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ABSTRACT
Background: The prevalence of inadequate treatments for chronic pain has necessitated the search 
for biological factors that influence the transition to chronicity.
Methods: Antecubital blood was drawn from those who experienced acute, noncatastrophic musculos-
keletal trauma. Follow-up occurred at 1, 3, 6, and 12 months with the primary outcome being Brief Pain 
Inventory (BPI) Functional Interference scores. Eight markers were chosen for latent profile analysis: brain- 
derived neurotrophic factor (BDNF); transforming growth factor-beta 1 (TGF-β1); C-reactive protein (CRP); 
tumor necrosis factor-alpha (TNF-α); interleukins (ILs) 1-beta, 6, and 10; and the stress hormone cortisol.
Results: Mean age of the 106 participants was 44.6 years and 58.5% were female. The final model 
indicated a three-class solution that could be adequately described by three of the eight markers: 
class 1 = low concentration of all markers (33.9% of the sample), class 2 = average concentration of 
all markers (47.7%), and class 3 = high concentration of BDNF and TGF-β1 (18.3%). BPI Pain 
Interference scores captured at both inception and 6-month follow-up were compared across the 
three groups. Mean scores were significantly higher in class 3 for the BPI Interference subscale at 
inception (27.0 [SD 16.4] vs. 35.8 [SD 17.3], P = 0.05) and at 6-month follow-up (2.2 [SD 4.8] vs. 7.3 
[SD 10.7], P = 0.03) compared to those of the other two classes.
Conclusions: Although recovered populations are not significantly different in BDNF and TGF-β1 levels, 
those who experience persisting disability are more likely to have moderate to high levels in serum.

RÉSUMÉ
Contexte: La prévalence des traitements inadéquats pour la douleur chronique a nécessité la 
recherche des facteurs biologiques qui influencent le passage à la chronicité.
Méthodes: Du sang du pli du coude a été prélevé sur des personnes ayant subi des traumatismes 
musculo-squelettiques aigus non invalidants. Le suivi a eu lieu à 1, 3, 6 et 12 mois avec les scores 
d’interférence fonctionnelle du Questionnaire concis de la douleur (QCD) comme résultat principal. Huit 
marqueurs ont été choisis pour l’analyse du profil latent : le facteur neurotrophique dérivé du cerveau 
(BDNF); le facteur de croissance transformant-bêta 1 (TGF-β1); la protéine C-réactive (CRP); le facteur de 
nécrose tumorale alpha (TNF-a); les interleukines (IL) 1-bêta, 6 et 10; et le cortisol, l’hormone du stress.
Résultats: L’âge moyen des 106 participants était de 44,6 ans et 58,5% étaient des femmes. Le 
modèle final a indiqué une solution à trois classes qui pourrait être correctement décrite par trois 
des huit marqueurs : classe 1 = faible concentration de tous les marqueurs (33,9 % de l’échantillon), 
classe 2 = concentration moyenne de tous les marqueurs (47,7 %), et classe 3 = concentration 
élevée de BDNF et TGF-β1 (18,3 %). Les scores d’interférence de la douleur BPI relevés à la fois au 
début et au suivi à 6 mois ont été comparés entre les trois groupes. Les scores moyens étaient 
significativement plus élevés dans la classe 3 pour la sous-échelle d’interférence BPI au début (27,0 
[SD 16,4] comparativement à 35,8 [SD 17,3], p = 0,05) et à 6 mois de suivi (2,2 [SD 4,8] compara-
tivement à 7,3 [SD 10,7], P = 0,03) par rapport à ceux des deux autres classes.
Conclusions: Bien que les populations rétablies ne soient pas significativement différentes en ce 
qui a trait aux niveaux de BDNF et de TGF-β1, celles qui souffrent d’une incapacité persistante sont 
plus susceptibles d’avoir des taux sériques modérés à élevés.
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Introduction

Chronic pain represents a substantial burden on patients 
and health systems, due in part to its complexity and 
resistance to traditional medical and pharmaceutical 
treatments.1 Though progress in interdisciplinary care 
strategies has been made, effective pain management 

remains a unique challenge.2 With chronic pain becoming 
a problem of epidemic proportions,3 health care research-
ers and providers have turned their attention toward the 
identification of mechanisms for early detection and 
intervention.4,5

Longitudinal modeling studies in both clinical6 and popu-
lation-level7 samples have identified trajectories of pain and 
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recovery that most commonly indicate that 15% to 25% of 
participants report long-term, chronic, or persistent pain and 
functional interference after musculoskeletal trauma see-
mingly regardless of the body region affected.6,8–11 In 
a previous study12 we identified a three-trajectory model of 
functional recovery from musculoskeletal trauma represent-
ing trajectories of rapid recovery (32.0% of the sample), 
delayed recovery (26.7%), and minimal or no recovery 
(41.3%). To briefly summarize, these trajectories were 
based on disability due to pain (or “pain interference”) over 
the course of 12 months where rapid recovery had the lowest 
symptoms at baseline with near or full recovery by 3 months, 
delayed recovery had high symptoms at baseline with full 
recovery by 12 months, and minimal/no recovery had high 
symptoms at baseline that persisted throughout the study. Of 
note is that Sterling and colleagues11 followed posttraumatic 
stress outcomes and also found a qualitatively similar three- 
trajectory model as the best fit to the data. The identification 
of consistent recovery trajectories provides new opportu-
nities to characterize predictive mechanisms.

Advances in research and technology have led to the 
reemergence of a search for biomarkers that may explain 
the onset or persistence of pain, though these have moved 
from traditional approaches such as static structural imaging 
to more dynamic “omics” approaches (e.g., genomics, tran-
scriptomics, proteomics, metabolomics). The results of such 
work have been mixed, though evidence is mounting that 
dysfunction in some aspect of the omics cascade may repre-
sent a valuable biomarker of acute or chronic pain. In 
a recent review of biomarkers of low back pain,13 inflamma-
tory mediators such as high-sensitivity C-reactive protein 
(hsCRP), tumor necrosis factor alpha (TNF-α), and inter-
leukin 6 (IL-6) were identified as having a potential role in 
the acute phase of low back pain. In the chronic phase Li 
et al.14 found that IL-10 was decreased while IL-6 was 
increased in people with low back pain compared to matched 
controls. Conversely, Klyne et al.15 showed that IL-6 levels do 
not significantly differ between those with low back pain and 
controls. They did, however, report a significant difference in 
IL-6 within the low back pain group between those reporting 
high levels of pain and those reporting low levels of pain. 
These studies suggest that there may be value in exploring 
blood-based proteins as markers of distress and/or pain but 
that simple bivariate associations may not yield consistent 
results.

The purpose of this study was to explore a theoretical 
position that eight previously identified blood-based protein/ 
hormone biomarkers will show meaningful variance in pain- 
related outcomes after trauma but only when considered as 
clusters rather than single bivariate associations. A secondary 
outcome was to explore the utility of the biomarker clusters 
for predicting previously derived clinical recovery 
trajectories.

Methods

Data from this observational cohort study were drawn 
from the longitudinal SYMBIOME (Systematic Merging 
of Biology, Mental Health and Environment) databank-
ing study (clinicaltrials.gov ID no. NCT02711085). The 
study was approved by the office of Human Research 
Ethics at Western University and the Lawson Health 
Research Institute (REB 106140), and written informed 
consent was obtained from all participants. Eligible par-
ticipants were identified by emergency or acute care 
clinicians from an urgent care center in London, 
Ontario, Canada. Clinicians identified people who were 
within the first 3 weeks of a general, noncatastrophic 
musculoskeletal injury (no hospital stays beyond 24 h or 
surgical correction/relocation required). These injuries 
included (but were not limited to) motor vehicle colli-
sions, sports injuries, work-related injuries, sprains, 
strains, falls, and nondisplaced fractures that did not 
require surgical correction. The clinician obtained con-
sent to allow a member of the research team to approach 
the potential participant. After being medically dis-
charged, a member of the research team described the 
study, answered questions, and enrolled and screened 
potential participants prior to leaving the hospital. 
Eligible participants were at least 18 years old, could 
speak and understand conversational English, were free 
of cognitive impairments (e.g., no Alzheimer’s demen-
tia, Down syndrome, etc.), were free of active malignan-
cies in the past 5 years, and had no systemic 
inflammatory conditions (rheumatoid arthritis, psoria-
tic arthritis, scleroderma, or lupus). In addition, those 
who had a concussion or hospitalization in the 6 months 
prior to enrollment were excluded. Those under the 
influence of drugs or alcohol or who were otherwise 
not able to provide informed consent and those with 
no fixed address were excluded from the study.

Two samples of antecubital blood were drawn into 
4 mL K2 EDTA BD vacutainer tubes by a trained phle-
botomist and immediately stored on ice for transfer and 
storage at an immunity and proteomics lab. Prior to 
freezing, the samples were centrifuged for 10 min at 
2000 × g, had plasma pipetted into up to 6 × 50 μL 
aliquots, and then both supernatant and pellet were 
stored at −80°C. Participants were concurrently pro-
vided a paper package of self-report questionnaires 
that included demographic metadata (age, sex, educa-
tion level, work status, household income, preexisting 
pathology, preexisting pain, medications, body mass 
index, and region of injury) and pain intensity/severity 
and functional interference through the Brief Pain 
Inventory (BPI).16 These packages could be completed 
at the participant’s home within 3 to 5 days and were 
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then exchanged for the subsequent follow-up packages 
upon collection of the next biological sample.

Follow-up occurred at 1, 2, 3, 6, and 12 months after 
injury, with the biological samples collected at baseline and 
3, 6, and 12 months only. Participants were paid up to US 
$300 in total compensation for participation. For the pur-
poses of this study, only the baseline blood samples were 
analyzed and interpreted for biomarker classes and owing 
to attrition, recovery up to the 6-month follow-up was used 
as the final end point. Functional recovery was measured 
using the Pain and Interference subscales of the BPI. The 
BPI is one of the most widely used pain interference scales 
globally17 and has adequate evidence of validity across 
many clinical populations, including those with musculos-
keletal pain.18 Although the BPI has not been validated 
under these specific conditions of acute pain, it has been 
validated for postoperative pain, which represents a form of 
acute pain and trauma. Moreover, because this work repre-
sents a longitudinal study, the BPI afforded a certain versa-
tility in the event of chronic pain development.

Analysis of Serum Biomarkers

The target markers for this analysis were those shown 
previously to be associated with pain, distress, or 
inflammation.19–25 Through a collaborative consultative 
process (primarily literature review in relevant domains 
including pain physiology, immunology, psychology, and 
endocrinology, supplemented by discussions with various 
field experts to confirm), eight markers were specifically 
chosen: brain-derived neurotrophic factor (BDNF); trans-
forming growth factor-beta 1 (TGF-β1); C-reactive pro-
tein (CRP); tumor necrosis factor-alpha (TNF-α); 
interleukins (ILs) 1-beta, 6, and 10; and the stress hor-
mone cortisol. Analyte concentrations in plasma were 
assayed using multiplexed biomarker immunoassay kits 
according to manufacturers’ instruction for BDNF 
(Human Premixed Multi-Analyte Kit, R&D Systems 
Inc., cat. no. LXSAHM), TGF-β1 (TGFΒ1 Single Plex 
Magnetic Bead Kit, EMD Millipore, cat. no. 
TGFΒ1MAG-64 K-01), IL-1β, IL-6, and IL-10, and TNF- 
α (Human High Sensitivity T Cell Magnetic Bead Panel 
Multiplex Kit, EMD Millipore, cat. no. HSTCMAG- 
28SK). A BioPlex 200 readout System was used (Bio-Rad 
Laboratories, Hercules, CA), which uses Luminex xMAP 
fluorescent bead-based technology (Luminex 
Corporation, Austin, TX). Levels were automatically cal-
culated from standard curves using Bio-Plex Manager 
software (v4.1.1, Bio-Rad).26 Cortisol (Cortisol Enzyme 
Immunoassay Kit, Arbor Assays, cat. no. K003-H1/H5) 
and CRP (C-Reactive Protein (human) ELISA Kit, 
Cayman Chemical Company, cat. no. 10011236) were 

assayed following industry standard approaches for 
enzyme-linked immunosorbant assay. All assays were 
performed in duplicate and the value for analysis was the 
mean concentration of the two runs.

Analysis

Participant characteristics were summarized descrip-
tively (means and distributions or proportions).

Pre-analysis of Analytes

Prior to primary analyses we explored the distribution of 
the data both qualitatively and statistically. Concentrations 
of all eight analytes were significantly positively skewed and 
in violation of normality via Kolmogorov-Smirnov tests. 
All concentrations were then square root transformed to 
reduce skewness and create normally distributed data. High 
outliers (>4 SD above the mean; identified after normal-
ization of the data) or those for which the assay resulted in 
nondetectable (too low or too high) concentrations were 
then removed. Beyond 4 SD represents 0.1% of the popula-
tion, which may be important but is not likely to be clini-
cally feasible to address. Data were then z-transformed to 
place all concentrations on the same scale with a mean of 
0.0 and standard deviation of 1.0.

Bivariate Associations

A matrix of all cross-product Pearson correlations 
between the eight markers was created as an exploratory 
step and to identify potential problems with collinearity 
in cluster analysis (r > 0.80). There was no statistical 
correction for multiple comparisons, accepting the 
potential for alpha error rather than prematurely reject-
ing potentially important findings at this exploratory 
stage. If any significant correlations were identified, bio-
markers were regressed against each other in an iterative 
fashion in order to determine the variance inflation 
factor as a result of the correlations.

Profile Analysis

Meaningful clusters in the data were identified with 
maximum likelihood estimation (MLE)-based latent 
profile analysis (LPA) as previously described27 using 
MPlus software v6.12 (Muthen and Muthen, Los 
Angeles, CA).28 In brief, MLE-based analysis involves 
creating a model that accurately represents the data. 
However, unlike general analysis of variance 
(ANOVA)-based methods that rely on sample means 
to develop a linear model, MLE-based analysis relies 
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instead on the probabilities generated by each of the 
individual data points. Each of these individual prob-
abilities are then used to calculate a distribution that 
most likely fits the available data. Because of this data- 
driven approach to probability generation, this method 
is also robust against missing data points.29 Using all 
eight target biomarkers, a series of models was con-
structed, starting with a single profile (termed “class”) 
and increasing until model fit no longer improved in 
a meaningful way, the LPA estimation could no longer 
derive a mathematically definable model, one of the 
latent classes possessed fewer than 10% of participants, 
or the class structure did not make clinical sense. The 
fit indicators of interest were the Akaike information 
criterion (AIC),30–32 the Bayesian information criter-
ion (BIC),30–32 entropy,31 and the adjusted Lo-Mendell 
-Rubin likelihood ratio test (LMR-LRT)30,32 while con-
sidering solutions that provide generally strong poster-
ior classification probabilities (ideally ≥0.85). Though 
no set criteria exist for deeming model fit acceptable,32 

the cluster solution that provides the lowest AIC and 
BIC and the highest entropy value (acceptable >0.70, 
ideal >0.80) that also conforms to theory is generally 
considered optimal.33 The LMR-LRT is used to statis-
tically compare the fit of the k cluster solution with that 
of the k − 1 class solution. When fit no longer statisti-
cally improves (P > 0.05) with the addition of a new 
class, the solution with the smaller number of classes is 
generally accepted.32,34

In the interest of parsimony, once an overall class solu-
tion was determined, biomarkers were systematically elimi-
nated to obtain the simplest discriminatory model. To start, 
mean differences in square root–transformed marker con-
centration were explored across the identified classes using 
one-way ANOVA. The marker with the smallest interclass 
differences was eliminated first, followed by the next smal-
lest, and so on until the simplest model remained that still 
showed good fit indicators in LPA. The intention was that 
each of the blood markers defining the final class solution 
should show a significant difference between the groups.

Recovery and Outcome Analysis

After LPA, each participant was assigned to one of the 
identified classes based on relative blood marker con-
centration. From a previous study12 of derivation of 
recovery curves, each participant was also assigned to 
one of three trajectory classes: rapid, delayed, or mini-
mal recovery. Both the rapid and delayed recovery 
groups were grouped together as a “recovery predicted” 
group and proportions of the blood marker clusters were 
statistically compared against the “minimal or no recov-
ery predicted” group using chi-square analysis.

Sample Size Estimation

There is little guidance in the literature for optimal 
sample size in MLE-based LPA. Prior to the exploratory 
analyses described herein there was also no clear existing 
evidence to inform the likely number of clusters or the 
relative proportions or communalities to assist with 
sample estimation. Therefore, we adopted the general 
position in the field that a minimum of 100 samples is 
a minimum for meaningful results and continued to 
position the analyses as exploratory in nature; that is, 
hypothesis generating rather than hypothesis testing.

Results

Table 1 provides the characteristics of the study population. 
During the 36 months of the study, a trained research 
associate spent the first half of that time recruiting from 
the urgent care center during regular daytime hours. 
During this time, a total of 345 eligible participants were 
identified, of whom 183 (53% recruitment) consented to 
participate. Of these 183 participants, only 120 (78%) pro-
vided enough data for baseline analysis and only 5 (4%) 
were missing primary outcome data. There were 109 par-
ticipants in the SYMBIOME database who provided blood 
samples within 3 weeks of musculoskeletal trauma. After 
assay, data for 3 participants were removed because all 
analytes were not detectable or out of range of the kits. 
Mean age of the remaining 106 participants was 44.6 years 
and 58.5% of the sample was female. The modal mechan-
ism of injury was reported as “other” and 74.3% of the 
sample reported the primary region of injury as the upper 
or lower extremity (vs. the axial spine). Pain severity and 
interference at inception were moderate (mean severity = 
4.5/10, SD 2.0; mean interference = 28.6/70, SD 16.8). 
A combination of Kolmogorov-Smirnov test, skewness 
and kurtosis values, and a visual inspection of histograms, 
normal Q-Q plots, and box plots showed that the biomar-
ker concentrations were approximately normally 

Table 1. Characteristics and baseline values of SYMBIOME parti-
cipants in this analysis (N = 109).

Sex (% female) 58.5%
Age (mean, range) 44.6 years (18–66)
Body mass index (mean, range) 26.4 kg/m2 (14.4–51.5)
Primary region of injury (%) 

Axial 
Extremity

25.7% 
74.3%

Mechanism of injury (%) 
Motor vehicle injury 
Fall 
Hit by person or object 
Awkward lift or twist 
Other

7.1% 
28.6% 
19.4% 
14.3% 
30.6%

Brief Pain Inventory at inception (mean, range) 
Pain severity (/10) 
Pain interference (/70)

4.5 (0–8) 
28.6 (0–67)
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distributed for each marker. Kolmogorov-Smirnov values 
were significant (P < 0.05) for TNF-α, cortisol, and CRP, 
but the absolute z-values of their corresponding skewness 
and kurtosis statistics were within an acceptable range for 
our sample size (−3.29 < z < 3.29).35 This along with the 
abovementioned indicators suggested that the data did not 
display a significant departure from normality. Results of 
the iterative regression of biomarkers also revealed that 
multicollinearity was not likely to be a problem because 
each of the variance inflation factor values was below 
a conservative cut score of 3,36 with no value exceeding 2.6.

Table 2 provides the cross-product correlation 
matrix between all biomarker pairs after removal of 
outliers and square root transformation. BDNF and 
TGF-β1 demonstrated the strongest association (r = 
0.74, P < 0.01). Cortisol and CRP did not appear to be 
associated with any other biomarker, whereas IL-6 and 
IL-1β were significantly correlated with all markers 
except those two.

Table 3 shows the results of the LPA models with 
associated fit indicators for the models tested. The final 
class solution was a three-class model because it showed 
a meaningful improvement over a two-class solution based 
on relevant fit indicators (AIC = 2257.31, BIC = 2348.82, 
entropy = 0.83, LMR-LRT = 28.08, P = 0.08). Figure 1 show 
the relative concentrations of all eight markers in the three- 
class model. Although a four-class model did provide an 
improved fit according to the listed indicators, one of the 
identified classes contained less than 10% of the sample and 

was therefore excluded in accordance with a priori deci-
sions on class identification. After settling on the three- 
class model, analytes were removed in a systematic fashion 
based on total interclass differences. CRP, F(2,108) = 0.14, 
P = 0.87, and cortisol, F(2,108) = 2.34, P = 0.10, displayed 
the smallest interclass mean differences (Figure 1) and were 
eliminated first. Table 3 also shows the model fit adjust-
ment of the three-class latent profile solution with the 
sequential elimination of biomarkers. TNF-α, F(2,108) = 
10.65, P < 0.01, IL-6, F(2,108) = 6.06, P < 0.01, and IL-10 
were also removed, in that order, each time retesting model 
fit and posterior classification probabilities. The remaining 
three markers were BDNF, TGF-β1, and IL-1β. BDNF and 
TGF-β1 were both discriminative across the three classes, 
and IL-1β provided improved discrimination between the 
two lower concentration classes. The decision to retain IL- 
1β despite acceptable model fit is described in the 
Discussion section. The final model indicated a three- 
class solution that could be adequately described by three 
of the eight markers (AIC = 827.41, BIC = 865.09, entropy = 
0.80, LMR-LRT = 34.08, P = 0.03). The three classes were 
labeled according to the relative concentrations of the three 
markers as follows: class 1 = low concentration of all 
markers (33.9% of the sample), class 2 = average concen-
tration of all markers (47.7%), and class 3 = high concen-
tration of BDNF and TGF-β1 (18.3%). The three-class 
model provided strong probabilities of class assignment 
according to the LPA model calculation, where probability 
of correct identification for class 1 was 90.8%, for class 2 it 

Table 2. Cross-product correlation matrix of all eight analytes (Pearson’s r) after square root transformation.
IL-6 IL-10 TNF-α TGF-β1 BDNF CRP Cortisol

IL-1β 0.47** 0.53** 0.42** 0.34** 0.31** 0.03 −0.06
IL-6 0.47** 0.34** 0.25* 0.21* −0.01 0.01
IL-10 0.42** 0.19* 0.17 −0.09 −0.10
TNF-α −0.01 0.18 0.02 0.11
TGF-β1 0.74** −0.16 0.11
BDNF −0.01 0.16
CRP −0.05

*Correlation is significant at P < 0.05. 
**Correlation is significant at P < 0.01. 
IL-6 = interleukin 6; IL-10 = interleukin 10; TNF-α = tumor necrosis factor alpha; TGF-β1 = transforming growth factor-beta 1; BDNF = brain-derived neurotrophic 

factor; CRP = C-reactive protein; IL-1β = interleukin 1-beta.

Table 3. Fit indicators for latent profile analysis and class assignment: AIC, BIC, entropy, and LMR-LRT.
Model AIC BIC Entropy LMR-LRT (P)

Two-class 2298.77 2366.06 0.78 90.80 (0.07)
Three-class 2257.31 2348.82 0.83 58.08 (0.08)
Four-class 2231.06 2346.79 0.89 43.23 (0.30)
Three-class (CRP removed) 1986.71 2067.45 0.83 57.81 (0.058)
Three-class (cortisol removed) 1678.22 1748.20 0.82 56.22 (0.054)
Three-class (TNF-α removed) 1384.94 1444.15 0.81 47.06 (0.053)
Three-class (IL-6 removed) 1121.54 1169.99 0.80 39.44 (0.029)
Three-class (IL-10 removed) 827.41 865.09 0.80 34.08 (0.033)
Three-class (IL-1β removed) 539.24 566.16 0.81 27.44 (0.025)

Values highlighted in bold indicate the preferred class for analysis. 
AIC = Akaike information criterion; BIC = Bayesian information criterion; LMR-LRT = Lo-Mendell-Rubin likelihood ratio test; CRP = C-reactive protein; TNF-α = 

tumor necrosis factor alpha; IL-6 = interleukin 6; IL-10 = interleukin 10; IL-1β = interleukin 1-beta.
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was 90.3%, and for class 3 it was 88.5%. Figure 2 shows 
relative (z-transformed) concentrations graphically and 
Table 4 shows the raw (nontransformed) values with 95% 
confidence intervals.

With each participant assigned to the most likely 
biomarker class based on posterior probabilities, the 
sample was split into three groups. BPI Pain 
Severity and Pain Interference scores captured both 
at inception (<3 weeks after injury) and at 6-month 
follow-up were compared across the three groups 
using one-way ANOVA. Significant main effects 
were present in each of the 6-month follow-up 
scores, and a strong trend (P = 0.06) was seen in 
the main effect of class for the BPI Pain Interference 
score at inception (Table 5). The pattern of 
responses indicated that the scores for class 3 
(high BDNF/TGFβ1) were higher than those of the 
other two classes. As such, post hoc tests were con-
ducted with the scores of the first two classes 
grouped (low or average concentration of all mar-
kers) against those of class 3, using a Mann- 
Whitney U test because of skewed data at the 
6-month follow-up. Mean scores were significantly 
higher in class 3 for the BPI Interference subscale at 

inception (27.0 [SD 16.4] vs. 35.8 [SD 17.3], P = 
0.05) and at 6-month follow-up (2.2 [SD 4.8] vs. 7.3 
[SD 10.7], P = 0.03) compared to those of the other 
two classes, and BPI Pain severity at 6 months 
showed a strong trend toward significance (0.3 [SD 
0.7] vs. 1.4 [SD 1.8], P = 0.07).

Although we did capture pre-existing pain as a separate 
construct, many participants did not report their specific 
diagnosed conditions, but they did report their medications. 
For our current study, the pre-existing pain conditions were 
determined either by self-report or by extrapolating from 
their primary prescriptions. Becuase this represented 
a potentially influential factor to the results, we performed 
a chi-square analysis of preexisting pain against our three- 
class biomarker model. This yielded a nonsignificant chi 
square value because there did not seem to be any significant 
difference between those who had a preexisting pain condi-
tion and those who did not (χ2 = 5.07, P = 0.08).

Discussion

We have presented a first step toward derivation of 
a potentially useful panel of immunological, neurotrophic, 
and endocrine markers assayed from serum for use in 

Figure 1. Graphical representation of the three-class latent profile solution along with the frequencies of each class. All eight target 
markers presented in a three-class profile solution were labeled accordingly: class 1 = low biomarker concentration (32.8% of the 
sample), class 2 = average biomarker concentration (49.0%), class 3 = high BDNF and TGF-β1 (18.2%). Relative concentration 
represents z-transformed values.
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posttraumatic pain research. Through a multistep 
approach to latent profile analysis, a three-class solution 
was identified that could be adequately described by three 
of eight markers (BDNF, TGF-β1, and IL-1β), though at 
least two other markers (IL-6 and IL-10) also showed some 
significant discriminative accuracy between the classes. 
Further, participants assigned to the class representing the 
highest mean BDNF and TGF-β1 concentrations also 
tended to rate higher on self-rated scales of pain-related 
functional interference when measured <3 weeks after 
noncatastrophic musculoskeletal trauma or 6 months 
posttrauma.

As shown in Figures 1 and 2, an argument could have 
been made for removing IL-1β from the final model and 
retaining only TGF-β1 and BDNF, though the strong cor-
relation between these two markers (Table 2) led us to 
retain a third marker for better discriminative accuracy 
between class 1 and class 2 and to allow greater opportu-
nities for exploration of potential mechanisms behind the 
biomarker/clinical outcome associations found here. Both 
IL-10 and IL-6, and to a lesser extent TNF-α, could also 
have been retained because they also discriminated 
between the two lower concentration classes, but IL-1β 
provided the greatest discriminative accuracy (largest 
between-class mean difference) and was therefore chosen 
as the third marker. To our knowledge this is the first time 

that these three markers (arguably, up to six markers) have 
been shown to interact as a panel that may have clinical 
utility if the findings can be replicated in an independent 
sample. It is notable that the only two markers that showed 
no between-class differences (CRP and cortisol) were also 
those that showed no meaningful association with any of 
the other six markers (Table 2). This should not be mis-
taken as indicating that these markers are unimportant in 
research into pain and trauma but rather that through 
cluster analysis they did not contribute important explana-
tory utility to the classes identified herein.

BDNF is a small peptide that is involved in myriad of 
functions related to survival, growth, and plasticity of 
neurons and it acts as a key regulator of learning and 
memory.37 It carries out this activity by binding to its 
receptor tyrosine kinase B (TrkB) and activating signaling 
cascades involved in gene transcription for proteins of 
stress and plasticity.37–39 TGF-β1 is a ubiquitous pleio-
tropic cytokine that, along with its immunomodulatory 
function, is involved in cell growth, development, angio-
genesis, and wound healing.40 TGF-β1 has been shown to 
play a role in the long-term facilitation of neuronal activ-
ity and transmission.41 Both BDNF and TGF-β1 do not 
seem to display any significant short-term effects on 
sensory neurons, but they appear to have a role in facil-
itating long-term signaling by affecting new growth at 

Figure 2. Graphical representation of the three-class latent profile solution adequately described by three of the eight markers. Classes 
were labeled accordingly: class 1 = low biomarker concentration (33.9% of the sample), class 2 = average biomarker concentration 
(47.7%), and class 3 = high BDNF and TGF-β1 (18.3%). Relative concentration represents z-transformed values.
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sensory neuron synapses.41,42 With regard to pain, 
Sikandar and colleagues have demonstrated that primary 
afferent-derived BDNF may be involved in the transition 
from acute to chronic pain. By applying an inflammatory 
stimulus to mice, they showed that conditional BDNF 
knockout mice do not develop an ongoing mechanical 
hyperalgesia.25 Similarly, Richner and colleagues have 
shown that BDNF, via TrkB receptors, can reduce inhibi-
tion at the spinal dorsal horn by downregulating the 
expression of a protein known as KCC2.43 By inhibiting 
this BDNF-regulated pathway, they were able to prevent 
the decrease in KCC2 and impair mechanical allodynia. 
TGF-β1, with its ability to suppress immune activity and 
promote endogenous opioid signaling, appears to have 
a protective effect against the development of chronic 
neuropathic pain.44 The association between BDNF and 
TGF-β1 appears to have prior empirical support, at least 
in animal models. Sometani et al. have shown that TGF- 
β1 administered to cortical neurons of the rat increases 
BDNF and TrkB expression, suggesting that BDNF may 
require TGF-β1 in order to carry out its neurotrophic 
effects.45 Both BDNF and TGF-β1 also appear to regulate 
the Gadd45 family of enzymes, which have been impli-
cated in psychiatric diseases.46 Although it is unclear in 
what capacity BDNF and TGF-β1 exert their influence in 
persistent disability and pain in humans, their association 
is at least biologically plausible.

Although IL-1β does not offer much in the way of 
computational discrimination between average and high 

concentrations (i.e., between class 2 and class 3), it still 
represents a useful element in the model. Not only does it 
provide greater accuracy in distinguishing from the low 
biomarker concentrations (class 1) but it also provides 
some potential insight into the effects of trauma. It was 
found that an elevation in glucocorticoid levels contrib-
uted to conditioned fear memory in rats and that this was 
potentially an IL-1β-mediated event. In the aforemen-
tioned study, blocking or enhancing IL-1β signaling 
resulted in decreased or increased fear memory, 
respectively.47 In a separate study, mice exposed to con-
trolled bouts of severe stress demonstrated an enhanced 
fear learning, which was attenuated with the inhibition of 
IL-1β signaling.48 Human studies around this topic have 
yet to provide consistent results, but there appears to be 
a potential role for IL-1β in the development of posttrau-
matic stress disorders.49 Together, these studies suggest 
that IL-1β may be a useful target when considering overall 
risk for the development of persistent symptoms. IL-1β 
and IL-10 (i.e., the next biomarker candidate) appear to 
behave in a similar manner throughout the three classes, 
and this may be due to the finely tuned mechanisms of 
inflammation. An aggressive physiological response, 
inflammation is closely regulated in order to prevent the 
development of chronic complications. The mechanism 
of action tends to be through a dynamic process that 
occurs alongside resolution, rather than in a strict on– 
off fashion.50 It has been shown that a controlled program 
of resolution is activated within hours of an inflammatory 

Table 4. Mean (raw, untransformed) concentrations of the three retained analytes across the three classes identified through LPA.
Overall mean (95% confidence interval) Class 1 (n = 42) Class 2 (n = 47) Class 3 (n = 20) F (P)

IL-1β (pg/mL) 2.71 (2.43, 2.99) 1.32 (1.07, 1.58) 3.46 (3.14, 3.77) 3.19 (2.52, 3.87) 19.75 (<0.01)a

BDNF (ng/mL) 3.55 (3.00, 4.09) 1.78 (1.22, 2.34) 3.08 (2.71, 3.46) 8.65 (7.51, 9.80) 182.92 (<0.01)b

TGF-β1 (ng/mL) 24.45 (21.11, 27.79) 16.96 (12.22, 21.70) 21.78 (19.02, 24.54) 46.67 (35.74, 57.60) 67.14 (<0.01)b

IL-10 (pg/mL) 21.12 (18.08, 24.16) 15.7 (11.9, 19.5) 23.1 (18.5, 27.7) 27.8 (18.2, 37.4) 6.06 (<0.01)a

IL-6 (pg/mL) 92.17 (80.05, 104.29) 70.1 (56.9, 83.2) 101.9 (81.5, 122.2) 115.6 (80.3, 150.8) 4.81 (0.01)a

TNF-α (pg/mL) 5.61 (5.08, 6.13) 4.9 (3.9, 5.8) 6.0 (5.4, 6.7) 6.1 (4.6, 7.5) 2.77 (0.07)
CRP (mg/L) 3.34 (2.65, 4.01) 3.22 (2.24, 4.21) 3.36 (2.29, 4.44) 3.48 (1.41, 5.54) 0.00 (1.00)
Cortisol (μg/dL) 12.04 (10.58, 13.49) 10.44 (8.65, 12.22) 13.42 (10.75, 16.08) 12.05 (8.68, 15.43) 1.99 (0.14)

Statistical tests were one-way analysis of variance with Tukey’s post hoc test using square root–transformed data to reduce deviations from normality. The three 
markers retained in the final model solution are shown in bold. 

aThe mean concentration was significantly lower in class 1 compared to the other two groups. 
bThe mean concentrations of both BDNF and TGF-β1 were significantly different across all three groups. 
LPA = latent profile analysis; IL-1β = interleukin 1-beta; BDNF = brain-derived neurotrophic factor; TGF-β1 = transforming growth factor-beta 1; IL-10 = 

interleukin 10; 
IL-6 = interleukin 6; TNF-α = tumor necrosis factor alpha; CRP = C-reactive protein.

Table 5. Mean scores on the BPI Pain Severity and Pain Interference scales, captured at inception (<3 weeks after injury) and at 6-month 
follow-up, separated by biomarker class.

Class 1 (low all markers) Class 2 (average all markers) Class 3 (high BDNF/TGF-β1) F (P)

BPI Pain Severity (acute) 4.9 (4.2, 5.5) 4.1 (3.6, 4.7) 4.6 (3.6, 5.6) 1.52 (0.23)
BPI Pain Interference (acute) 30.6 (24.7, 36.4) 23.9 (19.5, 28.3) 33.7 (25.0, 42.3) 2.9 (0.06)
BPI Pain Severity (6 months) 0.2 (0.1, 0.4) 0.4 (0.0, 0.8) 1.3 (0.0, 2.7) 3.9 (0.03)
BPI Pain Interference (6 months) 1.8 (0.9, 2.8) 2.7 (0.9, 4.4) 6.1 (1.4, 10.8) 3.4 (0.04)

BPI = Brief Pain Inventory; BDNF = brain-derived neurotrophic factor; TGF-β1 = transforming growth factor-beta 1. Bold values represent significant main effects 
at 6-month follow-up.
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response, possibly in a tissue-specific manner, and that 
these processes can occur simultaneously on different 
gradients in order to regulate repair and restoration.50,51 

Given the timing of these events, it is not unreasonable to 
see the levels of both pro- and anti-inflammatory factors 
coinciding with one another, especially because these 
biomarkers were taken from people within the first 
3 weeks of their trauma. However, for reasons of parsi-
mony, IL-1β appears to be a more promising candidate 
for risk prognostication at this time compared to IL-10.

Despite the significance of BDNF and TGF-β1, at this 
early stage of research it is advised that future studies 
consider incorporating all of the biomarkers explored 
here. Cytokines often act synergistically such that their 
effectiveness is substantially increased when working in 
concert with one another.52 Together they can affect 
multiple systems through peripheral and central cross- 
talk mechanisms to influence immune, endocrine, and 
neuronal functioning.53,54 For example, previous work 
by Sterling and colleagues demonstrated a potential role 
for both TNF-α and CRP, wherein the latter appeared to 
show some discriminative accuracy in identifying those 
with more severe symptoms following whiplash injury.55 

Additionally, Li et al.14 and Klyne et al.15 found that IL-6 
may also be involved in discriminating between control 
and low back pain groups and within low back pain 
groups, respectively.

The effects in our study may be related to the simul-
taneous consideration of multiple markers in the same 
class. Many prior studies, including a recent companion 
manuscript from the same data set (under review), we 
showed that in isolation none of the eight markers 
explored here were associated with clinical pain or inter-
ference levels, though several potential moderating 
effects of psychosocial variables were identified. We 
believe, however, that it is the multivariate cluster nature 
of the results from this latent profile analysis that will 
prove more valuable. In the same way that a single 
genetic polymorphism is unlikely to explain important 
variance in a clinical outcome but Gene × Gene interac-
tions are more likely, the expression of certain proteins, 
at certain levels, in the same person appears as though it 
may be a more fruitful direction for exploration. In 
exploring this hypothesis, we are working at the “pro-
teomics” level of the “omics” cascade, downstream from 
genomic and transcriptomic processes but upstream 
from metabolomics. Future research directions could 
use these results and then move along that cascade in 
either direction to further explain these findings. It is 
important to reiterate that this is exploratory research 
and needs replication and that despite some biological 
plausibility, association is not causation.

Limitations

There are some important limitations of this study to con-
sider. First, blood was drawn using venipuncture, which may 
involve increased anxiety for some. All participants were 
notified at screening and prior to consent of the requirement 
for repeated blood draws, which may have been sufficient to 
eliminate those with needle-based anxieties. Second, blood 
was drawn as participants presented to the urgent care center 
regardless of the time of day. This allowed for a more accu-
rate “baseline” sample to be taken as close to the time of 
trauma as possible, but it does not take into account the 
known diurnal variations in some of these biomarkers, spe-
cifically cortisol56 and CRP.57 If sample collection had 
occurred at the same time each day, a greater overall effect 
of the eight-biomarker model may have been observed. 
Although the concentrations of the chosen biomarkers 
were relative to the rest of the cohort, the average concentra-
tions were within the range of values that have been observed 
in other healthy adults of various ages.58–62 It is worth noting, 
however, that the average concentrations of IL-6 (92.17 pg/ 
mL) and, to a lesser degree, IL-10 (21.12 pg/mL) were 
significantly higher than reported normative values. 
Despite this discrepancy, the concentration of IL-6 is still 
not beyond what is considered a normal range, because 
a healthy individual can experience increases up to 140 pg/ 
mL from strenuous exercise.63 IL-6 present in muscle tissue 
has also been shown to be very sensitive to stress and injury, 
which can lead to significant elevations in the tissue and 
subsequent elevations in IL-10.63,64 This may be particularly 
relevant because this cohort was selected based on exposure 
to musculoskeletal trauma. Because samples were collected 
within 3 weeks of trauma, there is a possibility of varying 
degrees of inflammatory activity depending on when the 
sample was taken. Recruitment took place at an urgent care 
center during normal work hours and not at an emergency 
department, which may also have contributed to the consis-
tency and relative intensity of biomarker activity. Another 
factor to consider is the way the samples were processed and 
stored. Each blood sample was stored at 4°C over a period of 
1 to 2 days before being aliquoted and frozen before analysis. 
It has been shown that some cytokines are very sensitive to 
refrigeration and freeze–thaw cycles, whereas others are 
relatively stable.65 All of the blood samples were subjected 
to the same conditions, but this may have different effects 
depending on the cytokine in question. This represents 
another potential limitation of the study because we were 
unable to separate the serum and analyze the sample on the 
same day, which is considered to be the ideal situation.65 

These factors may also provide an explanation as to why 
most of the raw concentrations of biomarkers were positively 
skewed. Lastly, because this was an exploratory study, we 
have not attempted to build more complex multivariate 
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models, including, for example, sex, age, or psychological 
distress. Our previous work supports the notion that the 
associations shown here may be moderated by other impor-
tant person-level variables that require larger data sets to 
properly explore. This represents an important step for 
future studies, because analyzing biomarker concentrations 
in isolation may be an oversimplification of their role in 
persistent pain. We also recognize that race and ethnicity 
have been shown to be important clinical dimensions in 
pain66; however, many of the participants chose not to report 
their race or ethnicity (only 19% of respondents did so). This 
made it impossible to stratify the data or even comment on 
the possible ramifications within this study, but it represents 
an important area of exploration for future research.

In conclusion, we have presented an exploratory study 
of immune, neurotrophic, and endocrine biomarkers in 
a population of people in the acute stage of noncatas-
trophic musculoskeletal trauma using latent profile analy-
sis. Our results show that a three-class profile solution 
appears to be the most statistically sound. Interestingly, 
six out the eight biomarkers showed some potential to 
discriminate between different classes, with cortisol and 
CRP being the only exceptions. Classes were organized 
based on increasing serum biomarker concentration, 
where the third class was characterized by high BDNF/ 
TGF-β1. Although recovered populations are not signifi-
cantly different in their levels of BDNF and TGF-β1, those 
who experience persisting disability or pain are more likely 
to have moderate to high levels in serum. These findings, if 
used in combination with other self-report measures of 
pain and distress, may provide a simple biopsychosocial 
approach to phenotyping pain in a clinical population.
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