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Background: Neuroinflammation is critical in developing and maintaining neuropathic

pain after spinal cord injury (SCI). The receptor-interacting protein kinase 3 (RIPK3) has

been shown to promote inflammatory response by exerting its non-necroptotic functions.

In this study, we explored the involvement of RIPK3 in neuropathic pain after SCI.

Methods: Thoracic (T10) SCI rat model was conducted, and the mechanical threshold

in rats was measured. The expressions of RIPK3, nod-like receptor family pyrin

domain-containing protein 3 (NLRP3), caspase-1, and nuclear factor-κB (NF-κB) were

measured with western blotting analysis or quantitative real-time polymerase chain

reaction (qRT-PCR). Double immunofluorescence staining was used to explore the

colabeled NLRP3 with NeuN, glial fibrillary acidic protein (GFAP), and ionized calcium-

binding adapter molecule 1 (IBA1). In addition, enzyme-linked immunosorbent assay

(ELISA) was applied to analyze the levels of proinflammatory factors interleukin 1 beta

(IL-1β), interleukin 18 (IL-18), and tumor necrosis factor alpha (TNF-α).

Results: The expression of RIPK3 was elevated from postoperative days 7–21, which

was consistent with the development of mechanical allodynia. Intrathecal administration

of RIPK3 inhibitor GSK872 could alleviate the mechanical allodynia in SCI rats and reduce

the expression levels of RIPK3. The activation of NLRP3 inflammasome and NF-κB was

attenuated by GSK872 treatment. Furthermore, immunofluorescence suggested that

NLRP3 had colocalization with glial cells and neurons in the L4–L6 spinal dorsal horns.

In addition, GSK872 treatment reduced the production of inflammatory cytokines.

Conclusion: Our findings indicated that RIPK3 was an important facilitated factor for

SCI-induced mechanical allodynia. RIPK3 inhibition might relieve mechanical allodynia

by inhibiting NLRP3 inflammasome, NF-κB, and the associated inflammation.

Keywords: neuropathic pain after spinal cord injury, receptor-interacting protein kinase 3, NLRP3 inflammasome,

nuclear factor-kappa B (NF-κB), GSK872
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INTRODUCTION

Neuropathic pain is a common complication after spinal cord
injury (SCI) (Bryce et al., 2012; Sweis and Biller, 2017). The
neuropathic pain after SCI is stubborn, severe, and protracted,
which brings great pain and endless torture to the patients (Attal,
2021). The sense of helplessness and despair that pain brings to
patients is even more harmful than the impact of dysfunction.
Unfortunately, there is still a lack of effective treatment to control
the progression of pain. Therefore, it is essential to explore the
mechanisms of neuropathic pain after SCI to develop effective
treatment programs or drugs.

The pathophysiological mechanism of neuropathic pain after

SCI is complex. However, the previous research suggested that

neuroinflammation in the remote spinal dorsal horn might
play an especially critical role in the development course of
neuropathic pain after SCI (Gwak and Hulsebosch, 2009). It
was confirmed that activated glial cells and inflammatory factors
in the remote spinal dorsal horns promoted the induction and
maintenance of neuropathic pain after SCI by increasing neurons’
excitability (Detloff et al., 2008; Sandhir et al., 2011; Gwak et al.,
2012). However, the upstream kinases or signal pathways that
promote neuroinflammation in remote spinal dorsal horns have
not been well-studied.

Receptor-interacting protein kinase 3 (RIPK3) is a crucial
threonine–serine protein kinase for necroptosis (Khan et al.,
2014). Tumor necrosis factors, toll-like receptor agonists,
oxidative stress, and virus infection could activate RIPK3
and trigger necroptosis (Kaczmarek et al., 2013). It is well-
known that necroptosis is a highly inflammatory cell death
that can trigger inflammatory responses due to the release of
intracellular immunogenic contents. Interestingly, the recent
studies demonstrate that activated RIPK3 may contribute to
the inflammation by exerting its non-necroptotic functions,
such as activating nuclear factor-κB (NF-κB) or nod-like
receptor family pyrin domain-containing protein 3 (NLRP3)
inflammasome (Moriwaki et al., 2014) (Moriwaki and Chan,
2017). Both NF-κB and NLRP3 inflammasome are the important
pathways for promoting inflammatory. NF-κB is a transcriptional
activator of inflammatory factor genes (Lawrence, 2009). NLRP3
inflammasome is a protein complex composed of NLRP3,
the adaptor apoptosis-associated speck-like protein containing
a CARD (ASC) and caspase-1 (Kelley et al., 2019). When
stimulated by the endogenous and exogenous dangerous signals,
the assembled NLRP3 inflammasome activates caspase-1, which
converts the pro-IL-1β and pro-IL-18 into mature interleukin 1
beta (IL-1β) and interleukin 18 (IL-18) (Kelley et al., 2019).

The previous studies showed that RIPK3 might be
involved in inflammatory bowel disease (Lee et al., 2020)
and autoinflammatory disease (Speir and Lawlor, 2021). RIPK3
has also been studied in the rodent SCI model. A previous
study showed that RIPK3 was highly expressed at the injured
site for 21 days after SCI and localized in neurons, astrocytes,
and oligodendrocytes (Kanno et al., 2015). Furthermore, the
recent investigations have found that inhibiting RIPK3-mediated
necroptosis helped to reduce neuroinflammation and the
recovery of locomotion (Wang et al., 2019; Hongna et al.,

2021). Nevertheless, a few studies investigated the expression
of RIPK3 in the remote spinal cord after SCI, and whether
RIPK3 inhibition could relieve neuropathic pain after SCI was
also unclear.

To solve these problems, by establishing the thoracic SCI
model, we studied the RIPK3 expression in the remote spinal
dorsal horns and further explored its role in neuropathic
pain after SCI. Furthermore, we examined the effect of
RIPK3 inhibitor GSK872 on the expression of the NLRP3
inflammasome, NF-κB, and proinflammatory cytokines.

MATERIALS AND METHODS

Animals and Grouping
This experimental object was the male SD rats (6–7 weeks,
210–260 g) provided by the Shandong University Laboratory.
All experimental rats were fed with a 12-h light/dark cycle at
25◦C and had free access to rodent water and food. The Animal
Care and Use Committee at Shandong University approved our
experimental designs and operation procedures.

All rats were randomly divided into four groups (n = 4–7
per group for various analyses): sham group, SCI group, vehicle
group, GSK872 group. In the sham group, only the vertebral
lamina was removed without SCI; In the vehicle group, rats with
SCI received an intrathecal injection of 10% dimethyl sulfoxide
(DMSO) (Cell Signaling Technology, USA); In the GSK872
group, rats with SCI received an intrathecal injection of GSK872
(Med Chem Express, China). GSK872 was dissolved in DMSO.

SCI Model
Spinal cord injury model was made using modified Allen’s
method (Khan et al., 1999). Rats were anesthetized by
intraperitoneal injection of 30 mg/kg of pentobarbital. The skin
around the T10 segment in the back was disinfected and a
longitudinal incision was made. The tendons and muscle tissue
were separated to expose the T10 spinous processes and lamina,
and then, the T10 lamina was removed, which exposes the
corresponding spinal cord. A 10-g iron bar was used to cause
SCI, vertically dropped from a height of 30mm through a
glass tube onto the exposed spinal cord. The hemostatic suture
was performed using 3-0 silk thread, and antibiotics were then
injected subcutaneously. Only the vertebral lamina was removed
in the sham group without SCI. Rats were intramuscularly
injected with 20 × 104 U/d penicillin for 5 days and received
artificial micturition two times a day until the recovery of
micturition function.

Intrathecal Injection and Drug
Administration
The direct transcutaneous intrathecal injection was based on
the method reported by Mestre et al. (1994). In brief, rats were
anesthetized by inhaling enflurane, and then, the hip tubercle was
touched to determine the L5 or L6. The 25-µl microinjection
syringe (Shanghai Gaoge Industry and Trade Co., Ltd) was
inserted into L5 or L6 intervertebral space vertically until the
occurrence of tail-flick reflex, which indicated the tip of the
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needle had reached the subarachnoid space. When the tail-
flick reflex was observed, the needle insertion was stopped and
injected 10 µl GSK872 (25 mmol/L) (Hou et al., 2018) or 10 µl of
DMSO. Rats were injected with GSK872 or DMSO 30min before
the surgery, 1 day, and 2 days after the surgery.

Pain Behavior Assessment
A total of 50% paw withdrawal threshold (PWT) was used
to assess the mechanical allodynia according to the previous
reports (Chaplan et al., 1994). Observers were blinded to the
experimental groups and recorded 50% PWT on the first day
before surgery and on the 7th, 10th, 14th, 17th, and 21st days
after the operation. Before each measurement, it was necessary
to let the rats adapt to the watch box for at least 30 min until
exploration activities disappeared.

A total of eight von Frey hairs (0.4, 0.6, 1, 2, 4, 6, 8, and 15.0 g,
Stoelting, United States) were used to measure 50% PWT in rat
hind paws according to the “Up-Down” method. The filament
of 2 g was used first. Then, the intensity of the next filament was
decreased when the animal reacted or increased when the animal
did not respond. Withdrawal of claws, shaking or licking was
considered a painful reaction. When the response change was
observed for the first time, this procedure was continued for six
stimuli. Fifty percentage PWT was calculated using the following
formula: 50% PWT = 10(Xf+κδ) (Xf is the logarithm value of
the last von Frey fiber, and K is the corresponding value of the
sequence, δ = 0.224). Bilateral rat hind paws were tested. Finally,
the average of 50% PWT of bilateral hind paws was taken.

Tissue Sample Collection
To explore the protein and mRNA expression of RIPK3 at
different time points after the operation, the rats in the SCI
group were sacrificed by pentobarbital anesthesia (60 mg/kg, i.p)
at postoperative days 7, 14, and 21 after conducting the pain
behavior assessment. Rats in the sham group were euthanized
on postoperative day 21. To study the effect of GSK872 on the
expression of target molecules, all rats in each group (sham, SCI,
vehicle, and GSK872 groups) were sacrificed at postoperative day
7. In double immunofluorescence staining, the rats were cardiac
infused with 0.9% NaCl and 4% paraformaldehyde, and then, the
L4–L6 spinal cord was separated from the rats and fixed with 4%
paraformaldehyde. For other molecular detection, bilateral spinal
dorsal horns (L4–L6) were collected, frozen in liquid nitrogen,
and stored at−80◦C until further analysis.

Western Blotting
Total proteins from tissues were extracted in RIPA lysis
buffer (Solarbio, China), and a bicinchoninic acid (BCA)
protein assay kit (Solarbio, China) was used for evaluating
the protein concentration. The sample proteins were separated
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis
and transferred onto polyvinylidene difluoride membranes.
The membranes were blocked with 5% non-fat milk in
TBST followed by incubating with primary antibody overnight.
The primary antibodies were as follows: anti-RIPK3 (1:1,200;
Novus Biologicals), anti-NLRP3 (1:400; Novus Biologicals),
anti-caspase-1 (1:800; Novus Biologicals), anti- NF-κB/p65

TABLE 1 | Sequences of primers.

Gene Forward primer Reverse primer

RIPK3 CTACTGCACCGGGACCTCAA GTGGACAGGCCAAAGT

CTGCTA

NLRP3 CTGAAGCATCTGCAACC AACCAATGCGAGATCCTG

ACAAC

caspase-1 ACTCGTACACGTCTTGCC

CTCA

CTGGGCAGGCAGCAAA

TTC

β-actin GGAGATTACTGCCCTGGCT

CCTA

GACTCATCGTACTCCTG

CTTGCTG

(1:1,000; Cell Signaling Technology, CST), anti-β-actin (1:5,000;
Proteintech Group, PTG), and anti-glyceraldehyde 3-phosphate
dihydrogen (GAPDH) (1:5,000; Proteintech Group, PTG). After
being washed with Tris Buffered Saline with Tween (TBST) ,
the membranes were incubated with goat anti-rabbit second
antibody for 1.5 h. Finally, the enhanced chemiluminescence
(ECL; Thermo Scientific) was used to visualize immunoblots,
and the densities of the relative target proteins were measured
using ImageJ. The GAPDH or β-actin was chosen as the internal
reference control.

ELISA
On the 7th postoperative, the bilateral spinal dorsal horns were
ground to tissue homogenization and were centrifuged at 10,000
rpm at 4◦C for 30min. After the supernatant was collected, we
used enzyme-linked immunosorbent assay (ELISA) kits (TNF-
α: Westang, China; IL-1β: MultiSciences, China; IL-18: Westang,
China) to detect the levels of TNF-α, IL-1β, and IL-18 according
to the instructions of ELISA kits.

qRT-PCR
According to the instructions, total RNAs were extracted from
the bilateral dorsal horns using RNAex Pro Reagent (AG21102,
Accurate Biotechnology, Hunan, China). Complementary DNA
(cDNA) was synthesized using Evo M-MLV RT Mix Kit
(AG11728, Accurate Biotechnology, Hunan, China). Polymerase
chain reaction (PCR) amplifications were conducted using
SYBR R© Green Premix Pro Taq HS qPCR kit (AG11701,
Accurate Biotechnology, Hunan, China). Real-time fluorescent
quantitative PCR was carried out using Light Cycler R© 480
II (Roche, Switzerland). β-actin was served as the internal
reference for normalization. The mRNA levels of RIPK3, NLRP3,
and caspase-1 were calculated using the 2−11CT method. The
primers for NLRP3, RIPK3, caspase-1, and β-actin are shown in
Table 1.

Double Immunofluorescence Staining
On postoperative day 7, the L4–L6 spinal cord was harvested
from rats (n = 3 for SCI group), embedded in paraffin, and cut
into 20-µm-thick sections. These sections (n= 3 for each sample)
were dewaxed, dehydrated by gradient alcohol, and repaired
by antigen. Next, the sections were blocked with endogenous
peroxidase and 10% donkey serum and then incubated with the
following primary antibodies: NLRP3 (1:200; bs-6655R, Bioss),
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GFAP (1:500; GB12096, Servicebio), IBA-1(1:500; GB12105,
Servicebio), and NeuN (1:100; GB13138-1, Servicebio) overnight
at 4◦C. After the primary antibody incubation, the sections
were incubated with the corresponding secondary antibodies
conjugated with CY3 and FITC for 1 h in dark conditions at 37◦C.
Finally, the dorsal horns were observed and photographed under
a fluorescence microscope (Olympus, Japan).

Statistical Analysis
SPSS 24.0 software (IBM, USA) was used to perform all the
data analysis. All results were presented as mean ± SD. The
Kolmogorov–Smirnov test was used to detect whether the
data conformed to the normal distribution. For behavioral
experiments, comparisons between multiple groups were
conducted by repeated-measures analysis of variance and
Tukey’s post-hoc analysis. For quantitative real-time polymerase
chain reaction (qRT-PCR), western blot, and ELISA, multiple-
group comparisons were carried out by one-way ANOVA and
Tukey’s post-hoc analysis. When p < 0.05, we considered the
difference between the two groups to be statistically significant.

RESULTS

Upregulation of RIPK3 Expression in the
SCI Model
Mechanical allodynia was tested using 50% PWT (Figure 1).
Compared with the rats in sham group, rats in the SCI group
developed mechanical allodynia from 7 to 21 days after the
surgery (p < 0.05), which indicated that the SCI model was
established successfully.

Western blot analysis was carried out to detect the RIPK3
protein level at different time points postoperation (Figure 2A).
Compared with the sham group, the protein expression of RIPK3
was significantly increased in SCI group from postoperative days
7–21 (p < 0.05). Meanwhile, similar results were verified using
qRT-PCR (p < 0.05) (Figure 2B).

GSK872 Decreased RIPK3 Expression
Level and Relieved Mechanical Allodynia
Induced by SCI
To determine whether RIPK3 was involved in neuropathic pain
after SCI, the effect of GSK872 on mechanical allodynia and the
RIPK3 expression level were assessed. About 10 µl GSK872(25
mmol/L) was injected 30min before the surgery, 1 day, and 2 days
after the surgery.Western blot analysis was performed to evaluate
RIPK3 expression level (Figure 3A). The protein expression of
RIPK3 was upregulated in vehicle rats compared with those in
the sham group (p < 0.05). The upregulation of RIPK3 was
wholly reversed after GSK872 treatment (p < 0.05). In addition,
the results from qRT-PCR were consistent with the western blot
analysis (p < 0.05) (Figure 3B).

As shown in Figure 1, 50% PWT was significantly decreased
in the vehicle group compared with the sham group (p <

0.05). After intrathecal injection of RIPK3 inhibitor GSK872,
mechanical allodynia in rats who received SCI was relieved from
7 to 21 days postoperation (p < 0.05).

GSK872 Reduced the Production of
Inflammatory Cytokines
To further investigate whether inhibition of RIPK3 could restrict
neuroinflammation, ELISA was used to assess the levels of
inflammatory cytokines (Figures 4A–C). The expressions of IL-
1β (p < 0.05), IL-18 (p < 0.05), and TNF-α (p < 0.05) markedly
ascended in the vehicle group compared with the sham group.
The protein levels of TNF-α (p < 0.05), IL-1β (p < 0.05), and IL-
18 (p< 0.05) were restricted in the GSK872 group compared with
the vehicle group.

GSK872 Suppressed the Activation of
NLRP3 Inflammasome in Glia and Neurons
To further explore the potential molecular mechanism of
GSK872 in alleviating mechanical allodynia, the expression
of NLRP3 inflammasome was investigated. The results from
western blot showed that the protein levels of NLRP3 (p < 0.05)
and caspase-1 (p < 0.05) were remarkably upregulated in the
vehicle group compared with the sham group (Figures 5A,B).
Rats treated with GSK872 exhibited lower protein levels of
NLRP3 (p < 0.05) and caspase-1 (p < 0.05) compared with
the rats in the vehicle group. We also found similar results
by examining the mRNA expression of NLRP3 (p < 0.05) and
caspase-1 (p < 0.05) (Figures 5C,D).

In addition, the cellular localization of NLRP3 in nerve cells
of spinal dorsal horns was researched (Figures 5E–P). Double
immunofluorescent staining revealed that NLRP3 was localized
in the microglia, neurons, and astrocytes in the dorsal horn of
SCI rats.

Effect of GSK872 on NF-κB p65
The western blot was conducted to evaluate the expression level
of NF-κB p65 (Figure 6). Our data showed that NF-κB p65 was
markedly upregulated in the vehicle group compared with the
sham group (p < 0.05). Intrathecal delivery of GSK872 inhibited
the protein level of NF-κB p65, as shown in the GSK872 group
(p < 0.05).

DISCUSSION

The current work mainly explores whether RIPK3 is a
potential target for alleviating neuropathic pain after SCI. We
are the first to find an increased expression of RIPK3 in
the lumbar spinal dorsal horns of rats with thoracic SCI.
Significantly, RIPK3 inhibitor GSK872 inhibited the expression
of RIPK3 and alleviated mechanical hyperalgesia. Furthermore,
we showed that GSK872 treatment reduced the expression of
NLRP3 inflammasome, NF-κB, and proinflammatory factors,
which indicated that RIPK3 inhibition effectively relieved
neuroinflammation in the lumbar spinal dorsal horns.

Thoracic spinal cord contusion in male rats is the most
commonly used model for studying SCI pain because this model
matches clinical characteristics quite well in terms of trauma type
and gender (Kramer et al., 2017). Mechanical stimulation and
thermal stimulation were used to evaluate the pain behavior of
neuropathic pain models. However, heat response in SCI models
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FIGURE 1 | Intrathecal administration of GSK872 (10 µl, 25 mmol/L) attenuated mechanical hypersensitivity induced by SCI (n = 7 for each group). All data were

calculated as mean ± SD. *p < 0.05 vs. the sham group; #p < 0.05 the vehicle group. Comparisons between multiple groups were conducted by

repeated-measures analysis of variance and Turkey’s post-hoc analysis SCI: spinal cord injury. 50% PWT, fifty percentage paw withdrawal threshold.

FIGURE 2 | RIPK3 was up-regulated in the dorsal horns after thoracic SCI. (A) The expression of RIPK3 in the SCI group was measured by western blot analysis on

the 7th, 14th, 21th postoperative days (n = 5 for each group). (B) Quantitative analysis of the mRNA expression of RIPK3 in the sham group and SCI group on the

7th, 14th, 21th postoperative days (n = 4 for each group). All data were calculated as mean ± SD. *p < 0.05, vs. the sham group. Comparisons between multiple

groups were carried out by one-way ANOVA and Turkey’s post-hoc analysis. RIPK3, receptor-interacting protein kinase 3.
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FIGURE 3 | GSK872 (10 µl, 25 mmol/L) reduced the expression levels of RIPK3 after SCI. (A) The expression of RIPK3 in different groups, including sham, SCI,

vehicle and GSK872 group, was measured by western blot analysis (n = 5 for each group). (B) Quantitative analysis of the RIPK3 mRNA expressions in different

groups including sham, SCI, vehicle and GSK872 group (n = 4 for each group). All data were calculated as mean ± SD. *p < 0.05 vs. the sham group. #p < 0.05 vs.

the vehicle group. Comparisons between multiple groups were carried out by one-way ANOVA and Turkey’s post-hoc analysis.

could represent exaggerated spinal reflexes (Shiao and Lee-Kubli,
2018). It has been reported that patients with SCI have a low
probability of thermal hyperalgesia (Finnerup et al., 2014). In
addition, van Gorp et al. (2014) found that rats that received
severe thoracic contusion did not show low thermal withdrawal
latency. In this study, we studied mechanical hyperalgesia of
male rats with SCI and found that rats that received thoracic
spinal cord contusion showed lower PWT than rats in the sham
group, which indicated that the SCI neuropathic pain model
was established.

Recently, RIPK3 has been well-studied in the neuropathic
pain model caused by peripheral nerve injury. For instance,
investigators reported that RIPK3 was highly expressed in the
spinal cord, dorsal root ganglia, and hippocampus of the chronic
constriction injury (CCI) model (Pu et al., 2018). He et al. (2021)
further found that RIPK3 played an important role in CCI-
induced neuropathic pain, and inhibition of RIPK3 ameliorated
neuropathic pain via suppressing JNK signaling.Wewere curious
about the role of RIPK3 in neuropathic pain after SCI. Our
results indicated that rats with thoracic SCI exhibited high
expressions of RIPK3, accompanied by remarkable mechanical
allodynia from 7 to 21 days postoperation. It has been reported
that the death signal ligand TNF-α activated RIPK3 and caused
necrosis by binding to the death receptor (Vandenabeele et al.,
2010). Our results showed that SCI led to increased TNF-
α expression. Therefore, we speculated that TNF-α might
be an important factor for causing the increased expression

of RIPK3. Our observation also showed that RIPK3-specific
inhibitor GSK872 could relieve allodynia and downregulate the
expression of RIPK3 in the dorsal horns. Taken together, it
suggested that the high expression of RIPK3 in the spinal dorsal
horn could contribute to the development of neuropathic pain
after SCI.

Inflammatory factors are the essential components
of neuroinflammation. It has been demonstrated that
proinflammatory factor is involved in neuropathic pain
progress. Proinflammatory factors, such as IL-18, IL-1β, and
TNF-α, are the famous pain mediators (Kawasaki et al., 2008;
Pilat et al., 2016). The previous studies have indicated that
increased expressions of TNF-α and IL-1β were associated with
pain-related behaviors in a rat model of SCI (Detloff et al., 2008).
The proinflammatory factor could induce SCI rat hyperalgesia
via upregulating the excitability of superficial dorsal horn
neurons (Fakhri et al., 2021). RIPK3 is a key kinase in regulating
inflammatory factors (Yabal et al., 2014). Moreover, one research
found that RIPK3 inhibition relieved neuropathic pain induced
by peripheral nerve injury by decreasing proinflammatory
factors’ expressions (Fang et al., 2021). In this study, the
proinflammatory factors were significantly increased in the
spinal dorsal horns in SCI rats, accompanied by a reduction
in mechanical pain threshold. Meanwhile, after intrathecal
administration of GSK872, the proinflammatory factors such
as IL-18, IL-1β, and TNF-α levels descended, with the relief of
mechanical pain in rats with SCI. These results suggested that
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FIGURE 4 | Intrathecal injection of GSK872 (10 µl, 25 mmol/L) inhibited neuroinflammation in the lumbar spinal dorsal horns (n = 4 for each group). (A–C) The levels

of TNF-α, IL-1β, and IL-18 in different groups, including sham, vehicle and GSK872 group, were investigated by ELISA. The protein level of TNF-α, IL-1β, and IL-18

were reduced after GSK872 treatment. All data were calculated as mean ± SD. *p < 0.05 vs. the sham group. #p < 0.05 vs. the vehicle group. Comparisons

between multiple groups were carried out by one-way ANOVA and Turkey’s post-hoc analysis. IL, interleukin; TNF-α, tumor necrosis factor-α.

RIPK3 inhibition ameliorated mechanical allodynia possibly
by reducing proinflammatory factors’ expressions. However,
the production mechanism of proinflammatory factors is not
completely clear. We were curious about the upstream pathway
of inflammatory factors.

Nod-like receptor family pyrin domain-containing protein
3 is a widely studied inflammasome that plays a vital role in
the inflammatory immune response (Kelley et al., 2019). It has
been reported that the dysregulation of the inflammasome is
involved in a series of inflammatory diseases via promoting
the secretion of inflammatory factors (Mangan et al., 2018).
In the SCI model, we found that the expressions of NLRP3,
caspase-1, and proinflammatory factors were increased in remote
dorsal horns. In addition, immunofluorescence showed that
NLRP3 was expressed in glial cells and neurons. These results
indicated that NLRP3 inflammasome could contribute to the
release of proinflammatory factors in glial and neurons, which
also explain the potential mechanism of inflammatory factors
released by the neurons and glial in remote dorsal horns. The
growing evidence shows that NLRP3 may be a molecular target
for neuropathic pain relief (Chen et al., 2021). For example,

adenosine deaminase acting on RNA 3 (ADAR3) promoted
pain relief in CCI rats by targeting NLRP3 inflammasome
(Li et al., 2021). Our previous study also confirmed that
caspase-1 inhibitor VX-765 could attenuate radicular pain
via inhibiting NLRP3 inflammasome activation (Wang et al.,
2020). In addition, D-β-hydroxybutyrate, one of the NLRP3
inflammasome inhibitors, effectively alleviated mechanical and
thermal pain hypersensitivities in rats with SCI (Qian et al.,
2017). The previous studies have confirmed that RIPK3 is
a critical kinase regulating the NLRP3 inflammasome (Yabal
et al., 2014). RIPK3 could contribute to NLRP3 inflammasome
activation by producing ROS or potassium efflux (Moriwaki
and Chan, 2017). The recent studies further suggested that
RIPK3 is involved in the development of renal fibrosis (Shi
et al., 2020), brain injury after subarachnoid hemorrhage (Zhou
et al., 2017), and lung injury (Chen et al., 2018) by activating
the NLRP3 inflammasome. Therefore, we speculated that the
analgesic effect of RIPK3 inhibition might be connected with
the reduction of proinflammatory cytokines by inhibiting the
NLRP3 inflammasome. Intrathecal injection of GSK872 could
significantly decrease the expressions of NLRP3, caspase-1, IL-1β,
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FIGURE 5 | GSK872 (10 µl, 25 mmol/L) suppressed the activation of NLRP3 inflammasome in glia and neurons. (A,B) The expressions of NLRP3 and caspase-1 in

different groups, including sham, SCI, vehicle and GSK872 group, were measured by western blot analysis (n = 5 for each group). (C,D) Quantitative analysis of

NLRP3 and caspase-1 mRNA expressions in different groups including sham, SCI, vehicle and GSK872 group (n = 4 for each group). (E–P) Immunofluorescence

staining of NLRP3 (red) with NeuN, a neuronal marker (green); GFAP, an astrocyte marker (green); and Iba-1, a microglial marker (green) in the lumbar dorsal horns of

SCI rats. Scale bar, 50µm (E–G,I–K). Scale bar, 25µm (M–O). Scale bar, 20µm (H,L,P). All data were calculated as mean ± SD. *p < 0.05 vs. the sham group. #p

< 0.05 vs. the vehicle group. Comparisons between multiple groups were carried out by one-way ANOVA and Turkey’s post-hoc analysis.
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FIGURE 6 | Intrathecal injection of GSK872 (10 µl, 25 mmol/L) inhibited NF-κB p65 in the lumbar spinal dorsal horns (n = 5 for each group). The expression of NF-κB

p65 in different groups, including sham, SCI, vehicle and GSK872 group, was measured by western blot analysis. All data were calculated as mean ± SD. *p < 0.05

vs. the sham group. #p < 0.05 vs. the vehicle group. Comparisons between multiple groups were carried out by one-way ANOVA and Turkey’s post-hoc analysis.

NF-κB, nuclear factor-kappa B.

and IL-18 in the dorsal horns of model rats. These results further
confirmed our conjecture.

The NF-κB p65, the main component of NF-κB pathways,
is important in inflammatory and immune processes (Liu
et al., 2017). When stimulated by external signals, NF-κB p65
separates from IκB and enters the nucleus to promote the
transcription and expression of inflammatory genes related to
pain (Mitchell and Carmody, 2018). NF-κB p65 has been shown
to act as a contributor to neuropathic pain (Chu et al., 2020;

Zhao et al., 2021). It has been reported that NF-κB inhibitor
PDTC had a significant analgesic effect on CCI rats (Li et al.,
2017). L-arginine, one of the NF-κB inhibitor, also relieved
thermal pain hypersensitivity induced by SCI (Meng et al.,
2017). An early investigation demonstrated that over-expression
of RIPK3 could activate NF-κB signal (Kasof et al., 2000).
The recent study further showed that RIPK3 inhibition could
ameliorate osteoclastogenesis by regulating the NF-κB signaling
pathway (Liang et al., 2020). Our experiments suggested that
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the expression of NF-κB p65 was significantly increased after
SCI. Intrathecal injection of GSK872 could inhibit NF-κB p65
protein expression in SCI rat models. These results preliminarily
indicated that anti-inflammatory and analgesic effects of RIPK3
inhibition are also related to the regulation of NF-κB pathways.

The previous studies mainly discussed the role of RIPK3-
mediated necroptosis in secondary SCI, but few studies further
explored the effects of regulating RIPK3 on neuroinflammation
and pain. Sugaya et al. (2019) found that RIPK3 modulation
prevented necroptosis of various nerve cells at the lesion
site and favored neuroprotection. Dabrafenib treatment, one
of the RIPK3 inhibitors, also promoted the recovery of
motor function and sensory function after SCI. In this study,
we studied the effects of RIPK3 modulation on pain and
neuroinflammation. Our results suggested that the RIPK3
inhibition may mediate an anti-nociceptive effect by alleviating
dorsal horn neuroinflammation. This study further emphasized
the role of RIPK3 inhibition, which can not only alleviate
necroptosis in the injured spinal cord and favor neuroprotection,
but also reduce neuroinflammation and neuropathic pain
after SCI.

Our study has some limitations, which need to be solved
in the future research. This study preliminarily proved that
RIPK3 inhibition could relieve mechanical allodynia of SCI rats.
We did not further explore the effect of GSK872 dose change
on mechanical allodynia. In this study, it was also not clear
whether the inhibition of RIPK3 contributes to alleviating the
neuroinflammation at the injured spinal cord and promoting the
recovery of motor function.

CONCLUSION

Our findings indicated that over-expressed RIPK3 developed
mechanical allodynia in the SCI rat model. RIPK3 inhibition

relieved mechanical allodynia possibly by suppressing NLRP3
inflammasome, NF-κB, and proinflammatory cytokines.
Therefore, RIPK3 may be a potential target for treating
neuropathic pain after SCI.
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