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Abstract
Longevity was influenced by many complex diseases and traits. However, the relation-
ships between human longevity and genetic risks of complex diseases were not broadly 
studied. Here, we constructed polygenic risk scores (PRSs) for 225 complex diseases/
traits	and	evaluated	their	relationships	with	human	longevity	in	a	cohort	with	2178	
centenarians	and	2299	middle-	aged	individuals.	Lower	genetic	risks	of	stroke	and	hy-
potension	were	observed	in	centenarians,	while	higher	genetic	risks	of	schizophrenia	
(SCZ)	and	type	2	diabetes	(T2D)	were	detected	in	long-	lived	individuals.	We	further	
stratified	PRSs	into	cell-	type	groups	and	significance-	level	groups.	The	results	showed	
that	the	immune	component	of	SCZ	genetic	risk	was	positively	linked	to	longevity,	and	
the	renal	component	of	T2D	genetic	risk	was	the	most	deleterious.	Additionally,	SNPs	
with very small p-	values	 (p	 ≤	 1x10-	5)	 for	 SCZ	 and	T2D	were	negatively	 correlated	
with	longevity.	While	for	the	less	significant	SNPs	(1x10-	5 < p	≤	0.05),	their	effects	
on disease and longevity were positively correlated. Overall, we identified genetically 
informed positive and negative factors for human longevity, gained more insights on 
the accumulation of disease risk alleles during evolution, and provided evidence for 
the	theory	of	genetic	trade-	offs	between	complex	diseases	and	longevity.
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1  |  INTRODUC TION

Human longevity is influenced by many complex diseases and life-
styles. Stroke and ischemic heart disease were the leading causes 
of	death	(Zhou	et	al.,	2019).	Diabetes	(Franco	et	al.,	2007), cardio-
vascular	diseases	 (Franco	et	al.,	2007),	and	body	mass	 index	 (BMI)	
(Abdelaal	 et	 al.,	 2017) have been reported to be associated with 
higher mortality. Healthy lifestyles, such as consuming whole grain 
foods (Hu et al., 2020),	physical	exercises	(Garatachea	et	al.,	2015; 
Li et al., 2020), and calorie restriction (Hwangbo et al., 2020) are 
beneficial for promoting healthy aging. These correlations between 
longevity and complex diseases/traits may be ascribed to shared 
genetic components. Negative genetic correlations were found 
between longevity and cardiovascular diseases, smoking, type 2 
diabetes	 (T2D)	 as	 well	 as	 Alzheimer's	 disease	 (Broer	 et	 al.,	 2015; 
Gutman	et	 al.,	2020;	McDaid	et	 al.,	2017; Nebel et al., 2011; Tesi 
et al., 2020; Timmers et al., 2020). Positive genetic associations 
were	 identified	 for	 education	 and	 exercise	 (McDaid	 et	 al.,	 2017). 
Genome-	wide	 association	 study	 (GWAS)	 of	 lifespan	 and	 human	
longevity also identified many pleiotropic genes. APOE is the 
most	 replicated	 longevity-	related	gene	 (Broer	et	 al.,	2015; Deelen 
et al., 2014; Deelen et al., 2019;	Joshi	et	al.,	2017; Nebel et al., 2011; 
Sebastiani et al., 2017),	 and	 it	 is	 also	 a	 well-	known	 gene	 associ-
ated	with	Alzheimer's	disease	 (Schachter	et	al.,	1994).	An	allele	of	
the PON1 (Paraoxonase 1) gene has been linked to a higher risk of 
cardiovascular diseases and also underrepresented in centenarians 
(Bhattacharyya	et	al.,	2008).	All	 the	above	 reports	 suggested	 that	
pleiotropy is a common event in longevity and complex diseases/
traits	(Fernandes	et	al.,	2016).

It is not always the case that increased disease genetic risks were 
linked to higher mortality. It is reported that the number of disease 
risk	alleles,	including	those	of	coronary	artery	disease	(CAD),	heart	
failure,	 cancer,	and	T2D,	was	not	 reduced	 in	 long-	lived	 individuals	
compared	with	 that	 in	middle-	aged	people	 (Beekman	et	 al.,	2010; 
Erikson et al., 2016; Revelas et al., 2019). Consistent evidence 
showed	that	CAD	had	a	negative	correlation	with	longevity	(Deelen	
et al., 2019; Erikson et al., 2016;	McDaid	et	al.,	2017). However, con-
flicting correlational evidence was reported between longevity and 
T2D	(Beekman	et	al.,	2010; Deelen et al., 2019; Erikson et al., 2016; 
McDaid	 et	 al.,	 2017). Recently, one study showed that most risk 
SNPs	 of	 the	 Alzheimer's	 disease	 (AD)	 associated	 with	 decreased	
odds of longevity, but some SNPs increased the probability of both 
AD	and	longevity	(Tesi	et	al.,	2021).

Although	 some	 genetic	 correlations	 between	 complex	 diseases	
and longevity have been studied, there are still many unproven asso-
ciations. Therefore, we performed systematic analyses between ge-
netic	risks	of	complex	diseases	and	longevity.	We	generated	polygenic	
risk	scores	(PRSs)	of	225	complex	diseases/traits	for	2178	centenari-
ans	and	2299	middle-	aged	individuals	from	the	Chinese	Longitudinal	

Healthy Longevity Survey cohort (CLHLS). Each PRS was used to 
predict whether a person is a centenarian to study the relationships 
between	genetic	risks	of	complex	diseases/traits	and	 longevity.	We	
further	 partitioned	 the	SNPs	 into	 cell-	type	 groups	 and	different	p-	
value groups. Next, we annotated the pleiotropic SNPs into genes and 
gene	ontology	(GO)	terms	to	gain	more	functional	information	about	
the	pleiotropic	genes.	Finally,	all	the	PRSs	were	put	into	one	model	to	
predict longevity and to evaluate how much proportion of genetics of 
complex diseases/traits could contribute to longevity.

2  |  RESULTS

2.1  |  Summary of study dataset

To evaluate the genetic correlations between longevity and complex 
diseases/traits, we have constructed 225 PRSs of complex diseases/
traits,	based	on	well-	selected	GWAS	meta-	analysis	summary	statis-
tics	of	complex	diseases/traits,	to	predict	longevity.	All	the	summary	
statistics covered a wide range of phenotypes, which can be classi-
fied	 into	9	distinct	categories,	 including	mental	disorders	 (n = 17), 
age-	related	 complex	 diseases	 (n = 2), cardiovascular diseases and 
related factors (n =	9),	 type	2	diabetes	and	related	traits	 (n = 12), 
other complex diseases (n =	8),	anthropometrics	(n =	18),	metabolic	
indexes (n = 141), body compositions (n = 13), and social lifestyles 
(n = 5). The detailed characteristics of the phenotypes and sources 
were described in Table S1.	 2178	 centenarians	 and	 2299	middle-	
aged	controls	 (aged	40–	59)	from	CLHLS	(Zeng,	2012) cohort were 
genotyped	 by	 Illumina	HumanOmniZhongHua-	8	 BeadChips	 (Zeng	
et al., 2016).	 5,594,914	 SNPs	 were	 retained	 after	 quality	 control	
(QC).

2.2  |  Both positive and negative correlations 
between PRSs and longevity were identified among 
multiple complex traits

SNPs for the construction of PRSs were selected through thresh-
olding p-	values.	The	effects	of	selected	SNPs	from	GWAS	summary	
statistics	were	used	as	weights	to	sum	the	SNP	genotypes.	Multiple	
PRSs	of	each	trait	were	utilized	to	predict	whether	a	person	is	a	cen-
tenarian or not. The best PRSs for one trait was the one which gained 
smallest p-	value	in	the	predictions.	Multiple	testing	corrections	were	
further conducted in the p-	values	of	best	PRSs	for	complex	traits.	
Overall, we identified 134 PRSs of complex phenotypes correlated 
with longevity after multiple testing adjustment using false discov-
ery	rate	(FDR;	FDR-	adjusted	p < 0.05;	Figure 1 and Table S2).

Most	of	 the	PRSs	of	 clinically	diagnosed	diseases	were	nega-
tively	 correlated	 with	 longevity,	 including	 those	 of	 Parkinson's	
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F I G U R E  1 134	PRSs	of	complex	traits	could	predict	longevity	significantly.	The	length	of	the	bar	represents	the	proportion	of	longevity	
explained by PRS. The minus sign indicates negative correlation. Phenotype abbreviations were given in Table S1
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disease	 (PD),	 inflammatory	bowel	disease	 (IBD),	stroke,	CAD,	and	
kidney disease. Inversely, the PRSs of some psychiatric disorders, 
such	 as	 schizophrenia	 (SCZ),	 autism	 spectrum	 disorder,	 cannabis	
disorder,	 insulin-	related	 traits,	 and	 atopic	 dermatitis,	 were	 pos-
itively correlated with longevity. In the PRSs of body measure-
ments, the direct measures such as weight, hip circumference, and 
waist	 circumference	 were	 not	 correlated	 with	 longevity.	 While	
being	 integrated	 into	 indexing	 traits,	 some	 of	 the	 size	 measures	
were	correlated	with	longevity.	For	instance,	waist	circumference	
adjusted	by	BMI	as	a	strong	predictor	of	harmful	 intra-	abdominal	
fat	mass	 (Berentzen	 et	 al.,	2012) was negatively correlated with 
longevity. The PRS of height was negatively correlated with lon-
gevity;	 it	was	consistent	with	 the	 result	of	a	 trans-	ethnical	 study	
(Sakaue et al., 2020).	In	terms	of	brain	and	bone-	related	measures,	
the PRS of fracture was negatively correlated with longevity, while 
the PRSs of forearm bone mineral density, the intracranial volume 
of putamen, and pallidum of brain were positively correlated with 
longevity.

Interestingly, among the metabolic measures, “good lipids” and 
“bad	 lipids”	were	 identified.	Generally,	 the	PRSs	of	 very	 large	 and	
extreme	large	very-	low-	density	lipoproteins	(VLDL)	were	negatively	
correlated	with	longevity,	while	the	PRSs	of	medium	and	large	high-	
density lipoproteins (HDL) were positively correlated with longevity. 
VLDL	 level	 is	one	of	risk	factors	for	atherosclerotic	cardiovascular	
disease (Prenner et al., 2014;	 Varbo	 et	 al.,	2013). Epidemiological 
evidence suggested that higher HDL levels may serve a protective 
role	from	numerous	age-	related	diseases	(Milman	et	al.,	2014;	Wang	
et al., 2018). The PRS of the average number of double bonds in 
fatty	 acids	 (DB.in.FA)	 was	 significantly	 negatively	 correlated	with	

longevity, while the PRS of the average number of methylene groups 
per	double	bond	(CH2.DB.ratio)	was	positively	influencing	longevity.	
The	DB.in.FA	has	been	found	negatively	correlated	with	longevity	in	
C. elegans (Shmookler Reis et al., 2011), the double bonds number 
and methylene in a fatty acid may be related to oxidative phosphor-
ylation	(Parvez	et	al.,	2018;	Valencak	&	Azzu,	2014).

After	Bonferroni	correction,	there	were	still	16	PRSs	could	sig-
nificantly predict longevity (p < 2.22 × 10−4; Figure	S1 and Table 1). 
The	top	 longevity	related	PRSs	 including	SCZ,	T2D	and	 its	 related	
traits,	CAD,	stroke	(any	stroke	and	any	ischemic	stroke),	metabolic	
traits (blood lipids and related ratios), and height. The PRS of dia-
stolic	blood	pressure	(DBP)	could	explain	the	highest	proportion	of	
variation for longevity (R2 = 0.012).

2.3  |  PRSs of complex diseases/traits were 
associated with longevity while masking APOE region

Among	the	top	16	PRSs	that	were	significantly	correlated	with	lon-
gevity, there were many complex diseases/traits associated with 
APOE.	For	example,	the	role	of	Apolipoprotein	E	in	lipid	metabolism	
has been well established (Dose et al., 2016;	Mahley,	2016), APOE 
was also reported to be associated with the risk of cardiovascular 
diseases and diabetes mellitus (Eichner et al., 2002), and APOE is the 
most	 replicated	 longevity-	related	gene	 (Broer	et	 al.,	2015; Deelen 
et al., 2014; Deelen et al., 2019;	Joshi	et	al.,	2017; Nebel et al., 2011; 
Sebastiani et al., 2017). In order to see whether the associations be-
tween longevity and the 16 PRSs of complex diseases/traits were 
dominated by APOE or contributed by multiple genetic factors, we 

TA B L E  1 Correlations	between	PRSs	of	complex	traits	and	longevity

Phenotype Threshold PRS.R2 Effect Num_SNPs p Categories

DBP 1.18E-	02 1.20E-	02 Negative 17,121 2.79E-	10 Cardiovascular diseases and related factors

AIS 5.00E-	08 9.93E-	03 Negative 18 8.74E-	09 Cardiovascular diseases and related factors

SBP 6.95E-	03 9.82E-	03 Negative 14,457 1.07E-	08 Cardiovascular diseases and related factors

AS 5.00E-	08 8.93E-	03 Negative 15 4.82E-	08 Cardiovascular diseases and related factors

SCZ 7.69E-	01 8.03E-	03 Positive 111,079 2.28E-	07 Mental	disorders

DB.in.FA 5.00E-	08 5.66E-	03 Negative 9 1.34E-	05 Metabolic	indexes

Height 3.50E-	02 5.32E-	03 Negative 20,416 2.46E-	05 Anthropometrics

CH2.DB.ratio 5.00E-	08 5.27E-	03 Positive 13 2.68E-	05 Metabolic	indexes

CAD 2.65E-	03 5.18E-	03 Negative 1860 3.15E-	05 Cardiovascular diseases and related factors

S.VLDL.C 5.00E-	08 4.75E-	03 Negative 30 6.69E-	05 Metabolic	indexes

S.VLDL.FC 5.00E-	08 4.73E-	03 Negative 27 7.03E-	05 Metabolic	indexes

T2D 6.70E-	01 4.58E-	03 Positive 69,656 9.07E-	05 Type 2 diabetes and related traits

otPUFA 5.00E-	08 4.54E-	03 Negative 26 9.75E-	05 Metabolic	indexes

Insulin_CIR 3.04E-	02 4.29E-	03 Positive 6737 1.51E-	04 Type 2 diabetes and related traits

Bis.FA.ratio 5.00E-	08 4.12E-	03 Negative 12 2.02E-	04 Metabolic	indexes

FAw3 5.00E-	08 4.08E-	03 Negative 9 2.18E-	04 Metabolic	indexes

Phenotype: the names of the complex diseases/traits; Threshold: best p-	value	threshold;	PRS.R2:	variance	explained	by	the	PRS;	Effect:	the	impact	
of genetic risk of complex diseases on longevity; Num_SNPs: the number of the SNPs in PRS construction; p: p-	value	of	the	model	fit;	Categories:	the	
category of the complex diseases/traits. Phenotype abbreviations were given in Table S1.
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excluded the APOE region to construct PRSs for the 16 complex dis-
eases/traits and evaluated their relationships with longevity.

We	defined	the	APOE	region	by	LDBlockShow	(Dong	et	al.,	2021) 
in our genotype dataset that all individuals are Han Chinese, and 
replicated	it	using	the	genotypic	data	of	Eastern	Asian	of	the	1000	
Genome	Project.	The	 results	of	 centenarians	and	controls	 showed	
that	 8	 LD	 blocks	were	 in	 the	APOE region, as SNPs located from 
position 45,361,224 to 45,432,557 base pairs on chromosome 
19	 (Figure	S2a).	 The	 result	 of	 Eastern	Asian	 of	 the	 1000	Genome	
Project showed that 14 LD blocks were in the APOE region, from 
position	 45,361,224	 to	 45,436,657	 base	 pairs	 on	 chromosome	 19	
(Figure	S2b). The APOE region was largely overlapped in our cohort 
and	 the	 Eastern	 Asian	 population.	 Finally,	 we	 excluded	 the	 larger	
APOE	region	of	chr19:45,361,224-	45,436,657	from	the	GWAS	sum-
mary statistics of the 16 complex diseases/traits to construct PRSs 
and correlated them with longevity. The results showed that PRSs 
of complex diseases/traits were still associated with longevity while 
masking APOE region (Table S3).	After	Bonferroni	correction	for	all	
the	PRSs	of	225	complex	diseases/traits,	including	DBP,	any	ischemic	
stroke	 (AIS),	 systolic	blood	pressure	 (SBP),	 any	 stroke	 (AS),	 schizo-
phrenia,	 height,	 T2D,	 other	 polyunsaturated	 fatty	 acids	 than	 18:2	
(otPUFA),	 DB.in.FA,	 corrected	 insulin	 response	 (Insulin_CIR),	 ratio	
of	bis-	allylic	groups	to	total	fatty	acids	 in	 lipids	 (Bis.FA.ratio),	ome-
ga-	3	fatty	acids	were	still	significantly	correlated	with	longevity	with	
p-	value	<	2.22 × 10−4 (p < 0.05/225).	The	p-	values	of	CH2.DB.ratio,	
free	 cholesterol	 in	 small	 very-	low-	density	 lipoprotein	 (S.VLDL.FC),	
and	total	cholesterol	in	small	very-	low-	density	lipoprotein	(S.VLDL.C)	
became	 larger	 than	 2.22 × 10−4, but still correlated with longevity 
with the p-	value	=	2.82 × 10−4	of	CH2.DB.ratio,	p-	value	=	4.23 × 10−4 
of	S.VLDL.FC,	and	p-	value	=	5.62 × 10−4	of	S.VLDL.C.

2.4  |  Cell- type group- specific PRSs show different 
directions of correlations with human longevity

The above analyses showed the differences of genetic components 
for complex traits contributing to longevity. Then, we further stud-
ied that within a complex trait, how do disproportionated genetic 
contributions of functional categories influence longevity. The SNPs 
were	annotated	into	220	cell	types,	and	cell-	type	annotations	were	
combined into 10 groups representing biological systems for human. 
Cell-	type	specific	PRSs	and	cell-	type	group-	specific	PRSs	were	gen-
erated.	We	 assessed	 statistical	 significance	 at	 p < 0.05	 after	 FDR	
corrections	for	220 × 16	= 3520 tests, the numbers represent 220 
cell types and top 16 complex phenotypes whose PRSs were most 
significantly associated with longevity.

Cell-	type	group-	specific	PRS	results	for	the	16	traits	mentioned	
above were shown in Figure 2.	Most	of	the	complex	diseases/traits	
showed	negative	correlations	with	 longevity	at	all	 cell-	type	groups,	
including	CAD,	height,	stroke,	DBP	and	SBP,	Bis.FA.ratio,	DB.in.FA,	
otPUFA,	S.VLDL.C	and	S.VLDL.FC.	Two	traits,	Insulin_CIR	and	CH2.
DB.ratio,	showed	positive	correlations	with	longevity	at	all	cell-	type	
groups.	 SCZ	 and	 T2D	 showed	 bi-	directional	 correlations.	 For	 SCZ,	

all	cell-	type	group-	specific	PRSs	could	predict	longevity	significantly	
(FDR-	adjusted	p < 0.05).	PRSs	of	central	nervous	system	(CNS),	gas-
trointestinal, immune groups were positively correlated with longev-
ity, while that of adrenal, cardiovascular, connective or bone, kidney, 
liver,	and	skeletal	muscle	cell-	type	groups	were	negatively	correlated	
with	longevity.	The	PRS	of	the	immune	cell-	type	group	explained	the	
highest proportion of variation for longevity in positive correlation. 
Existing literature revealed that the hyperactive immune system was 
correlated	with	SCZ	(Khandaker	et	al.,	2015;	Müller	&	Schwarz,	2010), 
and the enhanced immune system may be an advantage to longevity 
(Zeng	et	al.,	2016). In T2D, the PRSs for cardiovascular, CNS, connec-
tive	or	bone	and	kidney	groups	passed	the	threshold	(FDR-	adjusted	
p < 0.05).	PRSs	of	CNS	and	connective	or	bone	groups	showed	pos-
itive correlations with longevity, while PRS for cardiovascular and 
kidney groups showed negative correlations with longevity. T2D is a 
major risk factor of kidney disease, and renal disease is an important 
complication (Tancredi et al., 2015),	our	results	 indicated	that	T2D-	
associated kidney diseases may be a great risk factor of mortality. 
The	 significant	 cell-	type	 specific	PRS	 results	 for	 the	16	 traits	were	
displayed in Table S4.	Most	of	the	complex	traits	correlated	with	brain	
structure-	related	and	immunity-	related	cell	types.

Then, we excluded the APOE	 region	 chr19:45,361,224-	45,	
436,657	 from	 the	 GWAS	 summary	 statistics	 of	 the	 16	 complex	
diseases/traits	to	construct	cell-	type	group-	specific	PRSs	and	cor-
related	 them	 with	 longevity.	 Most	 of	 our	 reported	 associations	
were still significant after masking the APOE	 region	 (Figure	 S3). 
Cell-	type	 group-	specific	 PRSs	 of	 S.VLDL.FC	 and	 S.VLDL.C	 could	
explain smaller proportion of the longevity.

2.5  |  Dissecting effects of SNPs in SCZ, 
T2D, and longevity

The above analyses suggested that SNPs across the genome have dif-
ferent directions of effects between complex diseases and longevity, 
especially	 for	SCZ	and	T2D.	 In	order	 to	deeply	explore	 the	effects	
of pleiotropic SNPs on longevity and complex diseases, we detailed 
stratified PRSs using different p-	value	thresholds	in	SCZ	and	T2D.	We	
identified	similar	patterns	in	SCZ	and	T2D.	For	the	most	significant	
groups of SNPs in disease summary statistics, the increased disease 
risks were associated with a reduced chance of becoming centenar-
ian.	While	for	those	SNPs	with	less	significances,	the	increased	dis-
ease	risks	also	increase	the	chance	of	being	long-	lived	(Figure 3a, b).

We	were	then	interested	in	searching	for	the	functions	of	pleio-
tropic	SNPs/Genes	 in	 longevity	and	SCZ/T2D,	especially	those	 in-
creasing both disease risks and probability of being centenarian. In 
order to do this, two pairs of summary statistics were compared, 
SCZ	vs.	 longevity	and	T2D	vs.	 longevity.	Within	each	pair,	 the	ef-
fects of SNPs with nominal significance (p < 0.05)	 in	 both	 pheno-
types	were	selected	and	compared	(Figure	S4a,b).	All	the	compared	
SNPs could be classified into two categories: (1) both increasing 
chance of diseases and longevity (panel 1); (2) increasing disease 
risks	and	reduce	life	expectancy	(panel	2).	The	top	10	significant	GO	
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terms for two panels of genes were shown in Figure 4. Only two 
terms	were	overlapped	between	panels	1	and	2,	for	SCZ	and	T2D,	
respectively. This suggesting that the functions of panels 1 and 2 
were complementary.

2.6  |  Comparing the effects of longevity- related 
genes in SCZ and T2D

We	evaluated	longevity-	related	SNPs/Genes	from	the	largest	meta-	
analysis of longevity (Deelen et al., 2019). The information of SNPs/

Genes	was	shown	in	Table	S5.	Effect	size	of	these	genes	in	SCZ	and	
T2D was compared to their effects of longevity (Figure 5a, b, and 
Table 2).	There	were	9	longevity-	related	SNPs	have	nominally	signifi-
cant (p < 0.05)	effects	on	SCZ.	Among	these	SNPs,	6	SNPs	showed	
positive	effects	on	both	longevity	and	SCZ,	3	SNPs	showed	oppo-
site	effects	on	longevity	and	SCZ.	5	longevity-	related	SNPs	showed	
nominally significant (p < 0.05)	effects	on	T2D,	1	SNP	showed	both	
positive effects on longevity and T2D, the others showed opposite 
effects on longevity and T2D. FOXO3	was	a	famous	longevity-	related	
gene	(Broer	et	al.,	2015; Tanaka et al., 2017; Timmers et al., 2019). 
The	allele	T	of	rs72942514	within	FOXO3 was nominally significantly 

F I G U R E  2 Correlations	between	cell-	type	group-	specific	PRSs	of	complex	traits	and	longevity.	The	length	of	the	bar	represents	the	
proportion	of	longevity	explained	by	cell-	type	group-	specific	PRS.	The	minus	sign	indicates	negative	correlation.	Phenotype	abbreviations	
were given in Table S1.	*FDR-	adjusted	p < 0.05.	**p < 0.05	after	Bonferroni	correction
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F I G U R E  3 Directions	of	correlations	
and percentage of variances explained by 
PRSs in different thresholds. The length 
of the bar represents the proportion of 
longevity explained by PRS. The minus 
sign indicates negative correlation. 
*p < 0.05
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F I G U R E  4 GO	enrichment	of	the	
pleiotropic	genes	for	SCZ	and	T2D.	
SCZ_Panel	1:	Genes	both	increasing	
chance	of	SCZ	and	longevity;	SCZ_Panel	
2:	Genes	increasing	SCZ	risk	and	reducing	
the chance of longevity; T2D_Panel 1: 
Genes	both	increasing	chance	of	T2D	and	
longevity;	T2D_Panel	2:	Genes	increasing	
T2D risk and reducing the chance of 
longevity
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associated with longevity (OR = 1.604, p < 0.05),	and	it	was	also	cor-
related	with	higher	 risk	of	SCZ	 (OR	=	 1.084,	p < 0.005;	Figure 5a, 
Table 2). The SNP which had both positive effects on longevity and 
T2D located on intergenic region.

2.7  |  Estimating the contribution of all PRSs

The above analyses were performed using a single PRS to predict 
longevity. Next, we were interested in using all PRSs of complex dis-
eases/traits to predict longevity and evaluate the overall contribu-
tion	of	all	PRSs	to	longevity.	To	find	an	optimized	regression	method,	
we	trained	our	data	with	multiple	common	classifiers,	including	SVM	
based	 classifier,	 KNN	 classifier,	 Naive	 Bayes	 classifier,	 logistic	 re-
gression,	Decision	Tree,	and	Random	Forest	classifier.	10-	fold	cross-	
validation was conducted for model construction, and 100 iterations 

with randomly split training and validation sets were run to avoid 
overfitting. Consequently, the logistic regression classifier provided 
the best prediction (Figure 6a).	 Further	 optimizing	 parameters	 of	
logistic	regression	could	achieve	AUC	=	0.69	and	pseudo-	R2 =	0.08	
(Figure 6b), indicating that all PRSs together could only explain a small 
proportion of the variance of longevity. The coefficient of each PRSs 
in the best prediction model was shown in Table S6.

3  |  DISCUSSION

One might expect that the genetic risks of complex diseases would 
be	lower	in	 long-	lived	people	as	compared	to	that	 in	younger	con-
trols. In this study, we provided evidence in support of this ex-
pectation, most of the PRSs of clinically diagnosed diseases were 
negatively	correlated	with	longevity,	including	PD,	IBD,	stroke,	CAD,	

F I G U R E  5 Effect	sizes	of	longevity-	
related	genes	in	SCZ	and	T2D.	(a)	Effects	
of	longevity-	related	genes	in	SCZ;	(b)	
effects	of	longevity-	related	genes	in	T2D.	
Dist: The distant from the SNP to the 
gene
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and kidney disease. Previous studies also provide sufficient evi-
dence to support this expectation, reduced risks for height (Sakaue 
et al., 2020),	CAD	and	its	related	traits	(Timmers	et	al.,	2019) such as 
DBP	(Sakaue	et	al.,	2020),	SBP	(Sakaue	et	al.,	2020) contributed to 
longevity	or	lifespan	(Broer	et	al.,	2015; Deelen et al., 2019; Sakaue 
et al., 2020; Timmers et al., 2019).

However, relationships between longevity and complex dis-
eases were not always as expected, in which increased disease risks 
were	not	necessarily	linked	to	higher	mortality.	We	identified	that	
the	PRSs	of	some	psychiatric	disorders,	such	as	SCZ,	autism	spec-
trum	disorder	(ASD),	cannabis	disorder,	and	atopic	dermatitis,	were	
positively	correlated	with	longevity,	as	well	as	T2D.	We	have	further	
investigated these intriguing associations and possible underlying 

mechanisms by stratified PRS analyses. The results showed that 
most of the SNPs with very small p-	values	(p ≤ 1 × 10−5)	for	SCZ/T2D	
were	negatively	correlated	with	longevity.	While	for	the	less	signifi-
cant	SNPs	(1 × 10−5 < p ≤ 0.05),	their	effects	on	disease	and	longevity	
were	 positive.	 It	was	 reported	 that	 the	 cancer	 incidence	 in	 first-	
degree	 relatives	of	patients	with	SCZ	had	 significantly	decreased	
risks of overall cancers (Catts et al., 2008), and this finding has 
been	replicated	in	an	independent	study	(Ji	et	al.,	2013).	Many	CNS	
disorders	 have	 inversed	 cancer	 comorbidity	 (Tabares-	Seisdedos	
&	Rubenstein,	2013).	 Further,	 in	 the	 term	of	 cell-	type	 levels,	PRS	
of	 the	 immune	 cell-	type	 group	 explained	 the	 highest	 proportion	
of variation in the positive correlations. The hyperactive immune 
system-	related	genes	may	be	causes	of	SCZ	 (Comer	et	al.,	2020). 

F I G U R E  6 Using	all	PRSs	of	complex	phenotypes	to	predict	longevity.	(1)	Comparisons	of	the	prediction	efficiency	of	different	methods.	
(2)	The	optimized	prediction	from	the	logistic	regression	model

(a)

(b)
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Meanwhile,	 the	enhanced	 immune	system	could	be	beneficial	 for	
an	 increasing	 long-	life	 span	 (Pinti	 et	 al.,	2016). If detailed looking 
at gene level effects, FOXO3 gene was a famous gene for human 
longevity,	which	controls	the	magnitude	of	T-	cell	immune	response	
by modulating dendritic cell function. The enhanced capacity of 
Foxo3-	deficient	dendritic	cells	to	sustain	T-	cell	viability	by	produc-
ing	increased	amounts	of	 interleukin	6	(IL-	6)	 (Dejean	et	al.,	2009). 
The	 increased	expression	of	 IL-	6	would	enhance	cell	 survival	 and	
transform	 cell	 growth	 in	 human	malignant	 cholangiocytes	 (Meng	
et al., 2006).	Also,	the	decreased	expression	of	FOXO3A was found 
in	acute	SCZ	patients	(Gu	et	al.,	2021). It is possible that the reduced 
expression of FOXO3	leads	to	enhanced	IL-	6	expression	and	formed	
an	enhanced	immune	system.	In	T2D	cell-	type	group-	specific	PRSs,	
PRS	 of	 kidney-	related	 cell-	type	 group	 explained	 the	 highest	 pro-
portion of variation for longevity. T2D is a major risk factor of kid-
ney disease, and renal disease is an important complication causing 
mortality (Shmookler Reis et al., 2011). Still, some genetic factors 
were contributing to the positive associations between T2D genetic 
risk	and	longevity,	especially	for	those	genes	in	the	CNS.	Glucose	
is the main source of energy for brain and brain consumes ~20% 
of	 glucose-	derived	 energy	 to	 maintain	 the	 neuronal	 activities.	 It	
is reported that glucose acts as a double edge sword in regulating 
the functions of SIRT1 (Chattopadhyay et al., 2020). SIRT1 has long 
been	known	to	be	a	 longevity	 factor.	Glucose	binds	and	modifies	
SIRT1 ultimately reduces its levels. Loss of SIRT1 is associated with 
obesity and aging. On the contrary, overactivation of the longevity 
factor SIRT1 was also detrimental to liver physiology and resulted 
in	increased	blood	glucose	levels	leading	to	a	pre-	diabetic	like	state	
(Chattopadhyay et al., 2020). In this case, a high blood glucose level 
is associated with high SIRT1.

Our results of the associations between genetic risks of complex 
diseases and longevity were conflicted with the phenotypic asso-
ciations.	Both	SCZ	and	T2D	were	reported	to	increase	mortality	in	
many	studies	(Bardenheier	et	al.,	2016; Hennekens, 2007; Kilbourne 
et al., 2009; Sikdar et al., 2010). One possible explanation would be 
that the phenotypes were influenced by genetics, environments, 
and their interactions. In our prediction model, all the PRSs could 
only explain a small proportion of the variances of longevity. There 
were much more effects depend on other factors. The genetic ef-
fects of phenotypes may vary between different environments. Our 
results	 showed	 that	 the	 immune	 component	 of	 SCZ	 genetics	was	
beneficial	to	longevity.	While	SCZ	could	also	be	triggered	by	many	
environmental	 factors,	 such	 as	 early	 hazards	 causing	 fetal	 growth	
retardation	 or	 drug	 abuse	 (Dean	&	Murray,	2005), these environ-
mental factors may disturb the development of the immune system 
which may be harmful for health and cause early death. Similar to 
T2D, air pollution, diet, and physical activity (Dendup et al., 2018) 
were	strongly	correlated	with	T2D.	An	unhealthy	diet	would	damage	
renal function in patients with diabetes (Lin et al., 2020). Our results 
showed that the renal component for genetic risks of T2D signifi-
cantly	 reduced	 the	 possibility	 of	 longevity.	 Furthermore,	 the	 SNP	
genotypes	will	not	change	during	one's	life,	but	their	impact	on	vul-
nerability	to	mortality	could	be	changed	by	epigenetics.	Age-	related	

DNA	methylation	patterns	have	been	reported	a	lot	(Bell	et	al.,	2019; 
Gensous	et	al.,	2019). Different sets of genes may be activated in re-
sponse	to	different	age-		and	population-	specific	environments	and	
exposures (Ukraintseva et al., 2016).

It is reasonable that some risk genes for diseases are posi-
tively	 related	 to	 longevity	 from	 the	 aspect	 of	 evolution	 (Carter	&	
Nguyen, 2011). During the historical process of natural selection, 
the beneficial mutant was accumulated while the deleterious muta-
tion would be eliminated. Therefore, the existing common variants 
increasing the disease risks may potentially be protective against 
some extreme environment.

All	these	complex	G × G	and	G × E	interactions	made	the	genetic	
effects	on	longevity	highly	conditional.	In	different	stages	of	one's	
life cycle, distinct environments with diverse lifestyles would all 
lead to different effects from the same set of genes. This may be 
the	 reason	why	 the	 results	 of	 longevity	GWAS	 studies	were	 very	
hard	to	be	replicated	(Broer	et	al.,	2015; Deelen et al., 2014; Deelen 
et al., 2019; Erikson et al., 2016;	Joshi	et	al.,	2017; Nebel et al., 2011; 
Pilling et al., 2017; Timmers et al., 2019).

The antagonistic pleiotropy effects had been proposed in many 
articles	 (Aidoo	 et	 al.,	 2002;	 Byars	 &	 Voskarides,	 2020;	 Carter	 &	
Nguyen, 2011; Sørensen et al., 1999; Ukraintseva et al., 2016), but 
most	of	them	are	 literature	reviews.	Our	study	used	a	data-	driven	
approach and constructed PRSs for a wide range of complex phe-
notypes in the same group of people and compared their effects on 
longevity. Overall, our results suggested that “risk” or “beneficial” of 
a common genetic variant is conditional regarding its role in human 
aging, health, and lifespan. Studying these conditions is crucial for 
a detailed understand of the aging process, and also essential for 
personalized	 medicine	 which	 emphasizes	 the	 uniqueness	 of	 each	
individual.

In the PRS construction, we choose a clumping and threshold-
ing	 method	 (Choi	 &	 O'Reilly,	 2019). The p-	value	 thresholds	 were	
selected in logistic regression model which predicting longevity phe-
notype.	We	believe	p-	value	thresholding	method	is	better	than	the	
fixed p-	value	threshold	method.	Because	it	is	unfair	to	choose	fixed	
thresholds for different complex phenotypes due to the inconsistent 
sample	sizes	of	different	GWASs,	it	is	uncertain	which	fixed	thresh-
old is the best for PRS construction. In addition, the objective of 
this study was evaluating the associations between PRSs of complex 
phenotypes and longevity. This approach can try more possibility 
of the p-	value	 thresholds	 and	 select	 the	 best	 one	 that	 could	 pre-
dict longevity phenotype. Therefore, using this approach, we could 
identify more complex phenotypes whose PRSs could significantly 
correlated with longevity.

In conclusion, our study evaluated the relationships between 
PRSs	 of	 complex	 diseases/traits	 and	 longevity.	We	 confirmed	 the	
genetic risks of most fatal diseases would decrease the chance of 
being	long-	lived.	Moreover,	we	also	identified	several	traits,	whose	
genetic risks may have benefits for longevity. Our study provided 
evidence	for	the	genetic	trade-	off	theory.	We	emphasized	the	posi-
tive effects of disease risk alleles on longevity, which could help ex-
plain the origin of diseases genetic components.
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4  |  METHODS

4.1  |  Study populations, genotyping, and 
imputation

Our	 study	 included	2178	 centenarians	 (mean	 age	102.7 ± 3.49	 [SD])	
and	 2299	 middle-	aged	 controls	 (mean	 age	 48.4 ± 7.44	 [SD])	 (Zeng	
et al., 2016). The data were obtained from the Chinese Longitudinal 
Healthy	 Longevity	 Survey	 cohort	 (CLHLS)	 (Zeng,	 2012;	 Zeng	
et al., 2016;	 Zeng	 et	 al.,	 2018;	 Zhao	 et	 al.,	 2018).	 All	 the	 centenar-
ians	 and	 middle-	aged	 controls	 were	 genotyped	 by	 the	 Illumina	
HumanOmniZhongHua-	8	 BeadChips,	 including	 600 k	 common	 vari-
ants	(MAF	≥	5%),	290 k	rare	variants	(MAF < 5%), and 10 k SNPs exist-
ing	only	among	Chinese	and	other	Asian	populations.	We	performed	
standard	GWAS	QC	and	 imputation	 for	 the	data,	 the	detailed	steps	
can	 see	 the	 previously	 published	 study	 (Zeng	 et	 al.,	 2016).	 Briefly,	
the	data	QC	included	two	dimensions,	samples,	and	SNPs.	All	QC	as-
sessments	and	successive	filtering	were	done	using	PLINK1.9	(Purcell	
et al., 2007). Samples with more than 1% missing genotyped SNPs, dif-
ferent genetic sex with the record in the phenotypic database were 
removed. Samples who have genetic relationship within two degree 
of relatedness were filtered out. SNPs had high rate of missing geno-
types	 and	 deviated	 from	 the	 Hardy–	Weinberg	 equilibrium	 (HWE)	
test (p ≤ 1 × 10−5) as well as SNPs on X and Y chromosomes and mi-
tochondria	 were	 also	 removed.	 Principal	 component	 analysis	 (PCA)	
was	performed	using	SNPs	on	autosomal	chromosome	by	PLINK1.9	
(Purcell et al., 2007) to investigate population stratification. No clear 
sub-	cluster	was	observed.	Typical	north	to	south	grandaunt	was	dem-
onstrated	by	the	first	principal	component.	Next,	the	1000	Genomes	
Project integrated phase 1 release was used as reference panel to 
infer	 the	 genotypes	 of	 all	 SNPs	 (MAF > 1%)	 by	 IMPUTE2	 (Marchini	
et al., 2007),	imputed	SNPs	with	a	quality	score	less	than	0.9	were	dis-
carded	before	analysis.	After	imputation,	we	performed	SNP	QC	again	
as	discussed	above.	Finally,	5,594,914	SNPs	were	retained	and	used	as	
target data to construct PRSs.

4.2  |  GWAS summary statistics data resources and 
preprocessing

Firstly,	 the	GWAS	 summary	 statistics	 collected	 by	 LD	 hub	 (Zheng	
et al., 2017),	a	centralized	database	of	summary-	level	GWAS	results	
for complex diseases/traits from different publicly available re-
sources/consortia,	were	considered.	But	some	of	the	them	were	out	
of	date,	some	of	them	were	conducted	by	sex-	stratified	approaches,	
and	some	of	the	GWAS	studies	involve	multiple	GWAS	summary	sta-
tistics.	We	used	the	following	criteria	 to	 filter	 the	GWAS	summary	
statistics:	 (1)	 Not	 sex-	stratified;	 (2)	Multi-	ethnic	meta-	analysis	 was	
preferred	 to	single-	ethnic	 research;	and	 (3)	For	multiple	GWASs	of	
the	same	phenotype,	 the	one	with	 the	 largest	 sample	 size	was	 se-
lected.	As	a	result,	200	of	the	GWAS	summary	statistics	were	col-
lected based on LD hub. 16 of them were updated for obtaining the 
latest	GWAS	 results,	 including	T2D,	 asthma,	 5	mental	 disorders,	 2	

anthropometrics, 3 body composition, and 4 metabolism indexes. In 
addition,	we	added	8	cardiovascular-	related	diseases	and	risk	factors	
(stroke	and	blood	pressure-	related	complex	traits)	since	cardiovascu-
lar	diseases	were	the	leading	causes	of	death,	and	17	GWAS	summary	
statistics	 of	 2	 anthropometrics,	 8	 body	 compositions,	 and	7	meta-
bolic indexes. Therefore, a total of 225 complex diseases/traits were 
included in this study. The detailed characteristics of the phenotypes 
and	sources	of	GWAS	summary	data	were	described	in	Table	S1.

All	 the	coordinates	of	SNPs	 in	GWAS	summary	statistics	were	
converted	to	the	coordinates	of	hg19/GRCh37	using	UCSC	LiftOver	
tool (Kent et al., 2002). Then, the genotypes of each SNPs were 
matched,	 and	 the	effect	 size	was	 converted	 to	 ensure	 the	 testing	
allele for all the traits were the same. SNPs with mismatched alleles 
were flipped into their complementary alleles to match again. SNPs 
that had different or ambiguous genotypes in multiple studies were 
excluded.	The	 clean	GWAS	 summary	 statistics	were	used	 as	base	
data to construct PRSs.

4.3  |  Construction of PRSs and prediction of 
longevity phenotype

According	 to	 the	 effect	 size	 and	 p- values	 of	 SNPs	 in	 large-	scale	
GWAS	summary	statistics	(base	data),	we	constructed	PRSs	for	cen-
tenarians	and	middle-	aged	controls	using	their	genotype	data	using	
PRSice-	2	(Choi	&	O'Reilly,	2019). The following formula was used to 
calculate	PRSs.	Assuming	Si is the summary statistic of the ith effec-
tive allele, Gij is the number of the ith effective alleles observed in jth 
individual (0, 1, 2, respectively), Mj is the number of alleles included 
in the PRS of the jth individual.

We	derived	PRSs	of	complex	diseases	for	each	individual	by	a	clumping	
and	thresholding	method.	First,	 linkage	disequilibrium	 (LD)	clumping	
was performed on genotypic data of centenarians and controls using 
a clumping option of r2 > 0.1	and	a	window	of	500	kb.	Then,	PRSs	of	
complex diseases of individuals were computed by different p- value 
thresholds,	 from	5 × 10−8 to increase by an order of magnitude each 
time until 1. Next, the PRSs were regressed to longevity phenotypes 
by a logistic regression model. PRSs with smallest p-	values	were	de-
fined as best PRS for each trait.

4.4  |  Definition of the APOE region

LD block analysis of APOE was performed on our genotype data 
including 4477 Han Chinese individuals and genotype data of 
Eastern	 Asian	 of	 the	 1000	Genome	 Project.	 LDBlockShow	 (Dong	
et al., 2021) was used to perform this analysis within the region 
of	 chr19:45,311,941–	45,512,079,	 before	 100	 kb	 of	 rs429358	
(chr19:45,411,941)	and	after	100	kb	of	rs7412	(chr19:45,412,079).

PRSj =
∑

i

Si × Gij

Mj
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4.5  |  Construction of stratified PRSs and 
regressed them to longevity

We	applied	stratified	PRSs	of	SCZ	and	T2D	through	two	strategies:	(1)	
Cell-	type	partitioning;	(2)	p-	value	thresholding.	Firstly,	we	carried	out	
the stratified PRSs by partitioning all SNPs into 220 cell types and 10 
cell-	type	groups	then	regressed	the	stratified	PRSs	to	longevity	phe-
notypes.	Cell-	type	and	cell-	type	group-	specific	annotations	for	each	
SNP	were	obtained	from	the	study	of	LD	score	regression	(Finucane	
et al., 2015).	In	which,	the	cell-	type	annotations	for	histone	modifica-
tions	(H3K4me1,	H3K4me3,	H3K9ac,	and	H3K27ac)	were	sorted	out	
based on the Roadmap Epigenomics Project (Roadmap Epigenomics 
Consortium, 2015). Secondly, we constructed stratified PRSs by di-
viding	 all	 SNPs	 into	8	 SNP	 sets,	 the	p-	value	 thresholds	 as	5	× 10−8, 
1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2, 5 × 10−2. To 
apply	the	stratified	PRS	construction,	we	used	a	set-	based	clumping	
and thresholding method with the default parameters in PRSet (Choi 
&	O'Reilly,	2019).	After	stratified	PRS	construction,	we	regressed	the	
set-	based	 PRSs	 to	 longevity.	We	 assessed	 statistical	 significance	 at	
p < 0.05	after	FDR	corrections	for	220 × 16	= 3520 tests, the numbers 
represent 220 cell types and top 16 complex phenotypes whose PRSs 
were most significantly associated with longevity.

4.6  |  Dissecting effects of pleiotropic SNPs

In order to explore the function of SNPs which both influence longev-
ity	and	complex	diseases,	we	analyzed	the	distributions	of	SNPs'	effect	
size	between	longevity	and	complex	diseases.	We	selected	the	SNPs	
that were used in the construction of the best PRSs and then selected 
the SNPs that with p-	value	< 0.05	in	both	longevity	and	complex	traits/
diseases	to	plot	the	effect	size	distributions.	We	transformed	the	odds	
ratio (OR) to beta value, beta = log(OR).	All	effect	alleles	recorded	in	
the	T2D	GWAS	summary	statistics	 for	 the	 trans-	ethnic	T2D	GWAS	
meta-	analysis	as	published	in	Mahajan	et	al.	were	alleles	that	increased	
the	risk	of	T2D.	For	the	SCZ	summary	statistics,	we	consolidated	all	
the effect alleles into risk alleles, the beta of effect allele is equal to the 
negative	of	beta	of	non-	effect	allele.

4.7  |  Gene annotation and functional 
pathway enrichment

SNPs used in the best PRS construction were extracted and an-
notated	by	ANNOVAR	(Yang	&	Wang,	2015). The annotated genes 
entered	GO	enrichment	analyses	in	DAVID	(Huang	da	et	al.,	2009a; 
Huang da et al., 2009b). Different panels of genes were classified 
into	three	GO	classes,	Biological	Process,	Cellular	Component,	and	
Molecular	Function,	respectively.	We	defined	the	significant	enrich-
ments as those p-	value	<	2.22 × 10−4 (p < 0.05/225),	after	Bonferroni	
correction.

4.8  |  Longevity predicting model construction 
using all PRSs

The prediction of longevity can be portrayed as a binary classifi-
cation	 problem.	 Generally,	 classification	 algorithms	 can	 output	 a	
Bernoulli	 distribution	 for	 each	 sample	 and	 choose	 the	 label	with	
higher	possibility	as	its	prediction.	To	pursue	the	optimized	regres-
sion model, the following steps had been established: (1) Classifier 
selection.	 We	 tried	 various	 classifiers,	 including	 support	 vector	
machine	 (SVM),	 k-	nearest	 neighbors	 (KNN),	Naive	Bayes,	 logistic	
regression,	Decision	Tree,	and	Random	Forest	classifiers,	and	se-
lected the best method with ROC (receiver operating characteris-
tic)	curves	and	mean	accuracy	scores;	(2)	hyper-	parameters	tuning.	
Appropriate	hyper-	parameters	were	acquired	with	the	grid-	search	
method;	 (3)	 repeated	 k-	fold	 cross-	validation.	 We	 evaluated	 the	
optimum model from adequate randomly generated training and 
validation	 subsets.	 Scikit-	learn	 (Pedregosa	 et	 al.,	2011) was used 
primarily. Consequently, we fixed the logistic regression classifier 
in the further experiment.

To	 avoid	 model	 overfitting,	 regularization	 techniques	 were	
applied	 to	 train	 our	models.	Due	 to	 the	 limitations	 of	 scikit-	learn,	
we can only apply the approaches of L1 and L2 penalties. To find 
the	 optimized	 training	 hyper-	parameters,	 we	 used	 the	 scikit-	learn	
built-	in	grid-	search	method	to	tune	the	hyper-	parameters	of	the	lo-
gistic classifier (Pedregosa et al., 2011).	The	grid-	search	method	ex-
haustively considered every possible combination of the parameters 
and trained the data with each option, then selected the best model 
available. In this experiment, solver to use in the model, regular-
ization	strength,	and	training	iteration	numbers	provided	by	scikit-	
learn	were	utilized	in	our	grid-	search.	We	used	the	“saga”	solver,	an	
implementation	 of	 the	 Stochastic	 Average	Gradient	method,	with	
L2	 penalties.	 A	 larger	 regularization	 strength	 had	 also	 been	 set-
tled	for	better	accuracy.	We	used	the	10-	fold	cross-	validation	and	
repeated	 the	whole	 process	 for	 100	 iterations.	 The	model	 hyper-	
parameters with the best accuracy on the given valid datasets and 
labels	were	picked	out.	Finally,	we	trained	the	model	again	with	the	
hyper-	parameters	obtained	on	the	80%	training	dataset	and	tested	
it against the 20% test dataset.
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