplinary optimization approaches, maybe it is a unique inspiration that the visual neural network’s activity output online guides the swarm

evolution-based state transition in order to excavate new-type and high-performance optimization approaches.

Biological visual systems have the natural abilities of rapid and prompt response, feature selection, noise suppression, direction recognition,

etc., which can provide us with rich inspirations for constructing computational models to tackle specific engineering problems. Particularly, bio-

inspired feedforward visual neural networks as a special type of neural network, which originate from biological visual information-processing
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systems, can well exhibit some significant visual response characteristics and have unique advantages over conventional computationmodels in

handling visual image-based engineering application examples such as object tracking, collision detection, etc. Especially, the dragonfly visual

system is highly sensitive to visualmotion changesofmovingobjects, and can thus rapidly track smallmovingobjects in visual scenes. As a unique

type of insect, it can emerge visual guidance behaviors by its distinctive, rapid, and high-sensitive visual neural information-processing layers.

These can provide researchers with unique inspirations in constructing visual neural networks with structural simplicity. To our best knowledge,

whereas someneuron-based neural circuitmodelswerediscovered in neurophysiology and applied to object recognition, there has beennoany

reported dragonfly visual neural network in the literature. Therefore, it still keeps open to develop dragonfly visual computational models and

explore their potential engineering applications, in particular LSGO. Thismotivates us to probe into a new research topic- dragonfly visual neural

networks. Hereby, the current work tries to develop a dragonfly visual neural network and integrates it with the differential evolution-like inspi-

ration to develop a dragonfly visual evolutionary neural network (DVENN) between artificial intelligence and computer vision, while probing into

its potential application value to LSGO and operational amplifier design optimization in the field of the integrated circuit. This can not only help

to reveal the functional characteristics of the dragonfly visual system from the perspective of computer simulation, but also provide an alternative

optimizer for complex problems.

It is highlighted that by breaking through the shackle of conventional intelligent optimization research, the current work concentrates on

discussing both the possibility of combining dragonfly visual neural networks with the inspiration of swarm evolution, while developing a fast

visual evolutionary neural network to open a prompt pathway to effectively solving LSGO problems, in particular the problem of operational

amplifier design in the field of the integrated circuit. The main innovations are summarized below.

(1) Inspiredby the visual hierarchical information processingmechanismand the response characteristics of fourmotion-sensitive neurons

(i.e., the left, right, upper and downmotion direction detection neurons) in the dragonfly visual system, a feedforward dragonfly visual

neural network (DVNN) with four subnetworks is, for the first time, developed to characterize changes in visual motion, being capable

of online outputtingmotion direction activities named learning rates. Each subnetwork generates a pair of on-line learning rates along

the left, right, upper or down direction to guide each candidate solution/state move toward the global optimal solution.

(2) Based on the inspiration of swarm evolution and the unique physiological characteristics of the above four neurons, a new-type state

update model is proposed to update the current state matrix into a more valuable one. Therein, each given state derives four candi-

date states, based on a differential evolution-like state transition strategy and the four above-mentioned learning rates, after which the

state is updated by the best of the candidate states.

(3) Related to (i) and (ii), DVENN,which completely differs from any existing optimizers, is developed to solve LSGOproblems, particularly

pathological function optimization examples. Thereafter, based on the design principle and analysis of the analog integrated circuit, a

two-stage open-loop operational amplifier design problem is skillfully solved by DVENN, after being modeled into a strongly

nonlinear constrained optimization model.
Unlike any existing optimization approaches, DVENN is a statematrix transition-based optimization approachwith only the unique param-

eter of input resolution. Therein, DVNN can online regulate the parameters’ setting in the state update scheme such that the elements in the

current state matrix seek the optimal solution omnidirectionally. Thereby, it plays an import role in guiding the current state’s transition and

regulating the state transition’s parameters. On the other hand, DVENN, which possesses the ability of strong exploration and exploitation,

can effectively LSGO problems efficiently.

Related research work

Although some state-of-the-art optimization algorithms are competitive for high-dimensional optimization problems, they often encounter a

great challengewhen facedwithmulti-modal LGSOproblems. The twomainstream research branches, i.e., traditional numerical optimization

and intelligent optimization, have been contributed to the topic of LSGO.

Traditional numerical optimization

As a classical type of deterministic iterative approach, numerical optimization plays an important role in solving LSGO problems due to the

striking characteristics of single-state transition, gradient descent, and precise iteration, in which gradient information is usually used to guide

the current state to transfer toward the optimal solution. However, even though lots of theoretical analyses and experiments have validated

that numerical optimization approaches are alternative and rapid in solving LSGOproblems, their effectiveness and solution accuracy are still

unsatisfactory. For example, to enhance the rate of convergence and the solution’s accuracy, Tang et al.21 developed an asynchronous par-

allel algorithm to solve the large-scale composition optimization problems with non-smooth regularization penalty terms, depending on the

asynchronous parallel implementation and variance reduction. Besides, Liu et al.22 proposed an efficient parameter-level parallel optimiza-

tion algorithm after transforming large-scale spatiotemporal datamining into optimizationmodels. Therein, they employed the extrapolation

strategy to raise the convergence rate of gradient descent. Further, Maleknia et al.23 constructed a gradient sampling scheme, and later, an

improved stochastic gradient descent approach was derived to handle non-smooth nonconvex optimization problems. More recently, Xu

et al.24 developed a gradient approximation approach, in which the gradient descent direction was determined by several representative

gradients.
2 iScience 27, 109040, March 15, 2024
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Intelligent optimization

Compared to numerical iterative optimization, intelligent optimization has emerged a strong momentum of development due to low prob-

lem-specific dependence, strong solution search performance, convergence quickness, etc. Some recent co-evolutionary approaches indi-

cated that evolutionary computation is an irreplaceable mainstream branch in discussing how LSGO can be well solved. Meanwhile, several

state-of-the-art co-evolutionary algorithms are speeding up the development of evolutionary computation toward probing into competitive

LSGO approaches. Besides, researchers have also paid great attention to concerning howmetaheuristics approaches get rid of the shackle of

being trapped in local optima when tackling complicated LSGO problems. The reported co-evolutionary or metaheuristic approaches are

valuable when faced with decomposable, semi-decomposable, or convex LSGO problems. However, once they are used to solve indecom-

posable or strongly nonlinear problems, their disadvantages, e.g., local convergence, will timely expose thoroughly due to the curse of

dimension and the increasing complexity of practical problems. In other words, as the dimension increases, their performance will deteriorate

seriously. Thereby, new, and competitive intelligent approaches are desired to promote the ability to seek the optimal solution. The research

progress of LSGO-based intelligent optimization can be summarized below.

Evolutionary optimization

Co-evolution as a type of divide-and-conquer approach, originally proposed by Potter et al.25 always dominates the research progress of

LSGO-based evolutionary algorithms. It decomposes an LSGOproblem into a series of small-scale optimization problems and ultimately ob-

tains the optimal solution through the co-evolution of sub-populations. Herein, the strategies of problem-driven variable decomposition and

sub-population communication play a crucial role in determining whether evolutionary algorithms can acquire the optimal solution. The ex-

isting variable decomposition strategies can be classified into three broader classes, i.e., fixed grouping,25,26 random grouping,27,28 and dy-

namic grouping.29–31

Usually, once the correlation between variables is simply taken into consideration, the coupling ability between evolving sub-populations

become weak, and hence the performance of solution search is influenced seriously. Some fixed grouping strategies, e.g., folding grouping,

can simply divide decision variables into several sub-groups, in which the correlation of variables is simply considered by dimension compro-

mise. They, together with genetic operators, can well solve separable or semi-separable LSGO problems. However, when the correlation be-

tween coupled variables become stronger, such a type of grouping strategy cannot help to improve the performance of solution search. To

break through the shackle, Jia et al.26 devoted a contribution-based cooperative co-evolutionary algorithm to decompose and optimize

inseparable LSGO problems with overlapping subcomponents, in which the grouping strategy had an important impact on solution search

quality.

Recently, several variable grouping strategies, e.g., random grouping, dynamic grouping, etc., have frequently been exploited to decom-

pose the decision variables of the optimization problem into multiple sub-blocks with the same or varying sizes during the evolution process.

Regarding the application of the random grouping strategy, Kaboli et al.27 developed an artificial cooperative search algorithm to accurately

solve the economic dispatch problem in the precondition of less complexity, while Sun et al.28 acquired a hybrid cooperative co-evolutionary

algorithm in which the Markov random field decomposition strategy was used to execute variables decomposition. Nevertheless, one such

decomposition strategy easily causes the degradation of the solution search performance.

The strategy of dynamic grouping can not only adjust the size of each variable sub-group dynamically and effectively, but also overcome

the premature phenomenon incurred by improper dimension decomposition in the process of co-evolution. For example, Mahdavi et al.29

developed an incremental grouping method to merge sub-groups in the process of sub-problem optimization, which could make full use of

limited resources to solve many more sub-problems. Besides, a cooperative co-evolutionary differential evolution approach with high effi-

ciency, developed by Wang et al.30 can solve large-scale numerical optimization problems without prior correlation between variables.

Yin et al.31 designed a multi-population dynamic coevolutionary strategy able to adjust the connection dynamically and adaptively between

individuals. Nevertheless, such a grouping strategy might incur computationally expensive costs and non-uniform information distribution

as well.

Metaheuristic optimization

Metaheuristics as a type of special swarm intelligence approach have initially touched upon the research of LSGO in recent years because of

their simplicity and low computational complexity. However, since they easily encounter the premature phenomenon, multiple metaheuristic

search strategies are usually integrated to adapt to different kinds of LSGOproblems, in which collaborativemechanisms are used to activate

the interaction between the search strategies in population exploration and exploitation. For example, Cuevas et al.32 developed two types of

metaheuristic approaches with strong competitiveness-social spider optimization (SSO) and material state search (SMS) for solving complex

optimization problems, based on the inspirations of swarm evolution and the simulation of the state of material phenomena. Luo et al.33 com-

bined a collaborative mechanism with the simulated annealing algorithm to develop a hybrid optimization approach in which a probability-

based local search chain was used to promote the abilities of global exploration and centralized search. Ma et al.34 developed an improved

approach after analyzing that differential evolution approaches were easily trapped into a local optimum due to the similarity between indi-

viduals at the later stage of evolution. Herein, the current population was randomly divided into three sub-populations with the same sizes,

each of which adopted a unique mutation strategy to generate new individuals. On the other hand, some other hybrid metaheuristic ap-

proaches, e.g., gray wolf and wild goose optimization ones, have preliminarily touched upon the topic of LSGO. For example, inspired by

a school of hunting sailfish, Shadravan et al.35 exploited a novel nature-inspired metaheuristic algorithm in which the sailfish population
iScience 27, 109040, March 15, 2024 3
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was employed to intensify the ability to seek the optimal solution, and the sardine population helped to strengthen the diversity of solution

search. Sabir et al.36 proposed a neuro swarm computational heuristic model which integrated neural networks with particle swarm optimi-

zation to solve nonlinear coupled Emden–Fowler models. At the same time, they37 combined genetic algorithm (GA) with sequential

quadratic programming (SQP) to optimize Goodman neural networks (GNNs) used for solving a class of singular periodic nonlinear differen-

tial systems (SP-NDS) in nuclear physics. Recently, Fu et al.38 constructed a gamemodel to simulate the ownership and dissemination of node

information driven by interests, and proposed a competitive particle swarm optimization algorithm based on de-heterogeneous information

by simulating the spread of competitive influence.

Artificial visual computational model

Biological visual systems as a natural resource have played an important role in solving lots of engineering problems, such as car collision

detection and robot navigation, since some striking visual characteristics can be dedicated to exploring new-type artificial computation

models. Basically, many insects with compound eyes can quickly detect the position and direction of a moving object in terms of their visual

response mechanisms. Particularly, dragonflies have unique visual information processing mechanisms which can provide us with rich inspi-

rations for constructing artificial visual neural computation models.

Dragonfly visual neural computation models

The dragonfly visual system, which can detect changes in visual motion, is very sensitive to visual motion in the field of view. It can not only

estimate the distance betweenmoving objects, but also identify and track the status of visual scenes. These unique visual characteristics have

prompted researchers to perform lots of studies about the dragonfly’s visual response mechanism. Unfortunately, no neurophysiologic

finding on such a responsemechanismhas been borrowed to construct any dragonfly visual neural network capable of serving comprehensive

engineering applications.

In the visual system, there exists a widely studied class of motion-sensitive neurons called small targets motion detectors (STMDs) with

unique target motion detection functions, each of which can respond strongly to a moving small target.39 To detect the behavior changes

of a small target, Wiederman et al.40 constructed an elementary small target motion detector (ESTMD) model morphologically. However,

no computationmodels can achieve the STMD’smotion direction detection. Fortunately Hassenstein et al.41 and Reichardt et al.42 pioneered

an elementary motion detector (EMD) capable of detecting the unidirectional movement direction between two visual points. Subsequently,

to realize bidirectional motion direction detection between two visual nodes, Egelhaaf et al.43 developed a correlative detector formed by

two symmetrically arranged EMDmodels. These provide researchers with important foundations in exploring computational models of drag-

onfly visual motion direction detection. Based on these basics, Bagheri et al.44 constructed two computational models to simulate the drag-

onfly’s characteristics of motion direction detection after integrating EMD and ESTMD, i.e., ESTMD-EMD and EMD-ESTMD. The two hybrid

models have been successfully used to track autonomous mobile ground robots in cluttered backgrounds. Recently, Wang et al.45 con-

structed a direction-selective STMD model able to provide a unified and rigorous mathematical description by comparison against other

STMD models.

Related visual computation model

Studies on biological visual neural networks in motion detection and object tracking originate from the above-mentioned EMD motion di-

rection detector. Based on EMD, Öǧmen et al.46 designed two fly visual neural models to perceive the motion cues of moving objects. Sub-

sequently, Missler et al.47 developed a five-layer visual neural network to track a small object in a black-and-white background bymeans of the

internal structure of the fly visual lobe. Based on these works, Zhang et al.48 developed a fly visual neural network to demonstrate the func-

tional response characteristics of the fly’s interneurons and perform car collision detection. To solve the problem of motion tracking and nav-

igation, Fu et al.49 constructed a hybrid visual neural network to detect visual collisions. Besides, Wang et al.50 designed a neural computation

model to filter out irrelevantmotion signals in the background of clutter related to the functions of a lobular plate tangential cell (LPTC), a two-

quadrant motion detector, and background motion direction estimation.

On the other hand, Rind and Bramwell et al.51 used the locust visual nervous system’s response mechanism to construct a locust visual

neural network composed of perception, excitation, inhibition, and integration layers as well as an LGMD. Subsequently, based on their

research work, Yue et al.52 used the characteristics of the LGMD to intensively discuss the problems of object motion pattern recognition

and collision detection, and later, obtained a series of locust visual neural networks. In recent years, Hu et al.53 proposed an artificial locust

visual neural network model suitable for such movement patterns recognition as translation and rotation, based on the visual response char-

acteristics of locusts and macaques. Related to the visual response characteristics of the fruit flies and locusts, Fu et al.54 proposed a hybrid

neural network model to implement motion tracking and robot navigation.
Problem background and motivation

The general continuous-type large-scale global optimization (LSGO) problem is expressed by

min f ðxÞ = f ðx1; x2;.; xDÞ; 1 % i%D (Equation 1)
4 iScience 27, 109040, March 15, 2024
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where x˛U is called a state throughout the current work; D denotes the variable dimension with DR 1000; and U denotes the bounded de-

cision domain in RD .

Definition 3.1 Local optimal solution: x* inU is said to be a local optimal solution, if there exists d such that, when kx � x�k< d, x*satisfies

f ðx�Þ% f ðxÞ.
Definition 3.2 Global optimal solution: x*˛U is said to be the global optimal solution, if f ðx�Þ% f ðxÞ for c x˛U.
Usually, the characteristic of the function f(x) determines the difficulty of solving the above LSGO problem. If f(x) is the accumulation of

several sub-objective functions, the optimal solution can be found by parallel processing. However, if the decision components in the decision

vector are strongly correlated, it is difficult to find the solution of the problem even if the divide-and-conquer approach is integrated with

evolutionary approaches. Particularly, once the LSGOproblem ismultimodal or ultra-high dimensional, any existing approaches, e.g., numer-

ical optimization ones, become extremely difficult in seeking the global solution(s). Summarily, when tackling LSGO problems, three conven-

tional issues need to be considered: (1) how the curse of dimensionality influences the efficiency and quality of solution search; (2) how the

capabilities of global exploration and local exploitation can be enhanced without prior knowledge; and (3) how the strategies of evolution or

state update can excavate valuable solutions with minimal time consumption.

Like other insect visual systems, the dragonfly visual system also possesses five sequentially connected neural information processing

layers, each of which processes the neural signals from the last layer by a specific visual mechanism. In each neural layer, each node collects

the neural signal of the counterpart in the last layer at eachmoment or those of the nodes around the counterpart, and later, transmits a neural

signal to the counterpart in the next neural layer. One such response process can generate global motion direction activities to characterize

the global motion direction change of visual movement. Based on such an inspiration, the dragonfly’s visual response process is simplified to

construct a feedforward dragonfly visual neural network (DVNN). Further, based on an analogy to the process of population evolution, such a

neural network is integrated with a completely new and differential evolution-like state update strategy to constitute DVENN able to handle

LSGO problems. Herein, the leftward, rightward, upward, and downward global motion direction activities acquired by DVNN at each

moment are taken to guide the states’ transition in the process of solution search.

Hereby, take anyM3N states to form an abstract state matrix X, i.e., ðxijÞM3N. Each state xij is evaluated by the related object value f ðxijÞ
regarded as a gray value here. SuchM3N gray values constitute a gray image with resolutionM3N, i.e., f ðXÞ. Let X ðtÞ and f ðXðtÞÞ be the state

matrix and the related gray image at the t-th moment, respectively. The state (i, j) in XðtÞ is denoted by xðtÞij . Accordingly, the current work tries

to develop a state matrix transition-based dragonfly visual evolutionary neural network (DVENN) to seek the global optimal solution of the

above LSGO problem. Herein, XðtÞ is updated by Xðt+1Þ, namely

xðt+1Þ
ij = xðtÞ

ij +D
�
xðtÞ
ij ; r

ON; rOFF ; xgb

�
(Equation 2)

with 1% i%M; 1% j%N; where D is the transition increment vector of the state xðtÞij ; xgb is the best state found until now.

Related to the state matrices Xðt� 1Þ and X ðtÞ, the visual neural network DVNN outputs four pairs of ON-OFF motion direction activities at

the t-th moment along the leftward, rightward, upward, and downward visual motion directions, i.e., ðrON
L ;rOFF

L Þ;ðrON
R ;rOFF

R Þ, ðrON
U ;rOFF

U Þ, and
ðrON

D ;rOFF
D Þ, by which ðrON; rOFF Þ is taken as the best of the four pairs based on a specific evaluation rule. The state update strategy in (Equa-

tion 2) is designed based on the inspiration of differential evolution, where the main contribution of the pair of rONand rOFF is to purposely

guide each current state to transfer toward the region on which the optimal solution exists. To be able to find the solution as fast as possible,

the current concerns incorporate two points: (1) based on the dragonfly visual response mechanism, how DVNN can be constructed to

generate four pairs of global motion direction activities at each moment such that the quality of state transition can be enhanced, and (2)

how the inspiration of differential evolution can be used to construct a state matrix-based state update strategy such that each state is trans-

formed into another high-quality state with the guidance of a pair of motion direction activities. These concerns will be solved in the following

sections.
Numerical experiment

This section firstly formulates the environmental setting. Secondly, the characteristics of the CEC’2010 and 2013 suites55,56 are analyzed.

Finally, the experimental results and analyses are included in the last section.
Experimental environment and benchmark suite

Throughout the whole experimental study below, all experiments are executed on a computer with Intel Core (TM)i5-9400F CPU/2.90GHz/

RBM/16.0 GB/Visual C++ platform. Seven state-of-the-art metaheuristics, namely CSO,14 GPBO,15 JOA,16 RBLSO,17 PSO,18 ACO,19 and

NPSO,20 are selected to participate in comparison with DVENN. Each method terminates its solution search when the total of fitness evalu-

ations exceeds 33106, while executing twenty-five times independently for each example. The parameters setting of each compared

approach originates from the related literature, while DVENN takes M3N as 8 3 8. The thirty-five test examples with dimension 1000 or

2000 per one are taken from the CEC’2010 and 2013 benchmark suites to examine whether DVENN outperforms the chosen metaheuristics.

Their characteristics are summarized in Table 1.

The CEC’2010 benchmark suite with dimension 2000 per example as a hard LSGO test set contains twenty continuously differential exam-

ples whose characteristics involve separability, partial separability, complete inseparability, variable rotation, variable overlapping, etc. Even

though the eight examples, i.e. f1, f4, f7, f9, f12, f14, f17, and f19 in the benchmark suite, are unimodal, it is still difficult for any existing
iScience 27, 109040, March 15, 2024 5



Table 1. Characteristics of each benchmark example with D = 2000

Test suite Example Type Characteristic Optimum

CEC’2010 f1- f 4 Separable Uni- or Multi-modality 0

f 5- f 6 Single-group m-rotated and non-separable Uni- or Multi-modality 0

f 7- f 8 Single-group m-non-separable Uni- or Multi-modality 0

f 9- f 14 D/2m-group m-rotated and non-separable Uni- or Multi-modality 0

f 15- f 16 D/m -group m-rotated and non-separable Uni- or Multi-modality 0

f 17- f 18 -group m- non-separable Uni- or Multi-modality 0

f 19- f 20 Fully non-separable Uni- or Multi-modality 0

CEC’2013 f 1- f 3 Separable Uni- or Multi-modality 0

f 4- f 10 Partially separable, rotation Uni- or Multi-modality 0

f 11- f 14 Partially separable, rotation, overlapping Uni- or Multi-modality 0

f 15 Fully non-separable Uni- or Multi-modality 0
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metaheuristic method to quickly obtain their global solutions due to large search spaces and complex objective functions. The CEC’2013

benchmark suite with dimension 1000 per example, which involves fifteen examples with complicated objective functions, is more difficult

in seeking the examples’ optima.
Experimental results and analysis

Case I: The CEC’s 2010 benchmark suite

Each of the above eight methods performs twenty-five single runs for each test example, in which the minimal objective of each example is 0.

After that, their statistical results, displayed in Table 2 below are used to perform the approaches’ performance analyses. In addition, the t-test

with the significance level of 5% is here chosen to test whether DVENN can provide a significant improvement over each compared method,

after which the acquired results are given at the bottom of the table. Besides, we take f5, f10, f15, and f20 as examples to plot the approaches’

average search curves shown in Figure 1 below.

The results in the upper half of Table 2 demonstrate that, when coping with the above large-scale, high-dimensional, and strongly

nonlinear optimization problems, the eight approaches emerge significantly different optimization capabilities. DVENN can successfully

and stably acquire the theoretical or approximate optima for fifteen of twenty examples. Nevertheless, PSO and ACO are trapped into

the local optima and cannot acquire the global optimum for any of the twenty examples;

GPBO, JOA, and BPSO can obtain the approximate solutions for one or two examples; RBLSO and CSO can only gain the approximate

solutions for five examples. These illustrate that DVENN has the abilities of strongly global exploration and local exploitation, since its DVNN

can purposely guide the current states to transfer toward the optimal solution(s) along specific directions with the help of multiple kinds of

learning rates generated by it. Thereby, it is an important inspiration to regulate the direction of state transition by means of feedforward

visual neural networks. However, the compared approaches usually include nonadaptive parameters and update their states by virtue of

the guidance of the current best individual, and hence easily get stuck into local search at a high probability.

On the other hand, the approaches’ performance characteristics are compared in terms of optimization quality and search stability. The

t-test based results in the bottom as in Table 2 show that DVENN significantly outperforms the compared approaches in that it can defeat

PSO, ACO, GPBO, JOA, RBLSO, NPSO, and CSO for 20, 20, 20, 19, 14, 14, and 12 examples, respectively. NPSO is superior to each of

the other compared approaches, but easily gets stuck into a local optimum. Thereby, DVENN has the strong ability to handle different kinds

of LSGO problems, but the compared approaches, e.g., PSO, ACO, GPBO, JOA, and BPSO, need to make great improvements so that their

capabilities of global exploration and local exploitation can be balanced properly.

The average search curves in Figure 1 verify that DVENN can take a rational tradeoff between global exploration and local exploi-

tation. It can adaptively regulate the runtime of global exploration and local exploitation. In other words, when solving a relatively easy

example, DVENN needs less time to execute global exploration, and conversely, it takes much more time to comprehensively excavate

those potential solutions. Therein, DVNN plays an important role in regulating the amplitude, scope, and direction of state transition.

Furthermore, Figure 1 confirms that DVENN can converge to the global optimum for each example f5, f10, or f20, but PSO and ACO

behave poorly.

Case II: The CEC’s 2013 benchmark suite

To further confirm that DVENN is a competitive optimizer, it is further compared to the above seven chosenmethods in terms of the test suite.

Like the above experiment, they also execute twenty-five times on each example, respectively. Theminimal objective value of each example is

0. Afterward, the acquired statistical results in Table 3 are utilized to perform a comparative performance analysis of the above eightmethods.

Similarly, only take f3, f6, f9, and f12 for example to emerge the approaches’ average search curves as in Figure 2.
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Table 2. Comparison of statistical results acquired by the eight approaches for the CEC’2010 benchmark suite

f Q RBLSO PSO ACO GPBO JOA NPSO CSO DVNN

f1 m 1.12E-20[ 2.83E+11[ 3.27E+11[ 1.85E+00[ 3.95E-10[ 4.06E-21[ 5.19E-17[ 0.00E+00

s 5.16E-22 8.47E+10 1.52E+10 3.82E-02 3.02E-11 3.66E-22 9.85E-18 0.00E+00

f2 m 7.95E+02[ 1.91E+04[ 2.39E+04[ 4.09E+02[ 1.09E+04[ 2.71E+03[ 4.62E+03[ 5.11e-11

s 4.42E+01 9.57E+03 2.76E+02 9.32E-01 8.86E+02 2.16E+02 8.96E+02 3.11e-12

f3 m 7.60E-14[ 2.15E+01[ 2.15E+01[ 5.84E+00[ 1.99E+01[ 7.41E-14Y 4.29E-12Y 1.80E-02

s 5.45E-15 1.06E-02 9.08E-02 7.38E-02 2.75E-02 5.28E-15 1.44E-12 2.11e-02

f4 m 4.59E+11[ 9.06E+14[ 3.53E+15[ 7.39E+14[ 1.98E+12[ 3.94E+11[ 1.56E+12[ 0.00E+00

s 7.12E+10 8.06E+14 8.09E+14 6.99E+12 2.69E+11 1.44E+11 2.37E+10 0.00E+00

f5 m 2.79E+08[ 6.11E+08[ 8.75E+08[ 7.08E+08[ 4.26E+08[ 2.60E+07[ 3.39E+06[ 9.66E+05

s 9.19E+06 2.75E+07 4.56E+07 3.07E+07 1.09E+07 1.12E+07 2.14E+05 9.70E-04

f6 m 5.41E-09Y 2.01E+07[ 2.11E+07[ 2.09E+07[ 1.97E+07[ 1.97E+01Y 8.15E-07Y 6.48E+05

s 1.68E-09 3.92E+05 8.26E+04 3.91E+04 1.56E+04 2.16E-02 8.41E-08 1.56E-05

f7 m 2.30E+03[ 1.45E+11[ 7.53E+11[ 4.01E+11[ 3.44E+03[ 6.25E+01[ 7.77E+04[ 0.00E+00

s 7.91E+02 3.05E+10 7.08E+10 8.16E+10 5.07E+02 2.29E+01 6.89E+04 0.00E+00

f8 m 3.19E+07Y 2.46E+16[ 1.41E+17[ 4.72E+09[ 4.35E+06Y 1.88E+07Y 3.75E+07Y 4.04E+08

s 2.73E+05 4.31E+15 2.88E+16 3.93E+08 1.93E+05 3.48E+05 7.21E+05 3.56E-07

f9 m 5.03E+07[ 2.91E+11[ 3.41E+11[ 1.73E+09[ 3.63E+08[ 5.34E+07[ 6.47E+07[ 0.00E+00

s 2.67E+06 3.01E+10 1.49E+10 3.21E+08 2.65E+07 5.56E+05 5.75E+06 0.00E+00

f10 m 7.83E+03[ 2.39E+04[ 2.39E+04[ 8.34E+03[ 1.36E+04[ 9.12E+01[ 7.83E+02[ 0.00E+00

s 2.71E+03 1.55E+02 1.97E+02 6.05E+01 1.37E+02 1.22E+02 8.78E+01 0.00E+00

f11 m 4.69E-13Y 2.34E+02[ 2.36E+02[ 2.12E+02[ 2.24E+02[ 2.08E+01[ 2.86E-11Y 1.08E-02

s 1.11E-14 1.38E-01 1.55E-01 2.14E-01 1.03E+00 2.64E-01 7.71E-12 2.08E-03

f12 m 5.13E+04[ 1.42E+07[ 3.33E+07[ 2.97E+06[ 2.01E+05[ 2.35E+04[ 2.50E+04[ 0.00E+00

s 3.32E+03 7.55E+05 5.11E+06 1.25E+05 8.00E+03 1.46E+03 7.25E+03 0.00E+00

f13 m 5.97E+02[ 3.41E+12[ 3.58E+12[ 5.34E+04[ 2.74E+03[ 4.94E+02[ 6.21E+02[ 4.90E+02

s 1.36E+02 7.11E+11 1.02E+11 1.43E+04 8.14E+02 1.18E+01 3.05E+02 4.70E-02

f14 m 1.47E+08[ 1.97E+11[ 3.87E+11[ 1.68E+09[ 1.19E+09[ 1.58E+08[ 1.90E+08[ 0.00E+00

s 1.00E+07 5.09E+10 1.36E+10 2.87E+07 5.31E+07 6.48E+06 2.83E+06 0.00E+00

f15 m 1.03E+04[ 2.39E+04[ 2.39E+04[ 1.68E+04[ 1.43E+04[ 1.72E+01[ 9.98E+03[ 0.00E+00

s 6.65E+01 2.14E+02 2.63E+02 3.44E+02 8.43E+01 1.16E+02 2.24E+01 0.00E+00

f16 m 6.45E-13Y 4.29E+02[ 4.29E+02[ 4.13E+02[ 3.99E+02[ 6.07E+00[ 2.04E-11Y 7.60E-05

s 2.50E-14 2.39E-01 1.71E-01 3.64E-01 6.49E-01 1.78E+00 1.97E-12 3.60E-05

f17 m 4.06E+05[ 2.54E+07[ 7.59E+07[ 3.25E+06[ 7.78E+05[ 1.42E+05[ 3.14E+05[ 0.00E+00

s 3.01E+04 2.04E+06 5.04E+06 1.19E+05 1.19E+04 1.94E+04 4.36E+04 0.00E+00

f18 m 1.50E+03[ 7.68E+12[ 7.62E+12[ 2.28E+05[ 1.36E+04[ 2.24E+03Y 2.39E+03Y 7.98E+03

s 5.62E+02 1.28E+11 2.14E+11 4.71E+04 1.73E+03 3.69E+02 4.25E+02 1.73E-03

f19 m 7.25E+06[ 4.94E+07[ 1.33E+08[ 7.57E+07[ 3.29E+06[ 1.32E+06[ 8.81E+06[ 0.00E+00

s 1.22E+05 1.85E+07 1.42E+07 1.01E+07 2.23E+05 7.98E+04 7.75E+05 0.00E+00

f20 m 1.46E+03[ 7.92E+12[ 7.79E+12[ 2.03E+04[ 1.04E+04[ 1.79E+03[ 1.19E+03[ 1.00E+03

s 1.35E+02 1.75E+11 2.02E+11 2.38E+03 2.97E+03 1.50E+02 3.02E+01 9.00E-02

w/t/l 14/3/3 20/0/0 20/0/0 20/0/0 19/0/1 14/3/3 12/4/4 –

[, = , and Y denote that the result acquired by DVENN is superior to, equivalent to, and inferior to that gained by one compared approach, respectively. The

highlighted value on mean in each row is the best of eight values, which indicates that the related approach performs well over the other approaches.

The bolded values represent the optimal results in the cec2010 standard test suite.
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Figure 1. Comparison of the approaches’ average search curves for the four examples in the CEC’ 2010 suite

(A) f5.

(B) f10.

(C) f15.

(D) f20.
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The statistical results in the upper half of Table 3 validate that DVENN can stably acquire the optima for twelve of fifteen examples while

performingwell over the compared approaches for the f12 optimization problemeven if being not capable of obtaining the problem’s optimal

solution. Conversely, PSO, ACO, and GPBO face a great challenge, since they cannot obtain the optimal solution for each test problem, and

meanwhile, RBLSO, JOA, NPSO, and CSO can only solve one example successfully. These indicate that their diversity of population and the

abilities of exploitation and exploration need to make great improvements in solving LSGO problems. On the other hand, the t-test shows

that DVENN can defeat PSO, ACO, GPBO, JOA, RBLSO, NPSO, and CSO for 20, 20, 20, 19, 14, 14, and 12 examples and is defeated by them

only for 0,0,0,1,6,6,8 examples, respectively. Summarily, DVENN significantly outperforms PSO, ACO, GPBO, and JOA, while winning RBLSO,

NPSO, and CSO. It, as a new-type optimization approach, not only has a stronger optimization performance than each compared approach,

but also can comprehensively adapt to multiple kinds of complicated LSGO problems.

Related to those theoretical optimal objective values in Table 1, the curves in Figure 2 clearly validate that the examples in the

CEC’2013 suite are extremely difficult in solving their optima. The characteristics of the objective functions’ inseparability and the vari-

ables’ rotation and overlapping seriously restrict the approaches’ abilities to approach the optima in the later stage of population evo-

lution. Even so, the DVENN’s optimization performance is stronger than that of each compared approach, and thus it can adapt to mul-

tiple kinds of LSGO problems. The compared approaches are easily trapped into local minima, which clearly validates the fact that
8 iScience 27, 109040, March 15, 2024



Table 3. The CEC’2013 suite: Comparison of statistical results acquired by the eight approaches

f Q RBLSO PSO ACO GPBO JOA NPSO CSO DVENN

f1 m 1.15E-20[ 3.06E+11[ 3.31E+11[ 5.51E+00Y 9.51E-10Y 4.31E-21Y 4.06E-17Y 1.07E+03

s 5.54E-22 1.58E+10 6.82E+10 1.08E+01 2.12E-10 5.56E-22 1.94E-18 8.07E+02

f2 m 7.99E+02[ 1.08E+05[ 8.96E+04[ 4.60E+02[ 2.46E+04[ 3.39E+03[ 9.46E+02[ 0.00E+00

s 3.09E+01 3.01E+03 2.97E+03 2.65E+01 2.55E+03 1.54E+02 4.92E+01 0.00E+00

f3 m 2.16E+01[ 2.15E+01[ 2.16E+01[ 2.00E+01[ 2.12E+01[ 2.16E+01[ 2.16E+01[ 1.21E-03

s 5.60E-03 1.91E-02 1.01E-02 5.73E-04 3.64E-01 2.70E-03 6.40E-03 3.4E-04

f4 m 9.66E+09[ 4.94E+12[ 1.95E+13[ 8.32E+12[ 2.82E+10[ 5.26E+09[ 1.18E+10[ 0.00E+00

s 1.59E+09 2.16E+12 5.17E+12 2.59E+12 7.96E+09 4.95E+08 1.42E+09 0.00E+00

f5 m 7.05E+05[ 3.25E+07[ 6.29E+07[ 3.06E+07[ 3.75E+07[ 1.23E+06[ 8.07E+05[ 0.00E+00

s 1.25E+05 3.56E+06 3.98E+06 4.87E+06 5.06E+06 2.84E+05 1.12E+05 0.00E+00

f6 m 1.06E+06[ 1.06E+06[ 1.07E+06[ 1.06E+06[ 1.05E+06[ 1.06E+06[ 1.06E+06[ 2.49E-03

s 1.04E+03 8.78E+02 2.02E+03 1.13E+03 5.84E+03 1.19E+03 1.20E+03 1.23E-04

f7 m 7.88E+06[ 5.16E+12[ 3.13E+15[ 1.97E+10[ 2.57E+08[ 8.07E+06[ 1.31E+07[ 0.00E+00

s 3.41E+06 4.56E+12 1.94E+15 8.33E+09 7.78E+07 2.79E+06 5.35E+06 0.00E+00

f8 m 1.59E+14[ 9.64E+16[ 1.04E+18[ 3.66E+20[ 5.67E+14[ 9.22E+13[ 3.09E+14[ 0.00E+00

s 2.67E+13 4.21E+16 3.58E+17 1.83E+21 1.75E+14 2.16E+13 7.22E+13 0.00E+00

f9 m 1.22E+08[ 4.31E+15[ 1.53E+16[ 5.05E+09[ 1.32E+10[ 2.10E+08[ 1.39E+08[ 0.00E+00

s 3.50E+07 3.52E+15 7.79E+15 9.87E+08 1.53E+09 4.75E+07 3.17E+07 0.00E+00

f10 m 9.40E+07[ 9.43E+07[ 9.60E+07[ 9.40E+07[ 9.25E+07[ 9.43E+07[ 9.08E+07[ 1.51E-04

s 2.62E+05 2.53E+05 3.19E+05 2.03E+05 7.00E+05 2.86E+05 9.09E+05 2.34E-05

f11 m 9.29E+11[ 2.54E+14[ 7.75E+15[ 1.13E+12[ 1.47E+09[ 9.26E+11[ 9.35E+11[ 0.00E+00

s 1.78E+10 1.05E+14 2.34E+15 5.84E+11 3.79E+08 9.35E+09 9.81E+09 0.00E+00

f12 m 1.16E+03[ 7.98E+12[ 8.00E+12[ 1.88E+04[ 3.60E+03[ 1.69E+03[ 1.87E+03[ 1.03E+03

s 5.85E+01 2.12E+11 1.78E+11 4.32E+03 1.26E+03 1.13E+02 1.44E+02 1.47E-02

f13 m 1.21E+09[ 1.23E+15[ 2.73E+17[ 8.90E+10[ 6.37E+09[ 4.32E+08[ 7.59E+08[ 0.00E+00

s 4.66E+08 3.34E+14 1.07E+17 2.54E+10 1.25E+09 1.81E+08 2.37E+08 0.00E+00

f14 m 5.42E+09[ 1.64E+16[ 4.64E+17[ 2.24E+12[ 2.41E+10[ 6.99E+07[ 5.85E+09[ 0.00E+00

s 2.53E+09 5.80E+16 2.13E+17 5.37E+11 1.15E+10 7.42E+06 3.62E+09 0.00E+00

f15 m 3.43E+07[ 1.23E+17[ 1.24E+17[ 2.57E+10[ 3.21E+09[ 3.39E+06[ 5.24E+07[ 0.00E+00

s 4.12E+06 8.63E+16 4.99E+16 2.06E+10 7.32E+09 2.82E+05 3.68E+06 0.00E+00

w/t/l 13/1/1 15/0/0 15/0/0 15/0/0 13/1/1 13/1/1 13/1/1 –

The bolded values represent the optimal results in the cec2013 standard test suite.
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metaheuristics easily incur the phenomenon of premature convergence when faced with LSGO problems. Relatively speaking, NPSO,

RBLSO, and CSO are more competitive by comparison with GPBO, JOA, PSO, and ACO. On the other hand, DVENN can make full use

of the output activities of four subnetworks to regulate the states’ transition amplitude and direction, while exploiting potential states

multi-directionally. Thereby, it, with a high convergence rate, can avoid the phenomenon of premature convergence as much as

possible.
Case study: Operational amplifier optimization design

The experimental analyses in the previous section clearly show that DVENN is a competitive optimizer for LSGO problems. However, it keeps

open whether the approach can effectively handle complex engineering design optimization problems. Hereby, the design of an operational

amplifier in the analog circuited circuit is modeled and solved by DVENN and the compared approaches.

Architecture on operational amplifier

The operational amplifier (op-amp), say a high-gain differential amplifier, is an indispensable part of any analog or mixed-signal

system. Various kinds of complex operational amplifiers can be used to achieve a great number of functions, e.g., signal amplification,

filtering, power generation, analog-to-digital conversion, etc. Especially, since two-stage operational amplifiers are simple,
iScience 27, 109040, March 15, 2024 9



Figure 2. Comparison of the approaches’ average search curves for the four examples in the CEC’2013 suite

(A) f3.

(B) f6.

(C) f9.

(D) f12.
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popular, and practical in engineering applications, they have been a common op-amp whose circuit structure is usually given in

Figure 3.

Based on the design requirements and Figure 3, the design process of an op-amp can be divided into two main steps. One is to construct

or select an appropriate basic circuit structure and determine the related structure diagram of transistors interconnect, and the other is to

define all required parameter settings rationally, e.g., DC bias current, transistor size, compensation circuit, etc. In the design-oriented re-

quirements, the main concern concentrates on the performance indices of the designed op-amp, e.g., gain (Av), unity gain bandwidth

(UGB), setup time, swing rate (SR), input common-mode circumference (ICMR), commonmode rejection ratio (CMRR), power supply rejection

ratio (PSRR), output voltage swing, output resistance, offset, noise, layout area, etc.

Architecture and requirement on the open-loop op-amp

In the standard two-stage CMOS op-amp as in Figure 4, all transistors, which consist of V/I and I/V cascades without output buff-

ering, are assumed to operate in the saturation region. The first gain stage consists of two differential amplifiers with the same tran-

sistors, which converts differential mode voltages into currents to be outputted through the current mirror load. The first stage’s circuit

incorporates two n-type MOSFETs, M1 and M2, with the same sizes, but the current mirror involves in two p-type MOSFETs, M3 and

M4, with the same sizes.
10 iScience 27, 109040, March 15, 2024



Figure 3. Block diagram on a two-stage operational amplifier
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Related to Figure 4, the M1 and M2’s gate-source voltages at the differential input endpoints, i.e., VGS1 and VGS2, are the same under

static conditions, while the sum of their currents is equal to the current of the M5 tube. The differential pairs M1 and M2 as well as the current

mirror loads M3 and M4 complete the conversion of V/I and I/V electrical signals, respectively. The current mirror with a large output

resistor improves the gain of the first stage and converts the differential mode output signal of the differential amplifier into a single-ended

signal. The design performance parameters need to satisfy the specific requirements as in Table 4.

Optimization model design on the two-stage op-amp

Based on the design principle and analysis of the analog circuited circuit,57 the detailed two-stage open-loop op-ampmodel is given below.

Low-frequency gain index. The low-frequency gain is computed by

LFGðxÞ = 20 lg

�
2gm1gm6

x9I6ðl2+l4Þðl6+l7Þ
�
; (Equation 3)

with x= (x1,., x10) = (S1,.S8, I5, CC), where Sk denotes the proportion of width and length of the k-th MOSFET transistor with 1% k% 8; I5
and CC stand for the attenuation current of the fifth transistor and the bias current, respectively. Besides, I6 is the output current of the sixth

transistor, given by

I6 = g2
m6

.
2K 0

px3: (Equation 4)
Figure 4. Circuit diagram of the two-stage op-amp
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Table 4. Two-stage operational amplifier design characteristic requirements

No Performance parameter Requirement

1 area (TA) <300um2

2 gain (Av) >50dB

3 Unity gain bandwidth (UGB) >5MHz

4 Positive source suppression (PSRR+) >60dB

5 Negative power supply rejection (PSRR-) >60dB

6 The pendulum rate (SR) >10V/us

7 Static power (Ps) <2mW

8 The phase margin (PM) >45o
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lk represents the k-th transistor’ design parameter with k= 2, 4, 6 and 7; gm1 andgm6 are denoted orderly by the transconductances of the first

and sixth MOSFET transistors in Figure 4, namely

gm1 =
�
K 0
nx1x9

�1
2; gm6 =

gm4x6
x4

; (Equation 5)

with the NMOS and PMOS’ intrinsic conduction factors K 0
n and K 0

p, where gm4 is the transconductance of the fourth MOSFET transistor, given

by

gm4 =
�
K 0
px3x9

�1
2
: (Equation 6)

Again, since the low-frequency gain is required to be beyond 50 dB, the gain performance index is expressed by

f ðxÞ = max

�
20 lg

�
2gm1gm6

x9I6ðl2+l4Þðl6+l7Þ
�
; 50

�
: (Equation 7)

Constraint condition
(1) Gain bandwidth constraint. The unit gain bandwidth is computed by

UGB =
gm1gm6

x10+A2Cgd6
; (Equation 8)

where A2 and Cgd6 orderly refer to the second stage gain and the gate-drain capacitance of the sixth transistor M6, defined by

A2 =
gm6

I6ððl6+l7ÞÞ;Cgd6 = CGD 3 L3 x6; (Equation 9)

with the transistor channel length L. Based on the design requirements in Table 4, EUGB is required to be larger than 5MHz, and thus the

design of the two-stage op-amp needs to satisfy the following constraint:

g1ðxÞ =
5

UGB
=

5
�
x10+A2Cgd6

�
gm1gm6

< 1: (Equation 10)

(2) Slew rate constraint. The slew rate as the speed index of the op-ampdenotes the conversion rate of the output voltage. Since SR> 10V/

us, the below constraint needs to be satisfied, given by

g2ðxÞ =
10
x9
x10

< 1: (Equation 11)

(3) Layout area constraint. The layout area of the op-amp, TA, is decided by

TA = L2
X8
i = 1

xi: (Equation 12)
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Since TA< 300um2, the below constraint holds:

g3ðxÞ =
TA

300
< 1: (Equation 13)

(4) The power supply rejection ratio constraint. PSRR+ and PSRR� are orderly the positive and negative ratios of the changes in the input

power supply, computed by.

PSRR+ = 2gm1gm6

�
x9I6ðl2 + l4Þl6; (Equation 14)

and

PSRR� = 2gm1gm6

�
x9I6ðl2 + l4Þl7: (Equation 15)

Since PSRR+ and PSRR� are larger than 60dB, there exists two constrains below:

g4ðxÞ =
60

20 lg

�
2gm1gm6

x9l6I6ðl2+l4Þ
�< 1; (Equation 16)

and

g5ðxÞ =
60

20 lg

�
2gm1gm6

x9l7I6ðl2+l4Þ
�< 1; (Equation 17)

(5) Static power consumption constraint. PS refers to the total power consumption caused by the op-amp, which, together with PS< 2mW,

satisfies

g6ðxÞ =
Ps

2
=

ðVDD � VSSÞð2x9+I6Þ
2000

<1; (Equation 18)

with the positive power supply VDD and the negative power supply VSS.

(6) Phase margin constraint. The transfer function of the open-loop operational amplifier is given by

GðsÞ =

a

�
1 � s

�
Cc

gmII

�
� RZRI

�
1+bs+cs2+ds3

; (Equation 19)

with the first stage resistance RI, the second stage trans-conductance gmII, and the zero resistance RZ ; where a, b, c, and d are the coefficients

given by

a = gmIgmIIRIRII;b = RIðCI+CcÞ + RIIðCII+CcÞ + gmIIRIRII +RZCc ;
c = RIRIIðCICII + CICc+CIICcÞ + RZCcðRICI + RIICIIÞ;d = RIRIIRZCICc :

with the second stage resistance RII, the first and second capacitance s CI and CII, and the first trans-conductance gmI: Hence, the phase

margin FM of the operational amplifier is usually computed by

FM = p �
X

1% i%3
tan� 1

�
UGB

Pi

�
� tan� 1

�
UGB

Z0

�
: (Equation 20)

where Z0 denotes the i-th zero point of the above transfer function. On the other hand, to ensure that FM > 45�, we take Z0 = 10UGB, while

three constraints need to be satisfied:

g7ðxÞ =
10gm2

gm6
< 1; (Equation 21)
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Table 5. Comparison of statistical results acquired by the approaches

Algorithm Best Worst Mean Std

RBLSO 0.29995 0.31101 0.29997 0.01412

PSO 0.30002 0.32001 0.30103 0.01898

ACO 0.30004 0.30322 0.30012 0.00910

GPBO 0.30553 0.33689 0.31887 0.02242

JOA 0.29958 0.31895 0.30175 0.01734

NPSO 0.30561 0.32982 0.31102 0.01956

CSO – – – –

DVENN 0.27986 0.29856 0.28012 0.00844

The bolded values represent the best results among the test results of the optimized model of the two-stage operational amplifier.
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g8ðxÞ =

1:22CL

�
gm2

x10

�
gm6x10

< 1; (Equation 22)
g9ðxÞ =
40UGBCgs3

gm4
<1; (Equation 23)

where Cgs3 is the coefficient of the gate-source capacitance. Besides, the fifth MOSFET transistor M5 provides the bias current for the first

stage amplification circuit, while so does the seventh MOSFET transistor M7 for the second stage amplification circuit. To ensure the oper-

ational stability of the op-amp, the constraint below is needed to stabilize the working state of the circuit, namely

hðxÞ =
x7
x5

� I6
x9

= 0: (Equation 24)

Summarily, the two-state operational amplifier optimization model (TSOAOM) can be expressed by

Minimize
x

f ðxÞ
Figure 5. Comparison of average search curves
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Table 6. Comparison of statistical results acquired by the eight approaches

Algori. Area (TA) Av UGB PSRR+ PSRR- SR Ps PM

RBLSO 292 92.82 9.39 98.28 91.37 14.31 1.32 49.5

PSO 290 90.57 8.84 89.8 87.44 15.82 1.32 49.9

ACO 295 90.65 9.13 96.3 89.81 16.05 1.34 47.9

GPBO 293 90.53 8.98 87.53 85.72 13.75 1.22 49.7

JOA 285 91.11 7.99 93.85 90.34 14.86 1.51 50.7

NPSO 288 87.14 9.25 94.8 89.65 15.58 1.13 51.6

CSO – – – – – – – –

DVENN 289 98.4 10.34 97.08 99.34 17.8 1.2 53.59
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s:t:

8<
:

giðxÞ< 1; 1% i%9;
hðxÞ= 0;xk ˛ ½1;50�;1% k%8

x9 ˛ ½0;30�; x10 ˛ ½0;10�:

One such programming model, which includes ten variables and ten nonlinear equality or inequality constraints, is a strongly nonlinear

constrained optimization problem. The variables take their values in the above-mentioned intervals, due to the practical requirements.

Optimal design scheme for the two-stage op-amp

The above model includes four known parameters, i.e., transistor length L, load capacitance CL, positive and negative operating voltages

VDD and VSS, in which they take 2um, 10pF, 2.5V, and�2.5V, respectively. Like the above experiment in the section of ‘numerical experiment’,

take the seven metaheuristic approaches mentioned in the previous section to participate in comparison with DVENN when tackling the

above optimizationmodel. Herein, the penalty functionmethod is adopted to handle the nine constraints in TSOAOMwith the penalty factor

103.
Figure 6. Characteristic diagram of each performance index of two-stage operational amplifier

(A) Gain bandwidth.

(B) Margin of phase.

(C) PSRR+.

(D) PSRR�.
(E) SR.

(F) Noise analysis.
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Figure 7. Schematic diagrams on visual response and the visual neural network

(A) Simplified dragonfly visual information processing.

(B) Dragonfly visual neural network.
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Each approach with the total fitness evaluations 33105 copes with TSOAOM twenty-five times independently, after which the acquired

statistical results and convergence curves are given in Table 5 and Figure 5, respectively. It is highlighted that CSO is incomparable with

the other seven approaches in that it cannot acquire any feasible solution or feasible op-amp design scheme per run. Nevertheless, the other

seven approaches can all find feasible op-amp design schemes.

The results in Table 5 clearly emerge that DVENN can stably perform solution search with a high solution accuracy. On the one hand, its

statistical results indicate that it can distinctively outperform the other six approaches with the aspect of solution search performance and

thereby can acquire a high-quality op-ampdesign scheme after each execution, on the other hand it has the strong ability to excavate feasible

solutions and the global optimal solution. The values in the bottom as in Table 5 indicate that it can acquire the best op-amp design scheme

and perform a stable solution search. Besides, the compared approaches only haveminor performance differences when seeking the optimal

solution or the best design scheme. Relatively speaking, ACO and RBLSO are superior to PSO, GPBO, JOA, and NPSO, due to their solution

search stability and solution quality.

The average search curves in Figure 5, generated by the approaches in the process of solution search clearly validate that DVENN and the

compared approaches can perform stable solution search with different convergence speeds. Relatively, DVENN can find the best solution at

a high global convergence rate, while being capable of finding approximate solutions. The best op-amp scheme, acquired by it can satisfy the

performance design requirement of the op-amp. Consequently, DVENN is an available optimizer and can acquire the best design scheme to

maximize the low-frequency gain index as much as possible in comparison with the compared approaches.

Empyrean Aether simulation

Herein, the Empyrean Aether simulator is used to examine whether the op-amp with the best op-amp design scheme acquired by DVENN, i.e.,

x= (4, 4, 5, 5, 1, 50, 6, 2, 30, 1.6), can be simulated by the semi-empirical model. The simulation results in Table 6 show that the op-amp outputs a

gain of 98.4dB, a unity gain bandwidth of 10.34MHz, and a phasemargin of 53.59�. Furthermore, its positive and negative power supply rejection

ratios are 97.08dB and 99.34dB, and SR is 17.8 v/us. These comply with the design characteristic requirements in Table 4.

The results in Table 6 demonstrate that except CSO, all the other approaches can obtain proper design results that satisfy the parameters’

design requirements. RBLSOperformsbetter by comparison against any of the other compared approaches exceptDVENN.Wenotice a fact,

namely the larger the op-amp’s gain, the smaller the phase margin. This requires that the acquired design scheme can achieve the trade-off

between gain and phasemargin. Nevertheless, while generating the largest phasemargin, NPSOmakes the op-ampoutput the smallest gain

value, whichmeans that its design scheme cannot take a rational balance betweengain and phasemargin. Consequently, it behaves poorly by
16 iScience 27, 109040, March 15, 2024



Figure 8. Schematic illustration on the L-DVNN’s visual information processing

(A) Function image.

(B) P-layer.

(C) R-layer.

(D) L-layer/ON-channel.

(E) L-layer/OFF-channel.

(F) M-layer/ON local directions.

(G) M-layer/OFF local directions. Global left ON motion direction. Global left OFF motion direction.
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comparison against the other compared approaches. DVENN can balance the values of the phase margin and gain, and thus obtains a more

appropriate performance result. Based on the results of SR, DVENN can make the op-amp operate at a proper speed, while the values of

parameter design indices acquired can ensure such an op-amp to behavewell. The power supply rejection ratio, as an important design index

called the power supply rejection ratio (PSRR), can be used to evaluate the op-amp’s ability to suppress the change of the supply voltage. The

results in Table 6 hint that RBLSO, JOA, NPSO, and DVENN can all make the op-amp output proper suppression ratios.

Take the design scheme acquired by DVENN for example to plot the curves in Figure 6 below outputted by the op-amp in the simulation

environment of the Empyrean Aether.

The stimulation curves validate that the design scheme can ensure that all the performance indices of the op-amp can coincide with the

design requirements in Table 4, while the low-frequency gain maximization design can be achieved under the restrictions of the constraint

performance indices. The numerical results illustrate that the design scheme acquired by DVENN is feasible and effective for the structure

design of the op-amp in the analog integrated circuit. Therefore, DVENN is of potential value in simplifying the design of an integrated circuit

and shortening the development cycle.
iScience 27, 109040, March 15, 2024 17



Figure 9. Schematic diagram on DVENN
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RESULT AND DISCUSSION

Related to the above thirty-five examples with dimension 1000 or 2000 per one, the results on mean and variance acquired for each example in

the section of ‘numerical experiment’ have sufficiently revealed the eight approaches’ intrinsic performance characteristics, advantages, and dis-

advantages in tackling large-scale, inseparable, pathological, multi-modal function optimization problems. The t-test based statistical results

show that there exist significant differences regarding the approaches’ convergence as well as stability. DVENN can effectively solve almost

all the thirty-five benchmark examples and can thus adapt tomultiple kinds of complicated LSGOproblems. Also, it can significantly outperform

each compared approach for at least twenty-five examples and at most thirty-five ones. Precisely, it is superior to PSO, ACO, and GPBO abso-

lutely while orderly outperforming RBLSO, JOA, NPSO, and CSO for 27, 32, 27 and 25 examples. Since the compared approaches cannot break

through the shackle of local convergence, they usually get stuck into local optima when confronted with complicated LSGO problems.

The acquired results in the case study show that the eight approaches have different abilities for constraint handling and seeking the

optimal solution. Precisely, the approaches except CSO can find feasible solutions in the process of solution search, while their solution qual-

ities have no significant difference. Relatively, DVENN can acquire a higher-quality and more available design scheme for the design of the

two-stage op-amp. Also, it generates a phasemargin of 53.59� computed by (Equation 19), and thus the acquired design scheme is available.

Besides, CSO cannot find any feasible solution, and thereby, it cannot acquire any feasible design scheme. The other compared approaches

can obtain available and similar design schemes.

Based on the best solution acquired by DVENN, the op-amp is simulated under the Empyrean Aether simulation environment. The stim-

ulation curves indicate that such an op-ampwith a wide range of portability is effective and practical in engineering applications. This can not

only greatly simplify the analog integrated circuit design in terms of the specified indices of gain, swing rate, etc., but also reduce the devel-

opment cycle of op-amp design and the number of analog integrated circuit experiments under given requirements.
Conclusion

To copewith LSGOproblems, the current work develops an interdisciplinary approach-dragonfly visual evolutionary neural network (DVENN),

and apply it to the strongly nonlinear structure design of the op-amp in the analog integrated circuit. Firstly, inspired by the dragonfly visual

response characteristics, a visual neural network (DVNN) is constructed to characterize behavioral changes in visual motion. It can not only

measure changes in visual motion, but also online output four pairs of motion direction activities named learning rates. Secondly, a state ma-

trix-based update strategy, which combines with DVNN to form DVENN, is skillfully designed to update the current state matrix. As an inter-

disciplinary optimizer with fast convergence, DVENN only includes the parameter of input resolution M3N, while possessing some striking

characteristics, e.g., rapid solution search, matrix-based state update, etc. Three conclusions can be drawn.

(1) DVNNcanonline characterize the states’ behavioral changes in termsof the feedbackof stateupdate information, bywhich the adjustable

parameters as in DVENN can be updated adaptively. Herein, the four subnetworks output respective global learning rates to collabora-

tivelyguide the states’ transition so that thosepotential states canbe foundas fast aspossible.On theotherhand, the stateupdate scheme

can promptly generate diverse states and discover high-quality solutions. DVENN, which integrates DVNNwith the differential evolution-

like state update scheme, can emerge the strong ability of global convergence and adapt tomultiple kinds of LSGOproblems. The theo-

retical analysis verifies that MOVENN is a low-computational-complexity approach with computational complexityOð4MNð5D +mÞÞ
(2) Related to the two benchmark suites with thirty-five hard LSGO examples, the comparative experiments indicate that DVENN can

effectively solve thirty-two of the thirty-five examples and converge to the global approximate or optimal solutions of twenty-seven
18 iScience 27, 109040, March 15, 2024
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examples; RBLSO, PSO, ACO, GPBO, JOA, NPSO, and CSO can find the approximate solutions for 6, 0, 0, 0, 2, 2, and 6 examples,

respectively. Thereby, we can conclude that DVENN is a strongly competitive optimizer while the compared approaches easily get

stuck into local optima in the case where LSGO problems are solved. Relatively, RBLSO and CSO outperform PSO, ACO, GPBO,

JOA, and NPSO. Summarily, the reason why DVENN can effectively solve LSGO problems experimentally include three points: (i)

DVNN can online output four kinds of motion-directional activities to purposely guide each current state to generate four candidate

states, which can promote the capability of excavating valuable candidate solutions; (ii) the state update scheme can significantly

enhance the ability of global convergence; and (iii) DVENN is a competitive optimizer for LSGO problems.

(3) The case study shows that, in comparison with the compared approaches, DVENN can acquire the best design scheme satisfying all the

given design requirements, while the two-stage op-amp can generate a phase angle of 53.59� to achieve the desired design objective.

Finally, whereas DVENN as a new-type and competitive optimizer can comprehensively adapt to multiple kinds of MOPs, it also exposes

some disadvantages. For example, the stability of search effect and the ability of global optimization need to be further improved for special

LSGO problems with the characteristics of variable rotation and inseparability. On the other hand, the experimental results have sufficiently

validated that, even though DVENN can solve LSGO problems with dimension 2000, the difficulty of solving ultrahigh dimensional LSGO

problems need to be solved so that it can well adapt to optimizing the structure of deep learning networks.

Limitations of the study

Although the algorithm obtained in this paper is of strong application, its stability on solution search still needs to be enhanced due to the

structural design of its dragonfly visual neural network. Some improvements need to be further done, to enable DVENN to tackle with such

ultra-high-dimensional LSGO problems as the CNN’s parameter optimization.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Based on the internal structure of dragonfly visual nerves and the physiological characteristics of dragonfly-specificmotion detection neurons,

this article attempts to build an artificial dragonfly visual neural network model, and develop a four-layer visual neural network. By utilizing the

unique information processingmechanism of the dragonfly visual nervous system and the inspiration of swarm evolution, we designed a visual

evolutionary neural network optimization algorithm for high-dimensional optimization, especially for LSGO problems, enabling us to discuss

and solve nonlinear LSGO problems from the perspective of visual evolutionary neural network optimization. At the same time, this visual

evolutionary neural network is combined with evolutionary ideas to study computational intelligence issues from an interdisciplinary

perspective.

METHOD DETAILS

To develop amulti-output visual neural network, the next section introduces some basic dragonfly visual neurophysiologic theories, by which

a simplified dragonfly visual information-processing mechanism is expounded by an illustrative schematic diagram. DVNN given in the later

section implicates its topological architecture, functional module designs, and algorithm formulation.

Dragonfly visual neurophysiology

A dragonfly, with many more than 30,000 compound eyes,58 has an unprecedentedly complex lobule, consisting of at least four consecutive

synaptic neural posts and two lobular plate-like structures. Especially, the dragonfly visual system with a specific structure, as a visual infor-

mation processing system, is responsible for receiving optical flow signals and transmitting hierarchical signals through specific visual neural

mechanisms. Such a system receives optical flow signals and performs hierarchical information processing through five visual neural layers like

any other insect, i.e., photoreceptor (P), retina (R), lamina (L), medulla (M), and lobular plate (LP).59
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The P-layer as a visual input layer is formed of photoreceptors, each of which perceives a brightness intensity at each moment and then

transforms it into an electronical neural signal to be delivered to the matched retina node in the retina layer.

The R-layer is composed of ommatidia, each of which collects the neural signal generated by the counterpart at each moment in the

P-layer. It not only judges whether a moving object presents in a visual field, but also performs figure-background discrimination in order

to extract valuable visual signals. Therefore, it possesses the properties of object extraction and noise elimination.

The L-layer generates two kinds of response activities through theONandOFF channels after collecting the outputs of all the retina nodes

in the R-layer. It comprises two sublayers, i.e., the large monopole cell layer called the LMC-layer and the rectifier transient cell layer named

the RTC-layer. The LMC-layer is formed of large monopole cells (LMCs), which produces excitatory membrane potentials through the ON

channel, depending on the center-surround increment mechanism. The rectifier transient cell (RTC) layer is made of rectifier transient cells.

Like the LMC-layer, each RTC also collects the activities of retina nodes around the counterpart on the R-layer, but generates its membrane

potential through the OFF channel and the center-surround attenuation mechanism.

The M-layer incorporates two sublayers, excitation (E) and inhibition (I) layers. The layer E directly collects the output activities from the

LMC-layer, and then outputs the changes of excitatorymembrane potentials bymeans of the current and time-delayedmembrane potentials.

However, so does the layer I from the RTC-layer, and then outputs the changes of inhibitory membrane potentials. The main role of the

M-layer is to sort the signals from the ON and OFF channels, depending on the stimulation and inhibition mechanism.

The LP-layer consists of lobular plate tangential cells (LPTCs), especially the four horizontal and vertical direction motion detection neu-

rons, i.e., left detection neuron (LDN), right detection neuron (RDN), upper detection neuron (UDN), and downward detection neuron (DDN).

Such four neurons can jointly detect the globalmotion direction changes of one ormultiplemoving objects in the left, right, upper, and down-

ward motion directions, respectively. When some moving object approaches the dragonfly from left to right, right to left, top to bottom, or

bottom to top, one of the four neurons will respond quickly to the neural signals from the M-layer, and later, generates a global motion di-

rection activity to characterize the movement behavior. Since the LP-layer are almost covered by the dendrites of LPTCs, a network of con-

nections between LPTCs is formed to combine the LPTCs’ response activities to reflect visual motion changes in the whole field of view.

Summarily, related to the above neurophysiological findings, the dragonfly visual response mechanism can be simply expounded by an

illustrative schematic diagram in Figure 7A. This can generate multiple global motion direction activities to measure the status of motion di-

rection change in the visual scene by virtue of DVNN below.
Architecture on DVNN

Related to the dragonfly’s hierarchical information-processing mechanism, DVNN, schematically illustrated by Figure 7B consists of four mo-

tion direction detection neural subnetworks, namely left (L), right (R), upper (U) and down (D) neural subnetworks orderly called L-, R-, U-, and

D-DVNNs. Herein, L- and R-DVNNs detect the changes of visual motion in the left and right directions as in the visual scene respectively, each

of which generates a pair of global motion direction activities. L-DVNNwith neuron LDN outputs a pair of rON
L and rOFF

L at any moment. Also,

so does R-DVNN with neuron RDN, and outputs a global right motion direction activity pair, i.e., rON
R and rOFF

R . Similarly, U-, and D-DVNNs

with respective neurons UDNandDDNare orderly employed tomeasure the changes of visualmotion in the upper and downwarddirections,

while outputting their respectivemotion direction activity pairs, i.e., ðrON
U ; rOFF

U Þ and ðrON
D ;rOFF

D Þ. All the four neural subnetworks have the same

topological structures and share the P-, R-, and L-layers. The main differences between them consist in that their lateral suppression mech-

anisms are different in theM-layer, since their neurons only respond to visual movements in their preferential motion directions. Take L-DVNN

for example to expound their neural layer designs.
L-DVNN

Related to the neurophysiologic findingsmentioned in the previous section, the L-DVNN’s architecture is illustratively formulated by Figure 7B

above. The design principle is summarized below.

P-layer

The P-layer as an input layer consists ofM3N nodes arranged in a matrix. Node (i, j) with state/candidate solution xðtÞij as in D (i.e., the LSGO’

decision region) receives the greyscale value f ðxðtÞij Þ at time t. SuchM3N states constitute a statematrix XðtÞ, while all the corresponding gray-

scale values form a grayscale image f ðXðtÞÞ: At the initial moment, i.e., t = 1, xðtÞij is randomly generated in D, and conversely, it denotes the

state at the matched position (i, j) in the candidate selection sublayer of the state update layer as in DVENN.

R-layer

The layer, with the same structure as the above layer, is formed ofM3N retina nodes. Each node collects the activity output of the counterpart

in the P-layer, and detects the change of optical intensity. Precisely, after capturing the activity output f ðxðtÞij Þ at the node (i, j) in the P-layer, the

retina node (i, j) outputs an excitatory or inhibitory activity by

RijðtÞ = f
�
xðtÞ
ij

�
� f

�
xðt� 1Þ
ij

�
; 1 % i % M;1 % j%N; (Equation 25)

where the node is in an excitatory state if RijðtÞ> 0, and conversely, it keeps inhibitory.
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L-layer

The layer extracts feature information from the R-layer, depending on the center-surround suppressionmechanism and the intrinsicONandOFF

channels. Basedon theneurophysiologic explanations, it includes theLMC-andRTC-layers, andoutputs theONandOFFactivitymatricesonline.

(1) In the LMC-layer, after receiving the output activity matrix from the R-layer, the center-surround suppression mechanism is used to

generate two activitymatrices bymeans of themechanism of signal projection and two convolution kernels, i.e., excitatory convolution

kernel C11 and inhibitory one C12 below:

C11 =

2
4 1 1 1
1 � 9 1
1 1 1

3
5 C12 = � C11

The first matrix, say E1, is the excitatory activity matrix with sizeM3N, in which the element (i, j) is acquired by C11 and the following excit-

atory feature extraction model,

LEij ðtÞ =
X

0% k;l%2

Rði + k; j + l; tÞwE
kl; 1% i%M; 1% j%N; (Equation 26)

where wE
kl denotes the weight at position (k, l) in C11. The second one, say I1, is the inhibitory activity matrix with size M3N, in which each

element (i, j) is determined by (Equation 27) and C12, namely

LIijðtÞ =
X

0% k;l% 2

Rði + k; j + l; tÞwI
kl;1% i%M;1% j%N; (Equation 27)

where wI
kl is the weight at position (k, l) in C12.

(2) The RTC-layer is composed of two independent and parallel channels, i.e., ON andOFF channels. Such two channels withM3N nodes

per channel output excitatory and inhibitory activity matrices, respectively. The ON channel extracts the excitatory activities in the

above excitatory activity matrix E1 but inhibits those inhibitory activities by the mechanism of half-wave rectification. Precisely, its

node (i, j) first receives the output of the counterpart in E1, i.e., L
E
ij ðtÞ; and later, outputs an activity LON

ij ðtÞ by

LON
ij ðtÞ

(
LEij ðtÞ; if LEij ðtÞ>0;

0;else:
(Equation 28)

Further, the acquired output activities of such nodes are ranked in the order to constitute an excitatorymatrixE2. Similarly, theOFF channel

extracts the inhibitory activities from the above inhibitory activity matrix I1 but inhibits those excitatory activities. Specifically, after acquiring

the output of the counterpart in the matrix, its node (i, j) outputs an inhibitory activity LOFF
ij ðtÞ given by

LOFF
ij ði; j; tÞ =

(
LIijðtÞ; if LIijðtÞ<0;

0; else:
(Equation 29)

All such activities are arranged in the order to form an inhibitory matrix I2.

M-layer

The medulla layer consists of two parallel sub-layers withM3N nodes per layer distributed in a matrix, i.e., excitatory (E) and inhibitory layers

(I). In the excitatory layer, each node (i, j) directly receives the activity of the node (i, j) in theON channel, i.e., LON
ij ðtÞ in thematrix E2. Afterward,

it outputs a stimulatory activity by

KON
L ði; j; tÞ = LON

ij ðtÞ �
X

� 1% k;l%1

wklL
ON
i+k;j+lðt � 1Þ; ls1; (Equation 30)

where wkl as a left excitatory radius is defined as the element (k, l) of the left excitatory convolution kernel C21 given by

C21 =

2
4 1 0:5 1
1:5 0 1:5
1 0:5 1

3
5 C22 = � C21

Similarly, in the inhibitory layer, the node (i, j) collects the activity of the node (i, j) in the OFF channel, i.e., LOFF
ij ðtÞ in the matrix I2. Subse-

quently, it generates an inhibitory activity by
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KOFF
L ði; j; tÞ = LOFF

ij ðtÞ �
X

� 1% k;l%1

wrsL
OFF
i+r;j+sðt � 1Þ; ls1 (Equation 31)

where wrs denotes the left inhibitory radius defined as the element (k, l) of the left inhibitory convolution kernel C22 above.

LDN

LDN is exploited to orderly gather the output activities from the excitatory and inhibitory sublayers in the M-layer, while yielding two global

direction activities to characterize the changes of the left visualmovements in the field of view, i.e., rON
L ðtÞ and rOFF

L ðtÞ. rON
L ðtÞ is decided by the

behavioral output of the excitatory layer in the ON channel, namely

rON
L ðtÞ = 2Sig

 XM
i = 1

XN
j = 1

KON
L ði; j; tÞ

!
� 1; (Equation 32)

with the sigmoid function Sigð:Þ: Conversely, rOFF
L ðtÞ denotes the output of the inhibition layer in the OFF channel, given by

rOFF
L ðtÞ = 2Sig

 XM
i = 1

XN
j = 1

KOFF
L ði; j; tÞ

!
� 1: (Equation 33)

It is highlighted that, as a feedforward visual neural network, L-DVNNoutputs a pair of activities at anymoment t to characterize the change

of visual movement in the left direction. When the LSGO problem in the section of ‘problem background and motivation’ is solved, L-DVNN

executes visual information processing by virtue of the difference of the grayscale images which correspond to the t-th and (t-1)-th state/

candidate solution matrices respectively, and later, outputs a pair of activities ðrON
L ðtÞ, rOFF

L ðtÞÞ to characterize the change of the t-th visual

movement. On the other hand, such activities named left learning rates guide states in the t-th state matrix to move along the left direction in

terms of the state update strategy, to seek the optimal solution omnidirectionally.
Other neural subnetworks

The R-, U- and D-DVNNs share the designs of the P-, R- and L-layers in the L-DVNN. The R-DVNN utilizes (Equation 30) and (Equation 31) to

generate stimulatory and inhibitory activities in its M-layer, but requires that the formula of ls1 be replaced by ls � 1: Similarly, so do the U-

and D-DVNNs by replacing ls1 with ks � 1 and ks1, respectively. Besides, the R-, U- and D-DVNNs output their excitatory and inhibitory

activities through their neurons RDN, UDN and DDN, respectively. RDN generates a pair of output activities (i:e: rON
R ðtÞ and rOFF

R ðtÞÞ after
replacing L in (Equation 32) and (Equation 33) with R. Likewise, U- and D-DVNNs produce their pairs of output activities (rON

U ðtÞ, rOFF
U ðtÞ)

and (rON
D ðtÞ, rOFF

D ðtÞ) after replace L as U and D in the two formulas, respectively.

Summarily, DV-NN performs the process of visual information processing by synchronously operating the L-, R-, U-, and D-DVNNs. To

characterize the change of visual movement in the field of view, it outputs four pairs of global motion-directional activities so-called global

learning rates by means of the four neural subnetworks, i.e., ðrON
L ðtÞ, rOFF

L ðtÞÞ; ðrON
R ðtÞ, rOFF

R ðtÞÞ, ðrON
U ðtÞ, rOFF

U ðtÞÞ, and ðrON
D ðtÞ; rOFF

D ðtÞÞ.
Within an iterative cycle, the process, which DVNN generates the four pairs of global learning rates, can be summarized by Algorithm

1 below.

In the L-DVNN, the P-layer as the input layer does not execute any arithmetic or logical operation. The R-layer performs MN subtraction

operations. The L-layer runs 36MN arithmetic and logical operations, since it needs to generate two activitymatrices through theONandOFF

channels. The M-layer receives excitatory and inhibitory activities from the two channels in the L-layer, and then performs lateral inhibition,

which needs to 24MN operations of addition and subtraction. Further, LDN as an output neuron is required to produce two global left motion

direction activities by Equations 4.8 and 4.9, which needs to operate 2(MN+4) arithmetic operations. Therefore, L-DVNN needs 63MN + 8

arithmetic and logical operations to implement the process of visual information processing. Besides, the R-, U-, and D-DVNNs involve in

the P-, R-, and L-layers as in the L-DVNN, being all required to compute respective stimulatory and inhibitory activity matrices in their

M-layers as well as the outputs of their neurons. Hence, each of them operates 26MN + 8 arithmetic operations. Thereby, Algorithm 1

runs 141MN + 32 times within an iterative period, and hence the DVNN’s complexity is O(141MN).

Example 4.1 Take theminimization example with the object function of
P2

i = 1½x2i � 10 cosð2pxiÞ + 10� and the decision domain of [-20, 20]

3[-20, 20] for example to formulate the flowchart of generating the L-DVNN’s global left ON and OFF motion direction activities.

The grayscale image in Figure 8A gives a graphical representation of the objective function with the minimum around 10.0. Take L-DVNN

for example to exhibit the process of visual information processing. Figures 8B–8E indicates that, after performing the P-, R-, and L-layers, L-

DVNN generates two excitatory and inhibitory matrices to measure the intensive change of the current visual movement, whereas Figures 8F

and 8G characterizes the changes of the localmotion directions of the current states. Besides, the two global leftmotion directions, presented

in Figures 8F‒8G) by the thick arrows guides the current states’ transition.

Based on the dragonfly visual information mechanism as in the previous section, this section explicitly discusses the DVNN’s topological

structure and computational model per neural sublayer. The network outputs four pairs of on-line learning rates by Algorithm 1 that will guide

the DVENN’s state transition in the next section.
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Algorithm 1. The DVNN’s algorithm formulation

Input: X ðtÞ; f ðX ðtÞÞ;M3 N. %The state matrix and the related grayscale image

Output: rON
k ðtÞ;rOFF

k ðtÞ;k˛ fL;R;U;Dg. % Output four pairs of activities or learning rates

1: for every ði; jÞ do % R-layer

2: Compute RijðtÞ by (Equation 25); % Generate an excitatory or inhibitory activity at each node

3: end for.

4: for every ði; jÞ do % L-layer

5: Decide LEij ðtÞ by (Equation 26); % LMC-sublayer/excitation feature extraction

6: Determine LIijðtÞ by (Equation 27); % LMC-sublayer/inhibition feature extraction

7: Calculate LON
ij ðtÞ and LOFF

ij ðtÞ by (Equation 28) and (Equation 29); % RTC-sublayer/ON and OFF-channels

9: end for.

10: for every ði; jÞ do % M-layer

11: Decide KON
L ði; j; tÞ, KOFF

L ði; j; tÞ by (Equation 30) -(Equation 31); %L-DVNN

12: Compute KON
R ði; j; tÞ;KOFF

R ði; j; tÞ; %R-DVNN

13: Determine KON
U ði; j; tÞ;KOFF

U ði; j; tÞ; %U-DVNN

14: Calculate KON
D ði; j; tÞ, KOFF

D ði; j; tÞ; %D-DVNN

15: Compute KON
D ði; j; tÞ;KOFF

D ði; j; tÞ; %D-DVNN

16: end for.

17: Decide rON
L ðtÞ; rOFF

L ðtÞ by (Equation 32) - (Equation 33); % Learning rates in the left direction

18: Determine rON
R ðtÞ, rOFF

R ðtÞ; % Learning rates in the right direction

19: Compute rON
U ðtÞ; rOFF

U ðtÞ; % Learning rates in the upper left direction

20: Calculate rON
D ðtÞ, rOFF

D ðtÞ.
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Dragonfly visual evolutionary neural network

This section will explicitly emerge the DVENN’s topological structure and algorithmic formulation as well as its computational complexity, in

which a new state update strategy is developed to execute state transition.

Recall that DVENN, schematically illustratedby Figure 9 is composedof two sequentially connectedDVNNand the state update layer, inwhich

DVNNplays a role in guiding state transition. The state update layer includes two sublayers. One is the candidate state update layer in which each

nodepropagates four candidatestatesbymeansof fourpairsofglobal learning ratesproducedby the fouroutput neurons inDVNN,and theother

is the candidate selection layer in which the state at each node is decided by the four candidate states at the matched node in the last layer.
State update

Candidate state update

The layer comprisesM3N nodes displayed in amatrix form. At each node, the four candidate states i.e., left state xðtÞL , right state xðtÞR , upper state

xðtÞU , and down state xðtÞD are generated randomly when t = 1: Conversely, each of them is updated in terms of four pairs of global learning rates :

More precisely, related to the inspiration of differential evolution, the left state xðtÞL is updated into xðt+1ÞL bymeans of rON
L ðtÞ and rOFF

L ðtÞ, namely

xðt+1Þ
L = xðtÞ + zrON

L ðtÞ
�
xgb � xðtÞ

r1

�
+ h rOFF

L ðtÞ
�
xðtÞ
r2 � xðtÞ

r3

�
; (Equation 34)

with random variables z;h˛Uð0; 1Þ; where xðtÞr1 ; x
ðtÞ
r2 ; and xðtÞr3 are randomly picked up from the state set of fxðtÞL ; xðtÞR ; xðtÞU ; xðtÞD g; and xðtÞ is the

current state at thematched node in the candidate selection layer at time t. Similarly, xðtÞR ; xðtÞU and xðtÞD are orderly transformed into xðt+1ÞR ; xðt+1ÞU

and xðt+1ÞD by

xðt+1Þ
k = xðtÞ + zrON

k ðtÞ
�
xgb � xðtÞ

r1

�
+ h rOFF

k ðtÞ
�
xðtÞ
r2 � xðtÞ

r3

�
; (Equation 35)

with k ˛ fR;U;Dg.
Eqs.(Equations 34 and 35) indicate that the role of the candidate state update layer is to derive four new candidate states at each node in

terms of four pairs of global learning rates and the differential evolution-like state update strategy. Herein, to discover a more potential so-

lution from different directions, the four pairs of global learning rates as state transition amplitudes guide the related state to transform into

four new candidate states.

Candidate selection

The layer, with the same structure as that in the candidate state update layer, is to update all the current sates in XðtÞ in terms of the acquired

candidate states in the candidate state update layer. Precisely, the state xðtÞ at each node is updated by the best one among xðtÞL ; xðtÞR ; xðtÞU ; and

xðtÞD : This can be achieved by
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Algorithm 2. The state update layer’s algorithm formulation

Input: X ðtÞ, rON
k ðtÞ, rOFF

k ðtÞ;k ˛ fL;R;U;Dg;xgb:
Output: Xðt+1Þ:

1: for cxðtÞ ˛X ðtÞ do

2: Compute xðt+1ÞL ;xðt+1ÞR ;xðt+1ÞU ;and xðt+1ÞD ; % (Equation 34) - (Equation 35)

3: Calculate f ðxðt+1Þk Þ with k ˛ fL;R;U;Dg;
4: Decide xðt+1Þ; % (Equation 36)

5: end for.

6: Decide the best state xpb in Xðt+1Þ:

7: if f ðxpbÞ< f ðxgbÞ then
8: xgb)xpb;

9: end if.
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xðt+1Þ = argmin
n
f
�
xðt+1Þ
L

�
; f
�
xðt+1Þ
R

�
; f
�
xðt+1Þ
U

�
; f
�
xðt+1Þ
D

�o
: (Equation 36)

Summarily, related to the designs of the above two sub-layers, the state update layer can be implemented by Algorithm 2.

In the above state update layer, the candidate state update sub-layer needs to create four candidate states at each node with 20D+8 arith-

metic operations, and thus performs MN (20D+8) operations. Each new candidate state is evaluated with mp operations. In addition, the

candidate selection sub-layer needs to operate 3MN operations in deciding the states of the MN nodes, while determining the best state

xpb with MN-1 comparisons between X ðt+1Þand xgb. Thus, within an iterative period, Algorithm 2 execute Cq arithmetic operations with

Cq = 4MNð5D +mp + 11Þ � 1; and hence the complexity is Oð4MNð5D +mpÞÞ:
Algorithm formulation on DVENN

Related to the formulations of Algorithms 1 and 2, the D-VENN’s algorithm is given by Algorithm 3.

It is emphasized that Algorithm 3 presents the whole process of solving the LSGO problem as in the section of ‘problem background and

motivation’, depending Algorithms 1 and 2. Therein, at the initial step, Algorithm 3 takes the difference of two grayscale images

f ðXð0ÞÞ and f ðXð1ÞÞ as the DVNN’s input. After that, within an iterative period, on the one hand, it is required to acquire four pairs of learning

rates in terms of the DVNN, on the other hand DVENN is requested to generate a new state matrix XðtÞ at the moment t and update xgb,

relying upon such learning rates and Algorithm 2. Related to Algorithms 1, 2, and 3 executes Mr arithmetic operations within an iterative

loop. Herein,

Mr = 141MN+32+Cq:

The formula shows that the complexity of Algorithm 3 is O(4MN(5D+mp)), due to Cq = 4MNð5D +mp + 11Þ � 1. Therefore, it is a fast

optimizer in that M and N are required to take small values.
Algorithm 3. DVENN’s algorithm

Input: M3 N;Gmax ;Ckl ;k; l = 1;2 :

Output: xgb:

1: t : = 1.

2: Initialization:

Randomly initialize state matrices: X ð0Þ = ðxð0Þij ÞM3N and Xð1Þ = ðxð1Þij ÞM3N ; % xð0Þij , xð1Þij ˛D

Compute f ðxð0Þij Þ and f ðxð1Þij Þ named grayscale values;1% i%M;1% j%N;

Take the best state in Xð1Þ as xgb; % xgb = argmin f ðX ð1ÞÞ
3: while t%Gmax do

Execute Algorithm 1 to produce rON
k ðtÞ, rOFF

k ðtÞ;k ˛ fL;R;U;Dg; %Output four pairs of learning rates

Implement Algorithm 2: %Generate new states by the candidate state update strategy.

Decide Xðt+1Þ and xgb ; %Update X ðtÞ and xgb by the candidate selection strategy

tdt + 1:

4: end while
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QUANTIFICATION AND STATISTICAL ANALYSIS

In this experimental study, all experiments were conducted on a computer with Intel Core(TM)i5-9400FCPU/2.90GHz and 16.0GB RAM, using

the Visual C++ platform. For all methods, the solution search process was terminated when the fitness evaluation exceeded -33 10^6. Each

method was run 25 times on each example in the CEC 2010 and CEC2013 benchmark test suites. Through the validation results of the

CEC2010 and CEC2013 benchmark test sets, DVENN achieved absolute victory in comparison with 7 other comparative swarm intelligence

optimization algorithms. DVENN can converge to a global or approximate global solution at a relatively fast speed.

For engineering application problems, this paper takes the standard two-stage operational amplifier as an example to simplify the param-

eter design of analog integrated circuits. With the goal of maximizing open-loop low-frequency gain, we abstracted mathematical optimiza-

tionmodels. Also, we applied the DVENN algorithm and other seven comparison algorithms to practical engineering optimization problems,

and conductedmodel simulation experiments in the Empyrean Aether (Huada Jiu Tian) simulation environment to achieve the optimization of

various performance indicators of the circuit. The experimental results have demonstrated the practical application significance of the

DVENN algorithm in engineering application problems.
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