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INTRODUCTION

KCNQ1 was first discovered by positional cloning [1]. 
Coassembly with the β-subunit KCNE1 modified a very 
slowly activating delayed rectifier K+ current, IKs, with no 
apparent pattern of inactivation [2-5]. Physiologically, IKs 
channels involve repolarization of cardiac action poten-
tials, modulation of H+ secretion into the stomach, secre-
tion of Cl– into the colon, and secretion of K+ into the 
stria media of the inner ear [6-8]. In particular, IKs chan-
nels constitute the major outward current involved in 
ventricular repolarization and HERG (Ikr) channels [9-11]. 
Dysfunction or mutation of delayed rectifier K+ chan-
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nels (IKs and Ikr) underlines the long QT syndrome (LQT) 
with increased risk of Torsades de Pointes [11-13]. Since 
arrhythmia is one of the major causes of sudden cardiac 
death worldwide [14], KCNQ K+ and hERG channels are 
primary pharmacological targets for the development of 
therapeutic drugs against cardiovascular disease, includ-
ing arrhythmia.

Ginseng, the root of Panax ginseng Meyer, is a repre-
sentative herbal medicine and exhibits a variety of phar-
macological effects, including antistress, antifatigue, anti-
cancer, and antidiabetes mellitus [15]. Ginsenosides (also 
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called ginseng saponins), as a representative ingredient 
of ginseng, also exhibit antihypertension and cardio-
protective effects [16-18]. For example, administration 
of ginseng extract shortened action potential duration and 
ginsenoside Re regulates the Ikr and IKs channel currents 
of guinea pig myocytes [19,20].

In a previous study, we showed that ginsenoside Rg3 
activated human cardiac IKs channel currents in concen-
tration- and voltage-dependent manners [21]. Moreover, 
we demonstrated that ginsenoside Rg3 enhanced the out-
ward currents (IHERG) and transient tail currents (Itail). Rg3 
induced a large persistent deactivating-tail current (Ide-

activating-tail) and significantly decelerated the deactivating 
current decay [22]. According to the number and posi-
tion of sugar moieties, ginsenosides are divided into two 
main categories (i.e., the 20[S]-protopanaxadiol [PPD] 
and 20[S]-protopanaxatriol [PPT] families). On the other 
hand, ginsenosides are metabolized by colonic bacteria 
[23]. The intestinal bacterial metabolites, including com-
pound K (CK), PPD, and PPT, were easily absorbed and 
appeared in the plasma of rats or humans after the oral 
administration of ginsenosides [23-26].

In the present study, we examined the effects of gin-
senoside metabolites such as PPT and CK on IKs and 
KCNQ1 K+ alone channel activity by using the Xenopus 
oocyte gene-expression system. We found that CK and 
PPT exhibited a differential effect on IKs and KCNQ1 K+ 
alone channel activity and further discussed the role of 
ginsenoside metabolites in cardiovascular systems.

MATERIALS AND METHODS

Materials 
Ginsenoside metabolites, such as CK and PPT, were 

provided by the AMBO Institute (Seoul, Korea) (Fig. 
1). The cDNAs for human KCNQ channels (Gene Bank 
ID. NM_000218) were kindly provided by Dr. Pongs 
(University of Hamburg, Germany). Other agents were 
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Preparation of Xenopus oocytes and microinjec-
tion 

X. laevis frogs were purchased from Xenopus I (Ann 
Arbor, MI, USA). Their care and handling procedures 
were performed in accordance with the institutional 
guidelines of Konkuk University. For the isolation of 
oocytes, frogs were anesthetized with an aerated solu-
tion of 3-amino benzoic acid ethyl ester, followed by the 
removal of ovarian follicles. The oocytes were treated 
with collagenase, and then agitated for 2 h in a Ca2+-free 

medium containing 82.5 mM NaCl, 2 mM KCl, 1 mM 
MgCl2, 5 mM HEPES, 2.5 mM sodium pyruvate, 100 
units/mL penicillin, and 100 μg/mL streptomycin. Stage 
V–VI oocytes were collected and stored in a ND96 me-
dium (in mM: 96 NaCl, 2 KCl, 1 MgCl2, 1.8 CaCl2, and 
5 HEPES, pH 7.5) supplemented with 50 µg/mL genta-
micin. The oocyte-containing solution was maintained at 
18°C with gentle continuous shaking and renewed daily. 
Electrophysiological experiments were performed within 
5 to 6 d of oocyte isolation, with ginsenoside metabolites 
applied to the bath. For K+ channel experiments, Kv 
channel-encoding cRNAs (40 nL) were injected into the 
animal or the vegetal pole of each oocyte 1 d after isola-
tion using a 10-µL microdispenser (VWR Scientific, San 
Francisco, CA, USA) fitted with a tapered glass pipette 
tip (15 to 20 µm in diameter) [27].

Data recording 
A custom-made Plexiglas net chamber was used for 

two-electrode voltage-clamp recordings as previously 
reported [27]. The oocytes were impaled with 2 micro-
electrodes filled with 3M KCl (0.2 to 0.7 MW), and elec-
trophysiological experiments were carried out at room 
temperature by using an Oocyte Clamp (OC-725C; War-
ner Instruments, Hamsden, CT, USA). Stimulation and 
data acquisition were controlled with a pClamp 8 (Axon 
Instruments, Union City, CA, USA). For most electro-
physiological experiments, oocytes were initially per-
fused with a ND96 solution (in mM: 96 NaCl, 3 KCl, 2 
CaCl2, 5 HEPES, pH 7.4 with NaOH) to obtain control-
current recordings. The oocytes were then clamped at a 
holding potential of –90 mV. The membrane potential 

Fig. 1. Chemical structures of ginsenoside Rg3 and ginsenoside 
metabolites used in this study. CK, compound K; PPD, protopanaxa-
diol; PPT, protopanaxatriol; Glc, glucopyranoside.
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was depolarized to 0 mV for 4 s, followed by repolariza-
tion to –60 mV at 20-s intervals, and the currents were 
recorded.

Data analysis
To obtain the concentration-response curve of the ef-

fects of CK and PPT on the K+ current from the human 
KCNQ K+ channel, the peak amplitudes at different con-
centrations of CK and PPT were plotted. The Origin soft-
ware (Origin, Northampton, MA, USA) was used to fit 
the plot to the Hill equation: y/ymax = [A]nH/([A]nH + [IC50]
nH), where y is the peak current at a given concentration 
of CK and PPT, ymax is the maximal peak current, IC50 
is the concentration of CK and PPT producing a half-
maximal effect, [A] is the concentration of CK and PPT, 
and nH is the Hill coefficient. All values are presented as 

mean±SEM. The significance of differences between the 
mean control and treatment values was determined using 
Student’s t-test. A p-value of <0.05 was considered statis-
tically significant.

RESULTS AND DISCUSSION

Effects of protopanaxatriol and compound K on IKs
We first examined the effect of the ginsenoside metab-

olites PPT and CK on the IKs channel currents by using 
a Xenopus oocyte gene-expression system. As shown in 
previous reports, IKs channel currents were recorded us-
ing a two-electrode voltage-clamp recording technique at 
room temperature. In these experiments, cells were held 
at –80 mV and depolarized to +30 mV for 2.5 s to elicit 
the currents. The currents evoked by this voltage-clamp 

Fig. 2. Effects of protopanaxatriol (PPT) on IKs channel currents. (A) The representative traces on IKs channel current blocks by different concen-
trations of PPT. Currents were in response to 2.5-s voltage steps up to +30 mV from a holding potential of –80 mV. (B) Concentration-response 
curves of PPT on IKs and KCNQ1 alone channel currents. Solid lines have been fitted to the Hill equation as described in Materials and Methods. 
Oocytes were clamped at the same as described for (A), and evoked every 10 s. (C) Current-voltage (I-V) relationships of IKs channel in the ab-
sence (●) or presence (○) of 10 μM PPT. Voltage pulses of 3-second duration were applied in 10-mV increments and at 10-second intervals 
from a holding potential of –80 mV. The peaks of the evoked currents, normalized to the peak current evoked by the voltage step to +30 mV in 
the absence of PPT, were used in the I-V plot. (D) An example of IKs channel currents recorded before (control) and after modification by 10 and 
30 μM PPT. Currents recorded during 3-second depolarizing pulses to membrane potentials of –60 to +50 mV, applied from a holding potential 
of –80 mV. Tail currents were measured at –70 mV. Voltage-dependent activation curves were determined from the normalized amplitudes of tail 
currents. Data were fitted to a Boltzmann function. Data represent the mean±SEM (n= 6–7). 
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protocol were slowly activating delayed rectifier K+ 
channel (IKs) currents with no apparent inactivation (Fig. 
2A) [3]. PPT inhibited IKs in a concentration-dependent 
manner over a range of concentrations (i.e., 1 to 30 µM) 
(Fig. 2A). The IC50 and Hill coefficient for the PPT block 
of IKs were 5.18±0.13 µM and 1.72±0.05, respectively 
(Fig. 2B). The effect of PPT on the current-voltage rela-
tionship of the IKs channel was estimated by normalizing 
current values plotted against the test potential in the 
absence and presence of 10 µM PPT [21]. Normalized 
currents were obtained from the peak current amplitudes 
in response to depolarizing pulses, in the range of –60 
to +30 mV in 10-mV increments with a holding poten-
tial of –80 mV. The blockage of IKs at 10 µM PPT was 
voltage dependent (Fig. 2C). Next, we examined the ef-
fects of PPT on the voltage dependency of steady-state 
channel activation. As described above, a voltage-clamp 
protocol consisted of 3-s depolarizing steps from −60 to 
+40 mV (10-mV increments and 10-s intervals with a 
holding potential of –80 mV) was used to determine the 

activation of IKs channels. The activation of IKs channels 
was fitted to a Boltzmann function. As shown in Fig. 
2D, 10 and 30 μM PPT shifted Vg0.5 in the hyperpolar-
izing direction (control, −0.62±1.12 mV; 10 and 30 μM 
PPT, −5.93±0.66 mV, −12.25±0.86 mV, respectively; 
n=5, p<0.05). Interestingly, CK exhibited only a slight 
inhibition of IKs in a concentration-dependent block, 
the I-V relationship, and the G-V curve (Fig. 3). Thus, 
ginsenoside-induced regulations on IKs might be derived 
from PPT rather than from protopanaxadiol ginsenoside 
metabolites (i.e., PPD).

Effects of protopanaxatriol and compound K on 
KCNQ1 alone K+ channel activity

We next examined the effect of PPT and CK on 
KCNQ1 alone channel currents. Similar to the IKs chan-
nels, PPT also exhibited the concentration-dependent 
inhibition of KCNQ1 alone K+ channel currents and 
showed by 5% inhibition of the KCNQ1 alone K+ chan-
nel current (Fig. 4A, B). The fitting curve of PPT for IC50 

Fig. 3. Effects of compound K (CK) on IKs channel currents. (A) Representative current traces on IKs channel inhibitions by different concentra-
tions of CK. (B) Concentration-response curves of CK on IKs channel currents. (C) I-V relationships for KCNQ1 plus KCNE1 channel currents 
measurement at the end of the 3-second test pulse before and after application of 30 µM CK. (D) The steady-state activation curve for IKs channel 
currents by 30 µM CK. Protocols were the same as described for Fig. 2. Data are represented by the mean±SEM (n=7). 
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was 10.0±0.17 μM with a Hill coefficient of h=2.01±0.06 
(n=5) (Fig. 4B). The current–voltage relationship was 
examined, and the current responses evoked by voltage 
steps (i.e., a series of voltage pulses of 3-s duration given 
in 10-mV increments and 10-s intervals with a hold-
ing potential of –80 mV) were used to construct the I-V 
curve. KCNQ1 alone K+ current by PPT observed volt-
age-dependent inhibition (Fig. 4C). Unlike the IKs chan-
nels, the effect of PPT on the KCNQ1 alone K+ channel 
induced a minimal shift in the G-V curve (Fig. 4D). Fig. 
5 shows the effects of the ginsenoside metabolite CK 
on KCNQ1 alone K+ currents. CK also had no effect on 
KCNQ1 alone as it did on the IKs channels. The IC50 was 
27.65±0.05 μM with a Hill coefficient of h=3.04±0.03 
(n=7) (Fig. 5B). CK minimally affected the current-volt-
age relationship and voltage-dependent activation (Fig. 
5C, D). Thus, these results suggest that KCNQ1 alone is 
more sensitive to PPT than CK with regard to blocking. 

In vitro and in vivo studies have shown that an orally 
administered ginsenoside was metabolized and finally 
converted to aglycone such as CK, which has a glucose 
residue at the C-20 of PPD or PPT [23]. Recent reports 
have shown that such ginsenoside metabolites might 
exhibit pharmacological effects [23,28,29]. However, 
relatively little is known about the effects of ginsenoside 
metabolites on K+ ion channel activity, such as IKs in the 
heart.

We have previously reported that ginsenoside Rg3 
activated human KCNQ1 K+ channel currents through 
interactions with the K318 and V319 residues [21]. In 
the present study, we examined the effects of ginsenoside 
metabolites such as CK and PPT on human KCNQ1 K+ 
channel activity. We found that ginsenoside metabolites 
showed a differential effect of PPT on IKs and KCNQ1 
alone K+ channels currents. Thus, we observed that PPT 
inhibited IKs and KCNQ1 alone K+ channels currents 

Fig. 4. Effects of protopanaxatriol (PPT) on KCNQ1 alone channel. (A) The representative traces on KCNQ1 alone channel current inhibition 
by different concentrations of PPT. Protocols were the same as described for Fig. 2. (B) Concentration-response curves of PPT on KCNQ1 alone 
channel currents. (C) Current-voltage (I-V) relationships of KCNQ1 alone channels in the absence (●) or presence (○) of 30 μM PPT. (D) Ex-
ample of KCNQ1 channel currents recorded before (control) and after modification by 30 μM PPT. Protocols were the same as described for Fig. 2. 
Data represent the mean±SEM (n=5–7).
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in both concentration- and voltage-dependent man-
ners, but the PPT blockade of the IKs current had an IC50 
value of 5.18±0.13 µM, which was 2-fold less than that 
of KCNQ1 alone K+ current. In addition, we found that 
steady-state activation curves of IKs channel currents 
by PPT shifted in the direction of hyperpolarization in 
a dose-dependent manner, but the KCNQ1 alone K+ 
channel currents rarely did. This observation suggests 
that PPT affects the steady-state activation of IKs chan-
nels only. Taken together, these results suggest that the 
KCNE1 subunit has an important role in PPT-induced 
regulation of the IKs channel.

Native cardiac IKs channels are involved in cardiac dis-
eases such as arrhythmia [30]. IKs channel regulators are 
clinically important for the treatment of cardiac diseases 
[31,32]. In a previous study, we reported that ginsenoside 
metabolites exhibited differential regulations on Ideactivating-

tail of the HERG K+ channel [22]. CK induced a persistent 
Ideactivating-tail and caused a leftward shift of steady-state, 
voltage-dependent activation. In contrast to CK, PPT 

caused an acceleration of Ideactivating-tail decay. In the pres-
ent study, we found that PPT mainly inhibited the IKs K

+ 
channel, caused a leftward shift in the activation curve of 
the IKs channel, and minimally affected KCNQ1 alone. 
Therefore, when KCNQ1 co-assembled with KCNE1, 
the sensitivity to PPT increased 2-fold, thus indicating 
that ginsenoside metabolites exhibit a differential effect 
on HERG K+ and IKs channels.

In previous studies, we also showed that ginsenoside 
metabolites such as CK, PPD, and PPT regulate ion 
channels and receptors. PPT, but not CK, induced an 
inhibition of the voltage-dependent L-type Ca2+ channel 
currents [33]. We have found that CK, but not PPT, inhib-
ited a neuronal Nav1.2 channel [34]. In contrast, M4, but 
not CK, caused an inhibition of N-methyl-d-aspartic acid 
receptor-mediated currents [35]. In the present study, CK 
exhibited a negligible effect on both IKs and KCNE K+ 
channel currents. Thus, ginsenoside metabolite-induced 
regulations on various ion channels and receptors might 
be dependent on ion channel or receptor types.

Fig. 5. Effects of compound K (CK) on KCNQ1 alone channel currents. (A) Representative current traces on KCNQ1 alone channel inhibition 
by different concentrations of CK. (B) Concentration-response curves of CK on KCNQ1 alone channel currents. (C) I-V relationships for KCNQ1 
alone channel currents measurement at the end of the 3-second test pulse before and after application of 30 µM CK. (D) The steady-state ac-
tivation curve for KCNQ1 alone channel currents by 30 µM CK. Protocols were the same as described for Fig. 2. Data are represented by the 
mean±SEM (n=6).
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In summary, our results show that PPT, rather than 
CK, is the main component in the inhibition of IKs chan-
nels. Further, different types of ginsenoside metabolites 
exhibit differential effects on the regulation of IKs and 
KCNQ1 K+ channels.
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