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Abstract
Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases
that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal
cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the
progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an
increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the
mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately
recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in
MCF10.Ca1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS).
Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated
protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and
enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-Rap1GapshRNA cells reduced Rap1 activity
and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in
DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively
active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent
of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive
phenotype. The Graphical Abstract summarizes these findings.

Neoplasia (2018) 20, 951–963
e Vice-President for Research, and aided by the Imaging and Cytometry and
obanking and Correlative Sciences core facilities, which are supported in part by P30
022453. E. J. B. was supported by T32 CA009531 and F31 CA213807. R. M. J.
s supported by R25 GM058905. K. J. was supported by R21 CA175931,
54CA193489, and the PHC Research Stimulation Fund.
ceived 15 December 2017; Revised 6 July 2018; Accepted 12 July 2018

2018 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an
en access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-
-nd/4.0/).
76-5586
tps://doi.org/10.1016/j.neo.2018.07.002

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neo.2018.07.002&domain=pdf
r.mattingly@wayne.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neo.2018.07.002


In
M
th
th
ca
br
re
ha
an
le
lif
of
be
in
id
[9
pr
by

63
di
im
of
sm
st
th
of
de
ot

952 Downregulation of Rap1Gap in DCIS Shah et al. Neoplasia Vol. 20, No. 9, 2018
Graphical abstract

Down-regulation of Rap1Gap: A switch from DCIS to IDC
via ERK/MAPK activation. The confocal immunofluores-
cence images (collapsed z-stacks; 40x magnification) are of
in vitro 3D culture models of MCF10.DCIS. Green and blue
represent F-actin cytoskeleton and nuclei, respectively.
When Rap1Gap is reduced by shRNA, ERK is activated and
there is acquisition of an invasive phenotype. Conversely,
when Rap1Gap is re-expressed in the DCIS Rap1Gap
shRNA cells, there is reversion to a pre-invasive phenotype.

The in vitro 3D culture model recapitulates findings from
DCIS and IDC patient samples.
Neoplasia (2018) 20, 951–963
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troduction
ortality from breast cancer has declined for the past 2 decades, and
is decline [1] might be due to introduction of screening programs in
e 1980s, resulting in earlier diagnosis and intervention [2]. Ductal
rcinoma in situ (DCIS) accounts for 15%-25% of newly diagnosed
east cancer cases in the United States [3]. Until 1980, DCIS
presented less than 1% of breast cancer [4]. The apparent incidence
s increased, in part, due to the rise in use of mammography screens
d improved imaging technologies [5]. It is still unclear which DCIS
sions will become invasive or will remain indolent during a woman's
etime [6,7]. As a result, many women with low-risk DCIS are
fered treatment that may not benefit them [8]. We thus need to
tter define the factors that determine progression from DCIS to
vasive ductal carcinoma of the breast (IDC). Molecular profiling has
entified the same cancer subtypes in DCIS that are found in IDC
,10], and thus it is reasonable to propose that the invasive
ogression may be induced more by loss of suppressive activities than
the gain of additional oncogenic drivers [11].
Using next-generation sequencing, we found a consensus group of
upregulated genes in human DCIS cells grown in three-

mensional (3D) cultures relative to control nontransformed
mortalized human mammary epithelial cells [7]. Rap1Gap, one
those 63 upregulated genes, encodes a negative regulator of the
all GTPase Rap1. Rap1 is a key determinant in mammary acinar
ructure [12] and is overexpressed in breast IDC and in in situ lesions
at are adjacent to invasive disease [13]. Although a role for the loss
Rap1Gap in breast cancer progression has not previously been
fined, there is strong evidence for its tumor-suppressive activities in
her malignancies (including melanoma and thyroid, renal,
ncreatic, and oropharyngeal cancers) through inhibition of
oliferation, migration [14–16], invasion [17,18], and motility [19].
In order to investigate the potential tumor suppressive role of
ap1Gap in DCIS progression to IDC, we employed the MCF10
ogression series, which includes MCF10.DCIS and MCF10.Ca1D
lls, to model human DCIS and IDC, respectively. The MCF10
ries is a group of cell lines derived from MCF10A cells (which were
tablished by the spontaneous immortalization of human breast
ithelial cells originally isolated from a patient) [20]. The second
ember of the series, MCF10.NeoT, was generated after transform-
g MCF10A via transfection with mutated T24 H-ras. When
jected into immunodeficient nude mice, the MCF10.NeoT cells
veloped into lesions from which the rest of the progression series
as created. These include MCF10.AT1, which models atypical
perplasia, as well as the previously mentioned MCF10.DCIS and
CF10.Ca1D [20,21]. As xenografts, MCF10.DCIS cells form
sions that resemble premalignant comedo DCIS, which progress to
C over time [22]. The MCF10.Ca1D cell line is one of five
vasive tumorigenic cell lines derived from xenografts [23]. In a 3D
vironment, we show that while Rap1Gap is highly expressed in
CIS, it is downregulated in IDC. Knockdown of Rap1Gap in
CF10.DCIS cells leads to Rap1 and ERK/MAPK activation,
eakdown of adherens junctions, cytoskeletal remodeling, and
vasion. Introduction of dominant active (DA) Rap1A in MCF10.
CIS cells induced a similar phenotype as the Rap1Gap knockdown,
d expression of a dominant negative (DN) Rap1A reversed that
alignant phenotype. These results are consistent with the tumor-
ppressive effects of Rap1Gap in DCIS being modulated through
ap1A activity.
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aterials and Methods

eagents
Lipofectamine 2000 and immunoblotting detection reagents were
rchased from Thermo Fisher Scientific (Waltham, MA). Rabbit
ti-Rap1Gap (H-93) antibody was purchased from Santa Cruz
iotechnology (Santa Cruz, CA). Rabbit anti-Rap1 (07-916) and
ouse anti-GAPDH (clone C5) antibodies were purchased from
MD Millipore (Billerica, MA). Rabbit anti-total MAPK (#9102)
tibody was from Cell Signaling (Danvers, MA). Mouse anti-
ospho-MAPK (MAPK-YT) antibody was obtained from Sigma-
ldrich (St. Louis, MO). Mouse anti-E cadherin antibody was
rchased from BD Biosciences (San Jose, CA). Mouse beta-tubulin
lone E7) antibody was obtained from the Developmental Studies
ybridoma Bank (Iowa City, IA). Reduced growth factor Cultrex
constituted basement membrane (rBM) was purchased from
revigen (Gaithersburg, MD).

munohistochemical Staining and Analysis of Patient Tissue
mples
Tissue microarrays (TMAs) BR8011 (enriched for normal and
CIS tissues), BR487 (enriched for triple-negative or TN IDCs), and
R1504 (enriched for human epidermal growth factor receptor-2 or
ER2, and estrogen/progesterone receptor or ER/PR expressing
Cs) were purchased from Biomax (Rockville, MD). The slides
ere processed for immunohistochemistry (IHC) using optimized
otocols and antibodies for Rap1Gap. Indica Labs' TMA software
odule (Corrales, NM) was used to segment the tissue spots on the
ide and measure Rap1Gap. Paraffin sections were dewaxed in a
lene-ethanol series. Endogenous peroxides were removed by a
ethanol/1.2% hydrogen peroxide incubation at room temperature
r 30 minutes. Heat-induced epitope retrieval was performed with a
6 citrate buffer in the BIOCARE Decloaking Chamber. A 1-hour

ocking step with 10% goat serum in PBS was done prior to adding
imary antibody (H-93 Rap1Gap antibody at 1:200 overnight).
etection was performed using Life Technologies SuperPicTure
lymer Detection kit Broad Spectrum DAB (879663) or 3,3′-
aminobenzidine and counterstained with Mayer's hematoxylin.
ctions were then dehydrated through a series of ethanol to xylene
ashes and cover slipped with Permount (Thermo Fisher Scientific).
he staining for Rap1Gap was then classified as percent negative,
eak, moderate, or strongly positive, taking the entire analysis region
to consideration. Analysis of % positive stain of Rap1Gap was
rformed. Images of representative tissue spots were taken at 20×
agnification.

ell Lines and Cell Culture
MCF10 human breast epithelial progression series of cells
CF10A, AT1, and MCF10.DCIS and MCF10.CA1D) were
tained from the Biobanking and Correlative Sciences Core at the
armanos Center Institute, Detroit, MI. SUM 102 and SUM 225
ere a generous gift from Stephen Ethier (Hollings Cancer Center,
harleston, SC). T47-D, MCF-7, MDA-MB-231, BT549, and
s578t cell lines were obtained from ATCC (American Type Culture
ollection; Manassas, VA). All cell lines were maintained as
onolayer cultures with 5% CO2. MCF10 series and SUM lines
UM 102 and SUM 225) were maintained with DMEM/F12
pplemented with 5% horse serum and Ham's F12 growth medium
pplemented with 10% fetal bovine serum (FBS), respectively. T47-
, MCF-7, and BT549 cell lines were maintained with RPMI 1640
edium supplemented with 10% FBS. Hs578T and MDA-MB-231
ll lines were maintained with DMEM growth medium supple-
ented with 10% FBS. Cell lines were authenticated using the STR
werPlex 16 System (Promega) and screened for mycoplasma by
icroscopy (MycoFluor; Thermo Fisher Scientific) and polymerase
ain reaction (PCR) (Venor GeM, Sigma-Aldrich). For 3D culture,
trypsinized single-cell suspension in 3D assay medium with 2%
M [24] was pipetted on top of the rBM and grown for 8 days, with
edia change after 4 days.

munofluorescence
Cells were fixed and stained as described previously [25–27].
ages were collected with an LSM 780 confocal microscope (Carl
eiss GmbH, Jena, Germany). 3D reconstructions of optical sections
ere generated using Volocity software v.6.3.1 as described previously
8].

NA Extraction, Gene Expression, and Plasmid DNA
olation
RNA extraction from cells was performed using RNeasy RNA
olation kit by Qiagen (Hilden, Germany) and Life Magnetics RNA
olation kit (Detroit, MI) from cells grown in monolayer. cDNA was
nthesized using the Applied Biosystems High Capacity cDNA
everse Transcription Kit (Thermo Fisher Scientific). All qRT-PCRs
ere performed using Applied Biosystems TaqMan assays (Thermo
sher Scientific) using the Applied Biosystems StepOnePlus Real-
ime PCR system. Supplemental list of TaqMan assays is in
pplementary Table 1. Plasmid DNA isolation was performed using
e Bio-Rad Quantum Miniprep kit (Hercules, CA) and Life
agnetics Plasmid DNA isolation kit according to the manufactur-
's instructions.

etroviral Infection for Stable shRNA Knockdown and
ransient Overexpression of Rap1Gap, DA Mutant Rap1A-
12, and DN Mutant Rap1A-N17
We targeted MCF10.DCIS cells for stable retroviral knockdown
periments using two separate shRNA sequences that target
fferent regions on Rap1Gap. TTGGTGTGTGAAGACGTCA
r kd1 (knockdown sequence 1) and TCTTCTCACTCAAG-
ACG for kd2 (knockdown sequence 2) [29] were cloned into
NAi-Ready pSIREN RetroQ DsRed-Express plasmid (Takara Bio
SA, Mountain View, CA) for knockdown experiments according
established protocols [25]. For transient overexpression exper-
ents, MCF10.DCIS or MCF10.DCIS Rap1Gap shRNA cells
ere grown to approximately 50% confluency on 35-mm dishes
d then transfected with 200 ng of GFP-Rap1Gap, GFP-Rap1A-
12, or GFP-Rap1A-N17 plasmids using Lipofectamine 2000.
arallel transfections with a control GFP plasmid [30] were also
rformed.
munoblotting
To obtain sufficient material for immunoblotting, 3D overlay
ltures were set up on 60-mm culture dishes and grown for 8 days.
ructures were harvested from rBM by repeated washes with ice-cold
S supplemented with 5 mM EDTA. Lysates were prepared,
parated by SDS-PAGE, transferred to nitrocellulose membranes,
d immunoblotted with the appropriate antibodies following the
otocols previously described [25,26]. We performed Bradford's
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otein assay in order to determine the appropriate amount of protein
r loading.

vasion Assays
Thirty thousand MCF10.DCIS or MCF10.DCIS Rap1Gap
RNA cells were seeded in serum-free media on BD cell culture
serts (8-μm pore size; Franklin Lakes, NJ) that we precoated with 2
g/ml Cultrex. Cells were allowed to invade for 24 hours toward
edia supplemented with 5% horse serum. After removing the
ninvading cells with a cotton swab, the cells that had invaded
rough the filter were stained, and the filters were mounted on slides
ing a Dif-Quik kit (Thermo Fisher Scientific). The cells were then
sualized using a Zeiss Axiovert-200 microscope and counted using
ageJ software (NIH). Data were collected from four independent
periments performed in triplicate.

ap1 Activity Assay
Rap1 activity assays were done according to the manufacturer's
structions (EMD Millipore). Briefly, whole cell lysates were
epared in ice-cold lysis buffer [50 mmol/l Tris-HCl (pH 7.4),
5 mol/l NaCl, 1% NP40 (v/v), 2.5 mmol/l MgCl2, 10 μg/ml
rotinin, 10 μg/ml leupeptin, and 10% glycerol]. Ral GDS-RBD
arose beads were used to pull down active Rap1 for 45 minutes at
C. Samples of the pulldowns and of the input lysates were
parated by SDS-PAGE, transferred, and immunoblotted for
ap1.

esults

igh Expression of Rap1Gap in MCF10.DCIS and Luminal
ormone-Responsive Cells
Previous studies from our laboratory determined gene expression
anges common to three models of DCIS cells grown in 3D cultures
comparison to nontransformed MCF10A cells, also grown in 3D.
ext-generation sequencing results showed that Rap1Gap was
regulated in all three cell models of DCIS compared to MCF10A
lls [31]. To confirm whether protein expression correlated with the
RNA, we performed immunoblotting for Rap1Gap in the MCF10
man breast progression series and in SUM 102 and SUM 225 lines
igure 1). In the progression series, MCF10A cells expressed very
w levels of Rap1Gap; MCF10NeoT, a model of transformed breast
ithelium, and MCF10.AT1, a model of atypical hyperplasia,
pressed some Rap1Gap; MCF10.DCIS, a model of DCIS,
W
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gure 1. Rap1Gap protein is highly expressed at DCIS stage of the
CF10 progression series and SUM 225 cell lines. Lysates were
epared from cells grown on rBM for 8 days. Expected molecular
eight of Rap1Gap is 95 kDa. MCF-7 served as a positive control
r expression of Rap1Gap protein. β-Tubulin was used as a loading
ntrol. Data are representative of three separate experiments.
pressed high levels of Rap1Gap as expected from the previous
anscriptomic analysis; and MCF10.Ca1D, a model of IDC,
pressed very low levels of Rap1Gap. In the two other DCIS lines
UM 225 and SUM 102), Rap1Gap levels were strikingly different,
though prior transcriptomic analysis identified the upregulation of
ap1Gap mRNA in both [31]. SUM 225 cells, a HER2
erexpressing line that exhibits luminal markers and was derived
om a chest wall recurrence in a patient previously diagnosed with
CIS [32], abundantly expressed Rap1Gap to a level similar to that
und in MCF-7 cells, which have previously been characterized to
ve high expression [33]. In contrast, SUM 102 cells, which are of
sal type and were derived from a DCIS with microinvasion
4,35], expressed very low levels of Rap1Gap.
igh Levels of Rap1Gap in Human DCIS compared to
ormal and IDC Breast Tissue
To confirm the spectrum of Rap1Gap expression found in human
tient samples, we performed IHC for Rap1Gap in tissue
icroarrays (Figure 2). The results confirmed that Rap1Gap is
gnificantly overexpressed in patient samples of DCIS relative to both
e normal-adjacent and IDC samples. The TMAs included 36
mples of normal/tumor adjacent breast tissue, 50 samples of DCIS/
traductal carcinoma, and 179 samples of IDC. One-way analysis of
riance (ANOVA) and Bonferroni's test for multiple comparisons
ow statistically significant differences in the Rap1Gap expression
tween DCIS and normal or IDC tissues (normal vs. DCIS, P =
0307; DCIS vs. IDC, P = 0.0004). When the IDC samples were
parated into ER+/PR+, HER2+, and TN subtypes (Figure S1), we
und that expression of Rap1Gap was significantly reduced in the
R+/PR+ IDC samples relative to DCIS and that there was a trend
ot reaching significance) for a reduction in Rap1Gap expression in
N IDC relative to DCIS (Figure S1F). The TMAs included 75
mples of ER/PR+, 31 samples of HER2+, and 86 samples of TN
Cs. Samples with 1% positive staining for ER/PR were considered
be ER/PR+. To be considered HER2+, we included samples that
ere reported to have 3+ expression. Biomarker expression (ER/PR,
ER2, etc.) profiles for each tissue spot in the TMAs were provided
Biomax. One-way ANOVA and Bonferroni's test of multiple

mparisons show statistically significant differences in Rap1Gap
pression between DCIS and subtypes of IDC (DCIS vs. ER+/ER+
C; P b 0.0001).
Rap1Gap protein levels were also assessed in breast IDC cell lines.
e found a clear difference with regard to breast cancer subtype
igure S1G). Rap1Gap is expressed at higher levels in the luminal A
rmone-responsive cell lines (MCF-7 [36,37] and T47-D [37]) and
lower levels in the basal B breast cancer cell lines (MDA-MB-231,
s578t and BT549), which have mesenchymal characteristics
8,39].
lteration of Cell Morphology from Epithelial to Mesenchymal
henotype: A Consequence of Rap1Gap Silencing in MCF10.
CIS
As expression of Rap1Gap in breast IDC cell lines with
esenchymal characteristics was low, we hypothesized that Rap1Gap
ight act as a limiting factor on the progression of DCIS to IDC and
at knocking down Rap1Gap in MCF10.DCIS cells would confer
esenchymal characteristics, including changes to a spindle shape
d an invasive phenotype. Figure 3 shows MCF10.DCIS cells

Image of Figure 1


in
sh
cu
ph
M
fib
3A
hi

ph
ju
m
lo
in
of
ad
D
R
of
(F
co

(F
R
ob
re

L
C

an
th
ph
m
st
le
ex
in
K
sh
ou
0.

Figure 2. Rap1Gap is reduced in normal and human IDC patient samples relative toDCIS samples. The TMAs included 36 samples of normal/
tumor adjacent breast tissue, 50 samples of DCIS/intraductal carcinoma, and 179 samples of IDC. The slides were processed for IHC. (A-C)
Representative panels ofRap1Gap expression in normal (A),DCIS (B), and IDC(C) tissue. Imageswere taken at 20×.Size bar is 50μm. (D) Data
are represented as box and whisker plots, where the box represents the interquartile range and whiskers represent minimum andmaximum
values. One-way ANOVA and Bonferroni's test for multiple comparisons show statistically significant differences in the Rap1Gap expression
between DCIS and normal or IDC tissues (normal vs. DCIS, P = 0.0307; DCIS vs. IDC, P = 0.0004).
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fected with pSIREN dsRed retroviral control and two separate
RNA sequences that target Rap1Gap (termed kd1 and kd2). In 2D
lture, MCF10.DCIS cells grow in clusters with an epithelial
enotype and cell-cell contacts. Knockdown of Rap1Gap in
CF10.DCIS altered cellular shape toward a more scattered
roblastic phenotype, with less frequent cell-cell contacts (Figure
). Immunoblotting confirmed that both shRNA sequences were
ghly effective at reducing Rap1Gap expression (Figure 3B).
One characteristic of invasive breast cancer and mesenchymal
enotype is reduced E-cadherin and breakdown of adherens
nctions [40–42]. For example, E-cadherin is lost in invasive
esenchymal breast cancer cell lines [42,43], which also expressed
w levels of Rap1Gap (Figure S1). We hypothesized that reduction
E-cadherin and fewer adherens junctions would be a consequence
Rap1Gap knockdown. E-cadherin localization consistent with
herens junctions was present in the retroviral control MCF10.
CIS cells in 3D cultures but missing following knockdown of
ap1Gap (Figure 4A). In addition to changed localization, expression
E-cadherin was also reduced following Rap1Gap knockdown
igure 4B). Localization of E-cadherin to cell:cell junctions in
ntrol MCF10.DCIS cells was also shown clearly in 2D cultures
igure S2) and is consistent with our previous studies [27].
eduction in E-cadherin following Rap1Gap knockdown was also
served in monolayer cultures. This localization of E-cadherin was
duced following knockdown of Rap1Gap.
oss of Rap1Gap: Formation of Multicellular Outgrowths,
ytoskeletal Remodeling, and Invasion
When grown in rBM, MCF10.DCIS cells form compact dense
d dysplastic structures ([25] and Figure 4A). We hypothesized
at MCF10.DCIS Rap1Gap shRNA cells would gain an invasive
enotype that would be revealed in 3D cultures by production of
ulticellular outgrowths. After 8 days of growth in rBM, the 3D
ructures formed by MCF10.DCIS Rap1Gap shRNA cells were
ss densely packed (Figure 4A), were larger (Figure 4C), and
hibited a significant increase in the number of multicellular
vasive outgrowths (Figure 4C, D). One-way ANOVA and
ruskal-Wallis test for multiple comparisons were performed to
ow the statistically significant differences between the number of
tgrowths in the control vs. both of the knockdown lines; P b
0001.

Image of Figure 2
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Figure 3. Rap1Gap knockdown in MCF10.DCIS cells transforms cellular morphology from epithelial to mesenchymal phenotype. (A)
MCF10.DCIS cells grown inmonolayer cultures were infected with pSIREN dsRed control (Con) or Rap1Gap shRNA (kd1 and kd2). Images
(20× magnification) are shown in gray scale to better delineate morphology. Size bar, 50 μm. (B) The immunoblot shows robust
knockdown of Rap1Gap using two separate shRNA sequences. β-Tubulin was used as a loading control.
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These morphological changes are also shown in the 3D
constructions in Figure 5A and in the supplementary movie
les. There was an overall change in the organization of the actin
toskeleton, with the outgrowths containing actin stress fibers, as
served in the images of the collapsed z-stacks (Figure S3).
hese images also show that the cortical actin rings that are found
MCF10.DCIS cells were lost following knockdown of

ap1Gap.
Cytoskeletal remodeling is a significant part of the invasion
ocess and is carefully orchestrated [44,45]. In order to test whether
ss of Rap1Gap would enhance the invasive capability of MCF10.
CIS cells, the ability of the cells to move through rBM was assayed.
e found a significant increase in the number of invading cells
hen Rap1Gap is silenced, compared to the control (Figure 5B, C).
ne-way ANOVA and Dunn's multiple comparisons test were
rformed for statistically significant differences between the
umber of invaded cells in the control vs. the two knockdown
es; P = 0.0002. Live cell proteolysis assays were also performed to
st whether this invasive phenotype was associated with an
creased ability to degrade the matrix. Degradation of collagen
(indicated by green fluorescence) was detected in the MCF10.
CIS Rap1Gap shRNA structures but not in control MCF10.DCIS
ructures (Figure S4).

ap1Gap Silencing in MCF10.DCIS: Increase in ERK/MAPK
ctivation
ERK/MAPK activation has been observed in a wide variety of
ncers and is closely associated with cancer development, migration,
vasion, and metastasis [46]. In IDC, ERK/MAPK mediates
igration and invasion [47]. Our results (Figure 5C) show that
lencing of Rap1Gap in MCF10.DCIS led to enhanced invasion.
herefore, we hypothesized that Rap1Gap silencing may result in
RK/MAPK activation inMCF10.DCIS cells. The immunoblotting
sults in Figure 6A show increased phosphorylation of ERK1/2 in
CF10.DCIS cells with silenced Rap1Gap expression. A 6-fold and
-fold increase in ERK1/2 phosphorylation was observed in the kd1
d kd2 lines, respectively, compared to the control. We also
served robust ERK1/2 activation in 3D cultures of MCF10.Ca1D
lls compared to the control (a 14-fold increase). Significant
fferences in activated ERK1/2 between the control and the
ockdown lines or MCF10.Ca1D cells were assessed using one-way
NOVA and Bonferroni's multiple comparisons test; P = 0.0006.

Image of Figure 3


R
C
P

D

W
ac
in
R
ce

Figure 4. Knockdown of Rap1Gap expression in MCF10.DCIS cells reduces E-cadherin levels and leads to development of multicellular
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protein present in the control and Rap1Gap knockdown plasmid. (D) Outgrowths were counted by two blinded individuals. One-way
ANOVA and Kruskal-Wallis test for multiple comparisons were performed to show the statistically significant differences between the
number of outgrowths in the control vs. both of the knockdown lines. P b 0.0001. Error bars represent standard error of the mean (SEM).
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eexpression of Rap1Gap in MCF10.DCIS Rap1Gap shRNA
ells: Decrease in Rap Activation and Block of Malignant
henotype
To further test the role of Rap1Gap in the transition of MCF10.
CIS to an invasive phenotype, we performed rescue experiments.
gure 5. Knockdown of Rap1Gap expression in MCF10.DCIS cells le
agnification) are snapshots of 3D reconstructions of z-stacks of overla
alloidin) of F-actin, and DAPI (blue) is of DNA. Movie files of the 3D
0× magnification) are of cells that invaded through the filter. (C) Gra
ean of four independent experiments done in triplicate. One-way AN
atistically significant differences between the number of invaded cel
e hypothesized that reexpression of Rap1Gap would decrease Rap
tivity and block the formation of invasive multicellular outgrowths
3D structures formed by the Rap1Gap knockdown lines. A GFP-
ap1Gap construct was transfected into DCIS Rap1Gap kd2 shRNA
lls. To test expression of GFP-Rap1Gap, cells were grown in 2D
ads to cytoskeletal remodeling and invasion. (A) Images (40×
id green and blue channels. Green is fluorescent detection (FITC
reconstructions are included as supplementary data. (B) Images
ph shows mean number of invaded cells ±SEM. Data set is the
OVA and Dunn's multiple comparisons test were performed for
ls in the control vs. the two knockdown lines; P = 0.0002.

Image of Figure 4
Image of Figure 5
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Figure 6. Rap1Gap knockdown inMCF10.DCIS causes an increase in ERK/MAPK activation. (A) Immunoblot of ERK1/2 in lysates prepared
from cells grown in 3D shows ERK1/2 activation in the DCIS knockdown lines andMCF10.Ca1D cells vs. the control. (B) ERK1/2 activation
was quantified using densitometry and plotted using GraphPad Prism. Box whisker plot shows percent ratio of phosphorylated ERK1/2
vs. total ERK1/2 from immunoblots from four separate experiments. Significant differences in activated ERK1/2 between the control and
the knockdown lines or MCF10.Ca1D cells was assessed using one-way ANOVA and Bonferroni's multiple-comparisons test; P= 0.0006.
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nditions for 3-5 days before imaging (Figure S5A), and lysates were
epared for immunoblotting (Figure 7B); both confirmed successful
expression. Transfected cells from parallel dishes were trypsinized
gure 7. Rap1Gap reexpression in MCF10.DCIS Rap1Gap shRNA cells
hown in magenta, fluorescent probe detection of filamentous actin
ap1Gap expression. DAPI (blue) is fluorescent detection of DNA. Image
F-actin cortical rings (magenta) in the kd2 lines expressing GFP-Ra
expression of GFPRap1Gap fusion protein in kd2 following transfectio
CF10.Ca1D cells. Reexpression of Rap1Gap in kd2 cells leads to re
rcent ratio of Rap1 GTP vs. total Rap1. Data are mean ± SD taken fr
d seeded directly on rBM to be cultured with overlay for 8 days
fore fixing and staining for F-actin (Figure 7A). Reexpression of
ap1Gap blocked development of invasive outgrowths and restored
decreases Rap1 activity and blocks mesenchymal phenotype. (A)
in the kd2 line, GFP control (GFP-con), and kd2 line with GFP-
s are representative of three separate experiments. A 63× image
p1Gap is shown in Figure S5B. (B) Immunoblot shows robust
n. (C) Increased Rap1 activity in the Rap1Gap shRNA cells and in
duction of Rap1 activity similar to the control. (D) Bar graph of
om two separate experiments.

Image of Figure 6
Image of Figure 7
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e compact and dense phenotype that is characteristic of the 3D
ructures formed by MCF10.DCIS cells. Actin cortical rings were
so restored by reexpression of Rap1Gap (Figure S5B).
Given that Rap1Gap is a negative regulator of Rap, we reasoned
at knockdown of Rap1Gap would result in an increase in Rap
tivity and that reexpression of Rap1Gap would reverse that
tivation. As seen in Figure 7C, D, while modest Rap1 activity
as observed in the control MCF10.DCIS cells, increased Rap1
tivity was found in both of the MCF10.DCIS Rap1Gap shRNA
es (four- and five-fold, respectively, compared to the control cells)
d in MCF10.Ca1D cells (a five-fold increase). In addition,
expression of Rap1Gap caused a reduction in Rap1 activity
hree-fold) in the kd2 line.

ffects of DA-Rap1A and DN-Rap1A on Malignant Phenotype
Rap1Gap is a negative regulator of Rap1A and Rap1B [16]. Given
at knockdown of Rap1Gap led to Rap1 activation and subsequent
quisition of invasive phenotype, we investigated whether direct
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gure 8. Expression of dominant active (DA) Rap1 (Rap1-V12) in
CF10.DCIS cells and dominant negative (DN) Rap1A (Rap1A-N17)
MCF10.DCIS Rap1Gap shRNA (kd2) cells promotes and blocks
esenchymal phenotype, respectively. (A) Shown in magenta,
orescent probe detection of filamentous actin in MCF10.DCIS
lls transfected with GFP control (GFP-con) and GFP-DA-Rap1A.
) Fluorescent probe detection of filamentous actin in the kd2 line
ansfected with GFP-control and GFP-DN-Rap1A. DAPI (blue) is
orescent detection of DNA. Images were taken at 20×
agnification and are representative of three separate experi-
ents. Size bar is 20 μm. Please see Figure S7 for 40× images of F-
tin cortical rings (magenta) in the MCF10.DCIS cells transfected
ith GFP control plasmid and kd2 lines expressing GFP-DN-Rap1A,
spectively.
odulation of Rap1A activity would have similar effects. Transient
ansfection of GFP-tagged DN-Rap1A mutant (Rap1A-N17) in the
2 line led to the appearance of cell-cell contacts in monolayer
lture and clustering of cells (see Supplemental Figure S6). When
own in 3D (Figure 8), expression of DN-Rap1A mutant (Rap1A-
17) in the kd2 line led to a reversion of invasive phenotype and the
appearance of organized cortical rings and compact structure
igure S7), similar to MCF10.DCIS. The images in Figure S7 also
ow disorganized cortical rings in the 3D structures formed by the
CF10.DCIS cells after transfection with the DA Rap1A. The 3D
ructures, formed by the MCF10.DCIS cells when transfected with
A Rap1A mutant (Figure 8), lost their characteristic compact shape,
splayed disorganization of the actin cytoskeleton, and grew invasive
tgrowths, a phenotype that is reminiscent of the kd2 line (Figure 5).

iscussion
e aimed to delineate the role of Rap1Gap in the progression to IDC
using the MCF10 progression series as a model. Our previous

anscriptomic data [7] revealed that Rap1Gap was upregulated in
CF10.DCIS and two other DCIS lines, SUM 225 (derived from a
est wall recurrence [32]) and SUM 102 (a primary DCIS with
icroinvasion [7,34,35]), compared to the nontransformed
CF10A cells. Our immunoblotting analysis confirmed that
ap1Gap expression is high in MCF10.DCIS and SUM 225 cells
t unexpectedly found low expression of Rap1Gap in SUM 102
lls. This might be due to the dynamic regulation of Rap1Gap
otein stability, as occurs in thyroid cancer models [48]. Our IHC
alysis of breast tissue samples revealed that DCIS lesions had a
gher percentage of Rap1Gap expressing cells compared to normal
sue. These results are consistent with our in vitro data on the
CF10 progression series (Figure 1) and with IHC of tissues in the
ro t e in At l a s webs i t e (h t tp : / /www.pro t e ina t l a s .o rg /
NSG00000076864-RAP1GAP/tissue). The latter reports positive
aining for Rap1Gap in the majority (9 of 11) of the small set of
CIS samples, with nondetectable staining in normal tissue.
Analysis of Rap1Gap staining in the IDC samples revealed an
erall reduction in Rap1Gap expression compared to that in DCIS
mples. Analysis of Rap1Gap staining profiles in IDCs divided by
btype revealed that Rap1Gap is reduced in ER+/PR+ IDCs and a
wnward trend for its expression in TN IDCs compared to DCIS.
ven though our staining analyses show reduced Rap1Gap in the ER
PR+ IDCs compared to other subtypes, we found high Rap1Gap
pression levels in two cell lines, MCF-7 and T47-D, that model
minal A [37], hormone-responsive disease. The overall pattern of
e tissue expression included a large range of intersample variability,
d thus, it may be that these two cell lines represent cases at the
per range of Rap1Gap expression.
The variability in Rap1Gap expression in our panel of breast cancer
ll lines and within the IDC subtypes used in our TMA analysis
uld be related to the molecular heterogeneity and clinicopatholog-
al features present in DCIS and IDC [49,50]. Reports have
oposed that molecular features (gene signatures) associated with
sease progression are characteristic of five intrinsic subtypes [51]. It
possible that Rap1Gap expression profiles in breast cancer might be
btype specific. There was a trend of decreased Rap1Gap expression
the TN IDC cases relative to DCIS, but that did not reach

gnificance perhaps because of the few TN IDC samples available for
alysis (N = 86). It will be useful to further explore that potential
ttern because there was a consistent pattern in the TN IDC cell

http://www.proteinatlas.org/ENSG00000076864-RAP1GAP/tissue
http://www.proteinatlas.org/ENSG00000076864-RAP1GAP/tissue
Image of Figure 8
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es, with the three tested showing low Rap1Gap expression. A
rther complication is that the TN category includes subsets of
sease that are marked by significant molecular heterogeneity [52–
]. The TN cell lines studied here (BT549, Hs578T, and MDA-
B-231) [37,38] are primary breast papillary IDC, carcinosarcoma,
d adenocarcinomas, respectively (see Table 1 of [57]). They express
w levels of claudins [37] and exhibit gene expression profiles that are
riched for mesenchymal markers [58,59]. Thus, low levels of
ap1Gap may be particularly associated with the claudin low subset
TNBCs and thus be linked with acquisition of mesenchymal
aracteristics.
Our results are also consistent with gene expression data obtained
om the Oncomine database. The Curtis Breast dataset shows a 2.4-
ld increase in Rap1Gap mRNA expression in DCIS samples
mpared to normal breast tissue samples (Figure S8). Interestingly,
e same dataset shows a 1.69-fold change decrease in Rap1Gap
RNA expression in TN IDCs vs. IDCs with other biomarkers
igure S9). The TCGA Breast dataset also reveals that Rap1Gap
RNA expression is downregulated 1.43-fold in TN IDC samples
mpared to IDCs expressing other biomarkers (Figure S10).
Our results (Figures 3-5, 7) indicate that, upon silencing of
ap1Gap, MCF10.DCIS cells acquired phenotypic and behavioral
aracteristics that are reminiscent of the basal B cell lines BT549,
DA-MB-231, and Hs578T [38,39]. In particular, when grown in
M, basal-like cell lines display a stellate phenotype, characterized by
duced or absent E-cadherin, and/or presence of multicellular
tgrowths [57]. They also demonstrate robust invasive capability in
vitro assays and exhibit activated ERK/MAPK signaling [57]. Here
e demonstrated that silencing of Rap1Gap in MCF10.DCIS cells
sults in activation of ERK MAP kinase, reduced levels of E-
dherin, formation of invasive outgrowths (cytoskeletal remodeling),
d a robust invasive capability. These data are strongly supported by
her studies which have previously reported that depletion of Rap1A
aggressive breast cancer cell line MDA-MB-231 reduces invasion in
Matrigel cultures [60]. These results also are in line with other

ports where, in colon cancer models, increased Rap1 activation
ads to breakdown of adherens junctions, cytoskeletal remodeling,
d enhanced invasion [19,29,61]. Our results also complement
servations where overexpression of Rap1Gap decreases invasive
pability of renal cell carcinoma cell lines [18].
Epithelial to mesenchymal transition (EMT) is a complex,
ansient, and reversible process, characterized by the loss of epithelial
aracteristics (such as cell-cell attachments, adhesion, and apical-
sal polarity) and the gain of mesenchymal characteristics (such as
creased motility, invasive properties, and a spindle-like morphol-
y) [62]. Loss of functional E-cadherin contributes to an EMT-like
enotype, in which epithelial cells exhibit loss of cell-cell adhesion,
creased motility, and invasiveness [63]. While studies have linked
ap1 to formation of E-cadherin–based cell-cell contacts [64],
ciprocal interactions include Rap1 linkage to E-cadherin endocy-
sis [65] and disengagement [66]. Our data are in agreement with a
cent study correlating low levels of Rap1Gap with loss of E-cadherin
pression and EMT in gastric cancer [67]. Other studies also show
at downregulation of Rap1Gap has been linked to invasion and/or
MT in multiple cancers [15–17,29,67,68] and is correlated with
duction of mesenchymal morphology and migratory behavior [69].
pithelial cells possess apicobasal polarity, which helps anchor them
the basement membrane [70]. EMT-like changes include the

ansition from apicobasal polarity to front-rear polarity and loss of
rtical actin rings with gain of actin stress fibers [71]. We have
own that while MCF10.DCIS cells have cortical rings, Rap1Gap
RNA cells do not and instead develop stress fibers in the cells in the
vasive outgrowths. Thus, our studies link Rap1 activation and
terations in adherens junctions via reduction in E-cadherin. Our
udies also connect changes in cytoskeletal remodeling to mesen-
ymal morphology and invasion.
Silencing of Rap1Gap inMCF10.DCIS cells led to increased ERK/
APK phosphorylation in 3D models of DCIS. This observation is
line with 2D studies in melanoma cells that show that Rap1Gap
erexpression leads to reduced ERK/MAPK phosphorylation [15].
the context of IDC, our findings are in agreement with ERK/
APK mediating cell migration and invasion [47]. Previous studies
om our laboratory have confirmed the presence of activated H-Ras
MCF10.DCIS [27]. This is expected because MCF10.DCIS is

ogenic to the MCF10.NeoT cell line, which harbors the
nstitutively active T24-H-Ras [21], and thus, DCIS Rap1Gap
RNA cells also express constitutively active H-Ras. Because ERK/
APK is further activated in the DCIS Rap1Gap shRNA cells, we
nclude that Rap1 and Rap1Gap might participate downstream of
as to control the activation of ERK/MAPK. For example, Rap1 may
gulate ERK/MAPK by antagonizing signals relayed by H-Ras.
ther studies have supported a role for Rap1 in inhibition of
ansformation by Ras due to its participation in signaling networks
at control cell polarity [72] and strengthening of cell attachment to
th extracellular matrix and neighboring cells [73]. Other studies
ve reported that overexpression of Rap1A in ovarian cancer cells led
ERK1/2 activation and enhanced expression of EMTmarkers [74].
onversely, the MEK inhibitor U0126 reversed the effects of Rap1A
a ERK1/2 inhibition. These data build upon previous work in
dothelial cells, where similar effects were observed when
troduction of DN-Rap1A reduced ERK1/2 phosphorylation and
d to concomitant reduction tube formation, proliferation, and
igration [14].
Rap1A mRNA is robustly expressed in DCIS and IDC samples
mpared to normal mammary ductal cells, and Rap1A protein levels
e increased in invasive breast cancer cell lines vs. MCF7 and
CF10A cells [60]. We show that introducing DN-Rap1A does
enocopy the effects of Rap1Gap expression on DCIS cells. We
rther show that introducing DA-Rap1A in premalignant DCIS cells
ads to the acquisition of an invasive phenotype (Figure 8), which
imics the phenotype observed in the kd2 line (Figures 4 and 5). Our
T-PCR analyses reveal measurable expression of mRNAs for
ap1A, Rap1B, and Rap2 in MCF10.DCIS cells. Thus, although our
ta show that manipulation of Rap1A activity can phenocopy
anges in Rap1Gap expression, it is possible that Rap1B and/or
ap2 might play a role in this system and could be the subject of
rther studies. Rap1B and Rap2 expression is associated with poor
ognosis, aggressive phenotype, and metastasis in various cancers
5,76]. Thus, overall, we conclude that upregulation of Rap1Gap in
CF10.DCIS, through modulation of Rap activity, might serve as a
mor-suppressive attempt to prevent progression to IDC by
ducing Ras-driven transformation. This is consistent with the role
Rap1 as an antagonist of activated Ras in thyroid cancer [77].
Various studies suggest that Rap1Gap may function as tumor
ppressor since it is frequently lost in several tumor types [48].
umor suppressors serve as transducers of antiproliferative signals,
hibit cell cycle progression, and induce apoptosis [78]. Overex-
ession of Rap1Gap in various cell types induces apoptosis [79],
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hibits cell proliferation [14,16], blocks passage through the cell
cle [80], and reduces tumor progression [68,69]. Studies in various
odels, such as melanoma and thyroid and pancreatic cancers, show
at Rap1Gap expression is lost at a higher frequency in more
gressive tumor types via promoter hypermethylation and/or loss of
terozygosity (LOH) [15,17,68,81]. LOH for Rap1Gap leads to
omotion of growth, survival, and invasion in pancreatic cancer
odels in vitro and in vivo [17]. These findings are complemented by
udies in prostate cancer that show evidence of cancer cell migration,
vasion, and enhanced rate of tumor incidence in mouse xenograft
odels following Rap1 activation [82]. Additional in vivo experi-
ents performed to evaluate the tumor-suppressive effect of
ap1Gap show reduction in tumor size, inhibition of tumor
rmation, and fewer metastases following reexpression [16,17].
oreover, clinical studies in endometrial cancer show that low levels
Rap1Gap are correlated with poorly differentiated tissue [67].

hus, Rap1Gap possesses the majority of the well-studied character-
tics found in tumor suppressors, which suggests that Rap1Gap may
nction in this manner in the progression to IDC.
Alternative signaling mechanisms for the role of Rap1Gap in
ncer progression have been proposed. Recent investigations on the
fects of Rap1Gap on human umbilical cord vein endothelial cells
veal inhibition of proliferation via ERK/MAPK and protein kinase
(AKT) pathways [14]. Additionally, studies show that overexpres-
on of Rap1Gap in pancreatic cancer cells lines [17] resulted in
hibition of focal adhesion kinase activation and cell spreading
ithout changes in ERK/MAPK phosphorylation. Other studies have
so shown that depletion of Rap1Gap in colon cancer cells induces
crease in Src and focal adhesion kinase activation [29]. Rap1 also
fects the endocytic recycling pathway involved in the formation and
aintenance of E-cadherin–mediated cell-cell junctions in human
bryonic stem cells [83]. In addition to the regulation of E-
dherin, inside-out signaling via the integrins, which link the ECM
the actin skeleton at focal adhesion sites, is also regulated by Rap1
a Src activity [84]. Rap1 also spatially and temporally regulates actin
namics via Rho in endothelial barrier function [85]. This might be
rmane to the mechanism of stress fiber formation in mammary
ithelial cells and would be in line with previous studies from our
boratory that suggested that increased Rho A activity might be a
ntributing factor to the fibroblastic phenotype in Ras-transformed
CF10A cells [27]. Since a more mesenchymal phenotype was
served in the MCF10.DCIS cells with silenced Rap1Gap, it is
ssible that increased Rap1 activity might lead to increased RhoA
tivity, resulting in stress fiber formation and facilitation of the
ocess of invasion.
Rap1Gap is member of a family of proteins that regulate Rap1.
ap1Gap2 is expressed in normal luminal cells and myoepithelial cells of
e human breast duct (https://www.proteinatlas.org/
NSG00000132359-RAP1GAP2/tissue/breast). We did not find other
ports describing Rap1Gap2 expression in breast cancer, but our qRT-
R analyses identified mRNA for Rap1Gap2 in the MCF10.DCIS
lls. Signal-induced proliferation-associated 1 (SIPA1), another member
the Rap1Gap family of proteins, is reported to be involved in breast
ncer progression. SIPA1 is expressed in human ductal andmyoepithelial
lls (https://www.proteinatlas.org/ENSG00000213445-SIPA1/tissue/
east), although our qRT-PCR analysis indicated very low mRNA
pression levels in MCF10.DCIS cells. Thus far, the majority of studies
at have linked SIPA1 to breast cancer are analyses of single nucleotide
lymorphisms and their correlation with breast cancer risk, incidence,
etastasis, and poor prognosis and survival [86–89]. One group has
cently reported that nuclear SIPA1 activates the promoter of β1 integrin
d promotes invasion of MDA-MB-231 breast cancer cells [90].
This is the first mechanistic study of Rap1Gap in breast cancer
ogression. Decreases in Rap1Gap expression led to changes in
herens junctions via reduction in E-cadherin levels, to cytoskeletal
modeling, and to increases in ERK activation that are correlated
ith an invasive phenotype in DCIS (see model in Graphical
bstract). We have developed a model in which high expression of
ap1Gap may be limiting the premalignant progression of breast
ncer at the DCIS stage, whereas subsequent reduction in Rap1Gap
ay act as a switch to an invasive phenotype.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2018.07.002.
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