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Abstract: Aquisinenins G–I (1–3), three new 2-(2-phenylethyl)chromone-sesquiterpene
hybrids, were isolated from the ethanol extract of Hainan agarwood derived from Aquilaria
sinensis. Spectroscopic techniques, such as 1D and 2D NMR and HRESIMS, were used to
determine their structures. Experimental and computed ECD data were compared to con-
firm their absolute configurations. Compounds 1–3 are uncommon dimeric derivatives of
2-(2-phenylethyl)chromone-sesquiterpene, characterized by the fusion of 5,6,7,8-tetrahydro-
2-(2-phenylethyl)chromone with agarofuran or agarospirane-type sesquiterpene units by
an ester linkage. Compound 1 inhibited nitric oxide production in lipopolysaccharide-
stimulated RAW264.7 cells, showing an IC50 value of 22.31 ± 0.42 µM. The neuroprotective
effects of compounds 1 and 3 against H2O2-induced apoptosis were assessed in human
neuroblastoma SH-SY5Y cells. Compound 1 demonstrated cytotoxicity with IC50 values of
72.37 ± 0.20 µM against K562 and 61.47 ± 0.22 µM against BEL-7402, while compounds 2
and 3 showed cytotoxicity across all five tested human cancer cell lines.

Keywords: Hainan agarwood; 2-(2-phenylethyl)chromone-sesquiterpene hybrids; structure
elucidation; anti-inflammatory activity; neuroprotective activity; cytotoxic activity

1. Introduction
Agarwood is the aromatic resinous heartwood obtained from the Aquilaria and

Gyrinops genus of the Thymelaeaceae family [1,2]. It is a natural spice and traditional
medicine commonly used in incense and pharmaceuticals. In traditional medicine, agar-
wood has been employed to address various health problems, including gastric disorders,
cough, and asthma, due to its sedative, analgesic, carminative, and antiemetic effects [1,2].
Hainan agarwood is the resinous wood derived from Aquilaria sinensis (Lour.) Spreng. It
demonstrates diverse pharmacological activities, including anti-inflammatory [3], cyto-
toxic [4], antifibrotic [5], antimalarial [6], neuroprotective [7], and gastric mucosal protective
properties [8].
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Hainan agarwood has yielded various compounds, including monosomic sesquiter-
penes [4,9–13], flindersia-type 2-(2-phenylethyl)chromones [3,14–18], 5,6,7,8-tetrahydro-
2-(2-phenylethyl)chromones [3,19–21], sesquiterpene polymers [6,22], and 2-(2-pheny-
lethyl)chromone-sesquiterpene hybrids [5,8]. In the pursuit of novel structurally intriguing
and bioactive compounds from Hainan agarwood, Aquisinenins G−I (1–3) were found
to comprise either agarofuran or agarospirane-type sesquiterpene moieties and 5,6,7,8-
tetrahydro-2-(2-phenylethyl)chromone bound via an ester bond (Figure 1). This study
outlines this isolation process and includes a structural analysis and bioactivity assessment
of these compounds.
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2. Results
2.1. Structure Elucidation

Compound 1 was obtained as a viscous yellow oil. HRESIMS analysis deter-
mined the molecular formula C32H40O8, revealing a pseudomolecular ion peak at m/z
575.2613 [M + Na]+ (calcd. 575.2615 for C32H40NaO8), and indicating 13 degrees of unsatu-
ration, as depicted in Figure S1. The 1H NMR data (Table 1) revealed a monosubstituted
benzene with signals at δH 7.16 (2H, m, H-2′, 6′), 7.25 (2H, t, J = 7.7 Hz, CH-3′, 5′), and 7.16
(1H, m, H-4′), alongside an ethane-1,2-diyl group on the benzene ring at δH 2.93 (2H, t,
J = 7.4 Hz, H-7′), 2.87 (2H, m, H-8′). Additionally, four consecutive hydroxylated me-
thines were observed at δH 4.78 (1H, d, J = 3.8 Hz, H-5), 4.04 (1H, dd, J = 3.8, 2.2 Hz,
H-6), 4.25 (1H, dd, J = 8.0, 2.3 Hz, H-7), and 6.05 (1H, d, J = 8.1 Hz, H-8). The spectrum
also included three methines at δH 6.15 (1H, s, H-3), 2.66 (1H, d, J = 3.9 Hz, H-4′′), and
1.94 (1H, m, H-7′′), as well as three methyls at δH 1.36 (3H, s, H-12′′), 1.20 (3H, s, H-13′′),
and 1.08 (3H, H-15′′). The 13C NMR data of 1 (Table 1) showed 32 carbon resonances
comprising nine quaternary (two carbonyl at δC 181.3 and 174.6, four oxygenated at δC

170.9, 161.6, 83.0, and 87.6), twelve methine (four oxygenated at δC 66.3, 74.6, 70.0, and 70.8),
eight methylene, and three methyl carbons. The 1H−1H COSY spectrum of 1 identified
two spin-coupling systems: one involving H-5, H-6, H-7, and H-8, and comprising H-2′,
H-3′, H-4′, H-5′, and H-6′ (Figure 2). The HMBC spectrum revealed correlations from:
H-2′, 6′ (δH 7.16) to C-7′ (δC 33.6); H-3′ (δH 7.25) to C-1′ (δC 140.8); H-6′ (δH 7.16) to C-4′

(δC 127.6); H-3 (δH 6.15) to C-8′ (δC 36.1), C-4 (δC 181.3); H-5 (δH 4.78) to C-9 (δC 161.6),
C-4 (δC 181.3); and H-8 (δH 6.05) to C-10 (δC 123.1) (Figure 3). Analysis of the data in
relation to the known 2-(2-phenylethyl)chromone [2] indicated that compound 1 included
a 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone (unit A). The 1H−1H COSY spectrum
of 1 identified two spin-coupling systems: one involving H-1′′/H-2′′/H-3′′/H-4′′ and
another comprising H-6′′/H-7′′/H-8′′/H-9′′ (Figure 2). Analysis of the HMBC correla-
tions (Figure 3), with the exception of unit A, from H-4′′ (δH 2.66) to C-2′′ (δC 19.7), C-5′′

(δC 87.6), and C-10′′ (δC 40.2); H-6′′ (δH 2.33) to C-4′′ (δC 51.4), C-8′′ (δC 25.7), C-10′′ (δC 40.2),
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and C-11′′ (δC 83.0); H-15′′ (δH 1.08) to C-1′′ (δC 38.5), C-5′′ (δC 87.6), and C-9′′ (δC 38.8);
H-12′′ (δH 1.36) and H-13′′ (δH 1.20) to C-7′′ (δC 45.4), indicated that unit B of compound 1
included two hexatomic rings and one tetrahydrofuran ring, which likens it structurally
to previously reported analogues. The structure displays a close resemblance to reported
agarofuran-type sesquiterpene, except for the C-14′′ carboxyl group when compared to
the ester (δC 174.6) in compound 1. The ester bond formation between units A and B
(C-8/O/C-14′′) was verified by the significant deshielding of H-8 (δH 6.04, d, J = 8.1 Hz)
and the crucial HMBC correlation linking H-8 to C-14′′. As depicted in Figure 1, the planar
structure of compound 1 comprises a 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone (unit
A) and an agarofuran-type sesquiterpene moiety (unit B) connected via an ester linkage.

Table 1. 1H NMR and 13C NMR data for compounds 1–3.

Position 1 2 Position 3

δH mult. (J in Hz) δC, type δH mult. (J in Hz) δC, type δH mult. (J in Hz) δC, type

2 170.9, C 171.0, C 2 171.2, C
3 6.15, s 114.6, CH 6.17, s 114.6, CH 3 6.12, s 114.6, CH
4 181.3, C 181.3, C 4 181.7, C
5 4.78, d (3.8) 66.3, CH 4.80, dd (3.9) 66.4, CH 5 4.90, m 66.2, CH
6 4.04, dd (3.8, 2.2) 74.6, CH 4.04, m 74.6, CH 6 4.06, d (2.6) 70.4, CH
7 4.25, dd (8.0, 2.3) 70.0, CH 4.25, d (7.7) 70.2, CH 7 4.05, d (2.4) 72.7, CH
8 6.05, d (8.1) 70.8, CH 6.01, d (7.7) 71.2, CH 8 6.03, d (5.5) 71.5, CH
9 161.6, C 161.5, C 9 160.5, C
10 123.1, C 123.3, C 10 123.6, C
1′ 140.9, C 132.8, C 1′ 132.8, C
2′ 7.16, m 129.3, CH 7.11, d (8.3) 130.3, CH 2′ 7.05, d (8.5) 130.3, CH
3′ 7.25, t (7.7) 129.6, CH 6.84, d (8.4) 115.0, CH 3′ 6.79, d (8.6) 115.0, CH
4′ 7.16, m 127.6, CH 159.8, C 4′ 159.8, C
5′ 7.25, t (7.7) 129.6, CH 6.84, d (8.4) 115, CH 5′ 6.79, d (8.6) 130.3, CH
6′ 7.16, m 129.3, CH 7.11, d (8.3) 130.3, CH 6′ 7.05, d (8.5) 115.0, CH
7′ 2.93, t (7.4) 33.6, CH2 2.91, m 32.7, CH2 7′ 2.88, m 32.8, CH2
8′ 2.87, m 36.1, CH2 2.85, m 36.5, CH2 8′ 2.85, m 36.5, CH2

OMe-4′ 3.76, s 55.7, CH3 OMe-4′ 3.74, s 55.7, CH3
1′′ 1.15, m 38.5, CH2 1.16, m 38.4, CH2 1′′ 139.9, C

1.64, Overlapped a 1.68, Overlapped a

2′′ 1.89, m 19.7, CH2 1.90, m 19.7, CH2 2′′ 6.86, t (3.8) 140.7. CH
1.41, d (12.9) 1.43, m

3′′ 2.08, d (11.4) 26.3, CH2 2.10, m 26.2, CH2 3′′ 1.48, td (12.4, 6.8) 28.9, CH2
1.94, Overlapped a 1.90, Overlapped a 4′′ 2.00, td (12.7, 7.0) 40.4, CH2

4′′ 2.66, d (3.9) 51.4, CH 2.70, m 51.6, CH 1.68, m
5′′ 87.6, C 87.3, C 5′′ 1.70, Overlapped a 39.9, CH
6′′ 2.34, dd (13.3, 4.0) 39.6, CH2 2.33, m 39.9, CH2 6′′ 48.1, C

2.29, d (12.7) 2.15, d (12.7)
7′′ 1.94, Overlapped a 45.4, CH 1.90, Overlapped a 45.4, CH 7′′ 1.76, m 27.5, CH2
8′′ 1.71, Overlapped a 25.7, CH2 1.68, Overlapped a 25.8, CH2 8′′ 2.45, m 53.3, CH
9′′ 1.71, Overlapped a 38.8, CH2 1.68, Overlapped a 38.9, CH2 9′′ 2.18, m 24.5, CH2

1.15, Overlapped a 1.16, Overlapped a 10′′ 1.82, m 36.9, CH2
10′′ 40.2, C 40.1, C 1.71, Overlapped a

11′′ 83.0, C 82.9, C 11′′ 72.3, C
12′′ 1.36, s 23.0, CH3 1.37, s 23.0, CH3 12′′ 1.10, s 28.7, CH3
13′′ 1.20, s 31.0, CH3 1.21, s 30.9, CH3 13′′ 1.12, s 28.5, CH3
14′′ 174.6, C 174.3, C 14′′ 0.95, s 16.0, CH3
15′′ 1.08, s 23.6, CH3 1.08, s 23.8, CH3 15′′ 168.1, C

a Overlapped signals without designating multiplicity and assigned from HMBC and HSQC spectra.
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The coupling constants, with H-7/H-8 showing a large value (3J = 8.1 Hz) and H-6/H-
7 showing a small one (3J = 2.2 Hz), suggest that H-7 and H-8 adopt an axial half-chair
conformation, whereas H-6 is equatorial. The ROESY spectrum observed no NOE effect
between H-5 and H-7, confirming that H-5 is equatorial. The relative configuration of unit A
was similar to the 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone unit of aquifilarone A [23],
and the relative configuration of compound 1 was established through an analysis of 3J
coupling constants and the ROESY spectrum (Figure 3). The relative configuration of unit
B was determined to be identical to that of baimuxifuranic acid [12]. This conclusion was
supported by NOE correlations observed for H-4′′/H-13′′, H-6′′/H-13′′, and H-6′′/H-15′′,
which were found to be syn-oriented based on the analysis of ROESY data (Figure 3). As
illustrated in Figure 4, the cotton effect of the experimentally observed ECD spectrum
demonstrates consistency with the theoretically calculated spectrum. As a result, the
structure of compound 1 was determined and given the name aquisinenin G.

Compound 2 was obtained as a yellow oil. It has the molecular formula C33H42O9 (m/z
605.2719 [M + Na]+, calcd. for C33H42NaO9, 605.2721), established by HRESIMS (Figure S8),
indicating the addition of a methoxy group to aquisinenin G. The 1H and 13C NMR spectra
closely resembled those of aquisinenin G, with the addition of an extra methoxy group
(Table 1). The 1H NMR spectra of compound 2 indicated a para-disubstituted benzene
ring with signals at δH 6.84 (2H, d, J = 8.4 Hz, H-3′/5′) and δH 7.11 (2H, d, J = 8.3 Hz,
H-2′/6′), implying a methoxy group at C-4′ (δC 159.8). This deduction was validated by
the HMBC correlation between 4′-OCH3 (δH 3.76) and C-4′ (δC 159.8), as well as the NOE
correlation from 4′-OCH3 to H-3′ and H-5′ (Figure 2). The relative configuration of unit
B was indicated by NOE correlations observed for H-4′′/H-6′′/H-13′′, and H-6′′/H-15′′.
The absolute configuration was determined through electronic circular dichroism (ECD)
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calculations, with the calculated ECD spectrum closely matching the experimental ECD
spectrum in Figure 5. The structure of compound 2 was determined as depicted in Figure 1
and designated as aquisinenin H.
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Compound 3 was obtained as a yellow oil. Its molecular formula C33H42O9 was
deduced from HRESIMS data (Figure S15) (m/z 605.2718 [M + Na]+, calcd. for C33H42NaO9,
605.2721), suggesting 13 degrees of unsaturation. 1H NMR data (Table 1) indicated a para-
disubstituted benzene ring [δH 7.05 (2H, d, J = 8.5 Hz, H-2′, 6′), 6.79 (2H, d, J = 8.6 Hz, CH-3′,
5′), 2.88 (2H, m, H-7′), and 2.85 (2H, m, H-8′)], four sequential hydroxylated methines
[δH 4.90 (1H, m, H-5), 4.06 (1H, d, J = 2.6 Hz, H-6), 4.05 (1H, d, J = 2.4 Hz, H-7), and
6.03 (1H, d, J = 5.5 Hz, H-8)], three methines [δH 6.12 (1H, s, H-3), 6.86 (1H, t, J = 3.8 Hz,
H-2′′), 1.70 (1H, m, H-5′′), and 2.45 (1H, m, H-8′′)], and three methyl groups [δH 1.12 (3H, s,
H-12′′), 1.14 (3H, s, H-13′′), and 0.96 (3H, H-14′′)]. The 13C NMR data of 3 (Table 1) showed
33 carbon resonances comprising ten quaternary (two carbonyl at δC 181.7 and 168.1, four
oxygenated at δC 171.2, 160.5, 72.3, and 159.8), twelve methine (four oxygenated at δC

66.2, 70.2, 72.4, and 71.4), seven methylene, and four methyl (one O-methyl) carbons. The
1H-1H COSY spectrum of compound 3 displayed spin-coupling systems for H-5/H-6/H-
7/H-8 and H-2′/H-3′/H-5′/H-6′ (Figure 2). Analysis and comparison with the known
2-(2-phenylethyl)chromone [2], along with the HMBC correlations (Figure 2), indicated
that compound 3 contains a 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone (unit A). This
is supported by correlations from H-2′, 6′ (δH 7.05), to C-7′ (δC 32.8); 4′-OCH3 (δH 3.74)
to C-4′ (δC 159.8); H-3 (δH 6.12) to C-8′ (δC 36.5), C-4 (δC 181.7); H-5 (δH 4.90) to C-9
(δC 160.5), C-4 (δC 181.7); and H-8 (δH 6.03) to C-10 (δC 123.6). The 1H−1H COSY spectrum
of compound 3 identified spin-coupling systems for H-2′′ to H-5′′ and H-7′′ to H-10′′

(Figure 2). Analysis of the HMBC correlations (Figure 2), except for the unit A, from H-2′′
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(δH 6.86) to C-4′′ (δC 40.4), C-6′′ (δC 48.1) and C-15′′ (δC 168.1); H-9′′ (δH 2.18) to C-6′′

(δC 48.1), C-7′′ (δC 27.5); and H-14′′ (δH 0.95) to C-4′′ (δC 40.4), C-6′′ (δC 48.1), indicated that
unit B of compound 3 included both a six- and a five-membered ring structure skeleton,
a structural feature consistent with previously reported analogues. Unit B of compound
3 was an agarospirane-type sesquiterpenoid (Figure 1). The ester linkage (C-8/O/C-15′′)
connecting units A and B was determined by the HMBC correlation from H-8 (δH 6.03) to
C-15′′ (δC 168.1) (Figure 2).

The relative configuration of unit A was determined based on ROESY data and 3JH-H

coupling constants (3J6,7 = 2.6 Hz, 3J8 = 5.5 Hz), revealing H-6 and H-7 in equatorial cis-
adjacent positions, while H-5 and H-8 adopt syn-facial orientations with the presence of
the NOE correlation between H-5 and H-8. The NOE correlations of H-7′′/H-14′′ indicate
that these protons are cofacial and β-oriented, establishing the relative configuration of
unit B (Figure 3) as identical to that of baimuxifuranic acid [24]. The relative configuration
was determined by comparing the experimental and calculated ECD spectra (Figure 6).
The structure of compound 3 was identified as depicted in Figure 1 and designated as
aquisinenin I.
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Compounds 1–3 are unique, consisting of a 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone
linked to a sesquiterpene at C-8 of the chromone unit by an ester bond. The agarofuran-
and agarospirane-type sesquiterpene units in the 2-(2-phenylethyl)chromone-sesquiterpene
hybrids have not been previously reported in studies on these compounds.

2.2. Spectroscopic Data of Compounds
2.2.1. Aquisinenin G (1)

Yellow oil; [α]25
D −10 (c 0.10, MeOH); ECD (MeOH) λmax (∆ε) at 193 (+9.59), 231 (−18.02),

281 (+11.38) nm; UV (MeOH) λmax (log ε): at 254 (1.68) nm; 1H and 13C NMR data are
provided in Table 1; HRESIMS m/z 575.2613 [M + Na]+ (calcd for C32H40NaO8, 575.2615).

2.2.2. Aquisinenin H (2)

Yellow oil; [α]25
D −92 (c 0.10, MeOH); ECD (MeOH) λmax (∆ε) at 200 (+14.08), 228

(−40.51), 255 (+9.38), 301 (−5.89) nm; UV (MeOH) λmax (log ε): at 262 (1.96) nm; 1H and
13C NMR data are provided in Table 1; HRESIMS m/z 605.2719 [M + Na]+ (calcd for
C33H42NaO9, 605.2721).
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2.2.3. Aquisinenin I (3)

Yellow oil; [α]25
D +51 (c 0.10, MeOH); ECD (MeOH) λmax (∆ε) at 203 (+8.45), 214 (−9.40),

233 (+10.10), 264 (−9.97), 297 (+2.51) nm; UV (MeOH) λmax (log ε): at 267 (2.17) nm; 1H
and 13C NMR data are provided in Table 1; HRESIMS m/z 605.2718 [M + Na]+ (calcd for
C33H42NaO9, 605.2721).

2.3. Biological Activity
2.3.1. Anti-Inflammatory Assay

The bioactivity assessments demonstrated that compound 1 exhibited potent in-
hibitory activity against LPS-induced NO production in RAW264.7 cells with IC50 values of
22.31 ± 0.42 µM, approximating the efficacy of the positive controls Indomethacin (IC50,
33.25 ± 4.47 µM) and quercetin (IC50, 16.10 ± 1.07 µM). In contrast, compound 3 exhib-
ited no significant inhibitory activity, which is potentially attributable to its significant
cytotoxicity. Compared with compounds 2 and 3, the results underscored the signifi-
cant anti-inflammatory efficacy of compound 1 through its modulation of NO-mediated
inflammatory pathways.

2.3.2. Neuroprotective Assay

The results of the neuroprotective assay demonstrated that compounds 1 and 3 en-
hanced cell viability at concentrations of 12.5, 25, 50, and 100 µM, achieving improve-
ments of 62.54 ± 6.39%, 66.84 ± 8.59%, 67.42 ± 5.38%, 75.04 ± 8.59%, and 60.50 ± 8.54%,
64.69 ± 7.45%, 73.59 ± 8.24%, and 70.86 ± 7.13% (Figures 7 and 8), respectively, as
compared to the control group (59.45 ± 3.15%). Notably, compounds 1 and 3 exhibited
concentration-dependent improvements in cell viability, with compound 3 showing maxi-
mal enhancement (73.59 ± 8.24%) at 50 µM and compound 1 achieving optimal efficacy
(75.04 ± 8.59%) at 100 µM, both significantly surpassing the baseline viability of 59.45 ± 3.15%
in untreated controls.
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Figure 7. The survival rates of SH-SY5Y cells treated with compound 1. (All data of Figure 7 are
expressed as mean ± (SEM), derived from three independent replicates. Statistical analyses were
conducted using a one-way analysis of variance (ANOVA), with a post hoc Welch’s t-test. Significance
thresholds were defined as follows: ### p < 0.001, relative to blank control group; *** p < 0.001,
** p < 0.01, * p < 0.1, versus H2O2-induced oxidative stress model group.
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2.3.3. Cytotoxicity Assay

Compounds 1–3 were evaluated for cytotoxic effects on K562, BEL-7402, SGC-7901,
A549, and Hela tumor cell lines in vitro. Compound 1 demonstrated cytotoxicity with
IC50 values of 72.37 ± 0.20 µM against K562 and 61.47 ± 0.22 µM against BEL-7402, while
compounds 2 and 3 showed cytotoxicity across all five tested human cancer cell lines
(Table 2). These findings highlight the differential cytotoxic profiles of the tested com-
pounds, with compound 1 displaying selective activity and compounds 2 and 3 demon-
strating broad-spectrum anticancer potential.

Table 2. Cytotoxic activities of compounds 1–3. (IC50, µM).

Compound K-562 BEL-7402 SGC-7901 A-549 Hela

1 72.37 ± 0.20 61.47 ± 0.22 — — —
2 27.58 ± 0.07 24.55 ± 0.17 31.68 ± 0.26 19.86 ± 0.26 23.18 ± 0.19
3 30.68 ± 0.12 41.24 ± 0.26 36.21 ± 0.73 61.16 ± 1.01 53.23 ± 0.07

Cisplatin a 3.08 ± 0.05 4.02 ± 0.06 4.11 ± 0.02 1.93 ± 0.02 11.29 ± 0.15
K-562: lymphoblast cells isolated from the bone marrow of a chronic myelogenous leukemia patient.
BEL-7402: a cell line derived from surgical specimens of human liver cancer patients. SGC-7901: a human
gastric adenocarcinoma cell line established from a surgical specimen of a gastric cancer patient. A549: a cell line
isolated from the lung tissue of a male with lung cancer. Hella: a cell line derived from cervical cancer cells of a
woman. — No activity at a concentration of 20 µg/mL. a Positive control.

3. Materials and Methods
3.1. General Experimental Procedures

High-resolution electrospray ionization mass spectrometry (HRESIMS) was conducted
using an API QSTAR Pulsar mass spectrometer (Bruker, Karlsruhe, Germany). 1H, 13C, and
2D NMR spectra were recorded using a Bruker AV III spectrometer (Karlsruhe, Germany)
and a Quantum-IPlus 600 spectrometer (Quantum Design China, Beijing, China). Optical
rotations were determined using an Anton Paar Modular Circular Polarimeter 500 (Graz,
Austria). ECD and UV spectra were obtained using a MOS-500 spectrometer from Biologic,
Clermont-Ferrand, France. Analytic HPLC was conducted using an Agilent Technologies
1260 Infinity II system with a DAD G1315D detector (Agilent, Santa Clara, CA, USA).
The separation process utilized COSMOSIL-packed C18 and πNAP columns, both 5 µm,
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250 mm × 4.6 mm. Semipreparative HPLC utilized reversed-phase columns (COSMOSIL
C18, Japan, 5 µm, 250 mm × 10 mm).The separation process utilized ODS gel (20–45 µm,
Fuji Silysia Chemical Co., Ltd., Greenville, NC, USA), silica gel (60–80, 200–300 mesh,
Qingdao Marine Chemical Co., Ltd., Qingdao, China), and Sephadex LH-20 (Merck, Darm-
stadt, Germany). Thin-layer chromatography (TLC) was performed on precoated silica
gel G plates from Qingdao Marine Chemical Co., Ltd., China. The detection of spots was
achieved by spraying with 5% sulfuric acid in ethanol and subsequent heating. GraphPad
Prism 9.5 (GraphPad Software, San Diego, CA, USA) was used for statistical analyses.

3.2. Plant Material

The plant material (Hainan agarwood) was procured from Hainan Province, China, in
August 2018 and was authenticated as originating from A. sinensis by Prof. Dr. Haofu Dai.
A voucher specimen (No. 201808) was deposited at the Institute of Tropical Bioscience and
Biotechnology, Chinese Academy of Tropical Agricultural Sciences.

3.3. Extraction and Isolation

The dried Hainan agarwood (1.0 kg) was crushed and subjected to reflux extraction
with 95% EtOH (3.0 L × 3, 3.0 h each). The combined extract was concentrated, dis-
solved in water, and sequentially partitioned with ethyl acetate (3.0 L × 3) and n-butanol
(3.0 L × 3). The EtOAc-soluble fraction (232.6 g) was fractionated by silica gel vacuum
liquid chromatography (VLC) with a PET–EtOAc gradient (1:0 → 0:1, stepwise), resulting
in 18 fractions (Fr.1–Fr.18).

Fr.17 (30.9 g) was further separated via an ODS gel column eluted with a gradient
of MeOH/H2O (3:7 → 1:0, v/v), generating 60 subfractions (Fr.17.1–Fr.17.60). Fr.17.34
(564.0 mg) was subjected to chromatography using a Sephadex LH-20 column with
methanol as the eluent, yielding four subfractions (Fr.17.34.1–Fr.17.34.4). Fr.17.34.2
(331.4 mg) was purified via semi-preparative HPLC (C18 column; MeOH/H2O, 70:30,
v/v; 4.0 mL/min; UV 210/254 nm), resulting in three fractions: Fr.17.34.2.1–Fr.17.34.2.3.
Further purification of Fr.17.34.2.2 (62.3 mg) under identical HPLC conditions but with
MeCN/H2O (55:45, v/v) yielded compound 1 (8.1 mg, tR = 19.0 min). Similarly, Fr.17.34.2.3
(37.7 mg) was processed to yield compound 2 (23.9 mg, tR = 17.0 min).

Fr.17.32 (371.0 mg) was separated using a Sephadex LH-20 column (MeOH eluent),
resulting in three subfractions (Fr.17.32.1–Fr.17.32.3). Fr.17.32.2 (170.6 mg) was purified by
semi-preparative HPLC (C18 column; MeOH/H2O, 60:40, v/v; 4.0 mL/min; UV 210/254 nm)
to produce three fractions: Fr.17.32.2.1–Fr.17.32.2.3. Fr.17.34.1 (27.5 mg) was further sepa-
rated using semi-preparative HPLC (C18 column; MeCN/H2O, 45:55, v/v; 4.0 mL/min;
UV 210/254 nm), generating two fractions: Fr.17.34.2.11 and Fr.17.34.2.12. Fr.17.34.2
(55.9 mg) was subjected to the same protocol, yielding two fractions (Fr.17.34.2.21 and
Fr.17.34.2.22). A final enrichment of Fr.17.34.2.1B and Fr.17.34.2.22 yielded compound 3
(13.9 mg, tR = 26.0 min).

3.4. Anti-Inflammatory Assay

The inhibitory effects of compounds 1–3 on nitric oxide (NO) production were eval-
uated in vitro using the Griess assay on lipopolysaccharide (LPS)-stimulated RAW264.7
cells [25,26]. Quercetin and Indomethacin served as positive controls, while the medium
with DMSO was used as the negative control. RAW264.7 mouse mononuclear macrophages
were obtained from the Stem Cell Bank of the Chinese Academy of Sciences. Compounds
were dissolved in DMSO at concentrations of 100, 50, 25, 12.5, and 6.25 µM using the
double dilution method. RAW264.7 cells were plated in 96-well microtiter plates at
5 × 104 cells/mL (100 µL per well) and incubated for 24 h in a humidified environment
with 5% CO2 and 90% air at 37 ◦C. Transfected cells were pretreated with the test solutions
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for 1 h, followed by stimulation with 500 ng/mL LPS (Sigma, St. Louis, MO, USA) for
24 h. Subsequently, 100 µL of supernatant from each well was transferred to new 96-well
microtiter plates, and 100 µL of Griess reagent (40 mg/mL, Sigma, USA) was added. Finally,
the absorbance of each well was measured at 540 nm to calculate the IC50 values of the
tested compounds.

3.5. Neuroprotective Assay

The MTT assay was used to assess the protective effects of compounds 1–3 on SH-
SY5Y human neuroblastoma cells against H2O2-induced oxidative stress [27]. The SH-SY5Y
cells (1.2 ×104 cells/mL) were cultured at 37 ◦C in a 5% CO2 and 95% air atmosphere in
96-well plates for 48 h. Subsequently, the cells were treated with 2-fold serial dilutions
of compounds (100, 50, 25, 12.5, and 0 µM) for 3 h, followed by the addition of 1000 µM
H2O2. After six hours, 20 µM MTT (5 mg/mL in PBS) was introduced to each well and in-
cubated for an additional four hours. Subsequently, the medium was discarded, and DMSO
was employed to dissolve the formazan. Cell viability was quantified as a percentage of
the control group (100%) by measuring absorbance at 490 nm with a Tecan microplate
reader. Statistical analysis and group comparisons were conducted using GraphPad
Prism software.

3.6. Cytotoxicity Assay

The cytotoxic effects of the compounds were assessed on five human cancer cell
lines: myeloid leukemia (K562), hepatocellular carcinoma (BEL-7402), gastric adenocar-
cinoma (SGC-7901), non-small cell lung cancer (A549), and cervical carcinoma (HeLa)
using the MTT assay [28,29]. Cells in the logarithmic growth phase were cultured at
37 ◦C with 5% CO2 in RPMI 1640 medium, supplemented with 10% fetal bovine serum,
100 IU/mL penicillin, and 100 µg/mL streptomycin. Cells were seeded into 96-well plates
at 5 × 104 cells/mL and incubated for 24 h. Test compounds, dissolved in DMSO with
a solvent concentration ≤0.1%, or cisplatin as a positive control, were then added and
incubated for 72 h. MTT solution (20 µL, 5 mg/mL in PBS) was subsequently added to each
well and incubated for 4 h and absorbance was measured at 490 nm using a microplate
reader. Dose–response curves were plotted, and IC50 values were calculated by nonlinear
regression analysis.

3.7. ECD Calculations

The absolute structures of compounds 1–3 were confirmed by optimizing potential
configurations with Chem3D and XTB 6.6.0 software using the MMFF94 and gfn0 meth-
ods, respectively, followed by screening with the XTB (CREST) software package [30–34].
The ground state of the possible conformations was calculated by the Gaussian 16 pro-
gram package, and the method # opt freq b3lyp/tzvp was selected (solvent method iefpcm,
solvent = methanol). Then, the TD = (nstates = 20) wB97xd/TZVP (IEFPPCM,
solvent = methanol) was selected to calculate the excited states. Theoretical ECD spec-
trograms were generated using Multiwfn 3.8 software based on the Boltzmann distri-
bution [35]. Origin 8.5 software was used to compare the calculated curves with the
experimental CD spectra.

4. Conclusions
In summary, an investigation into the constituents of Hainan agarwood (Aquilaria sinen-

sis) led to the isolation of three novel 2-(2-phenylethyl)chromone-sesquiterpene hybrids
(1–3). These compounds consisted of a 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromone unit
bound to an agarofuran-type sesquiterpene unit (compounds 1, 2) or an agarospirane-type
sesquiterpene unit (compound 3) via an ester linkage.
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The results of three biological activity tests indicate that compounds 1 and 3 might
be promising lead candidates for the treatment of neurodegenerative diseases, and col-
lectively position compound 1 as a dual-function candidate with anti-inflammatory and
neuroprotective potential. In contrast, compounds 2 and 3 warrant further exploration as an-
titumor agents. A differential bioactivity assessment underscored the structure-dependent
pharmacological effects of these compounds, exhibiting their viability as candidates for
therapeutic development.
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2 in MeOH-d4; Figure S15: The HRESIMS spectrum of compound 3; Figures S16–S21: The 1D and 2D
NMR spectra of compound 3 in MeOH-d4; Figures S22–S27: ECD calculation images of compound 1–3.
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