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Abstract

DNA repair defects have been increasingly focused on as therapeutic targets. In hormone-

positive breast cancer, XRCC1-deficient tumors have been identified and proposed as tar-

gets for combination therapies that damage DNA and inhibit DNA repair pathways. XRCC1

is a scaffold protein that functions in base excision repair (BER) by mediating essential inter-

actions between DNA glycosylases, AP endonuclease, poly(ADP-ribose) polymerase 1,

DNA polymerase β (POL β), and DNA ligases. Loss of XRCC1 confers BER defects and

hypersensitivity to DNA damaging agents. BER defects have not been evaluated in triple

negative breast cancers (TNBC), for which new therapeutic targets and therapies are

needed. To evaluate the potential of XRCC1 as an indicator of BER defects in TNBC, we

examined XRCC1 expression in the TCGA database and its expression and localization in

TNBC cell lines. The TCGA database revealed high XRCC1 expression in TNBC tumors

and TNBC cell lines show variable, but mostly high expression of XRCC1. XRCC1 localized

outside of the nucleus in some TNBC cell lines, altering their ability to repair base lesions

and single-strand breaks. Subcellular localization of POL β also varied and did not correlate

with XRCC1 localization. Basal levels of DNA damage correlated with observed changes in

XRCC1 expression, localization, and measure repair capacity. The results confirmed that

XRCC1 expression changes indicate DNA repair capacity changes but emphasize that

basal DNA damage levels along with protein localization are better indicators of DNA repair

defects. Given the observed over-expression of XRCC1 in TNBC preclinical models and

tumors, XRCC1 expression levels should be assessed when evaluating treatment

responses of TNBC preclinical model cells.

Introduction

Defects in DNA damage response and repair are driving factors in carcinogenesis and key

determinants for chemotherapeutic response. Breast cancers may display defects in DNA

repair such as mutations in key DNA damage response and repair proteins such as breast can-

cer-susceptibility gene (BRCA1/2) and tumor suppressor protein p53 (TP53), and altered
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expression levels of DNA repair proteins thymine-DNA glycosylase (TDG) and poly(ADP-

ribose) polymerase 1 (PARP1) [1–3]. Exploiting DNA repair defects present in cancer cells but

absent in normal cells improves therapeutic responses, as demonstrated by the use of PARP-

inhibitors (PARPi) in cancers that have BRCA1/2 deficiencies. However, characterization of

DNA repair pathways in preclinical models is often lacking. DNA repair defects modulate the

efficacy of therapeutic agents, and their characterization in preclinical models and patients is

essential for evaluating therapeutic options.

In breast cancer, DNA repair defects often extend beyond homologous recombination

defects. Observed changes in the expression of base excision repair (BER) proteins such as

TDG and DNA polymerase beta (POL β) demonstrate other DNA repair pathways contribute

to genomic instability and may alter therapeutic responses [2, 3]. Single nucleotide polymor-

phisms in BER genes such as POL β, PARP1, and X-ray cross complementing protein 1

(XRCC1) are associated with increased risk of developing breast cancer [4–7]. However, the

roles of BER proteins in breast cancer development and treatment are poorly understood.

XRCC1 is a critical scaffold protein in BER that facilitates critical protein-protein interac-

tions at the site of DNA damage, mediating associations among DNA glycosylases, AP endonu-

clease 1 (APE1), PARP1, POL β, and DNA ligase III (LIG3). XRCC1’s facilitation of protein-

protein interactions also provides for overlap in functions between BER and single-strand break

repair (SSBR) pathways [8, 9]. XRCC1 also participates in double-strand break (DSB) repair

through its interaction with PARP1 in the error-prone alternative nonhomologous end joining

(NHEJ) [10–12], and with DNA LIG3 in nucleotide excision repair (NER) [13].

XRCC1 is ubiquitously expressed in normal tissues, but low levels of XRCC1 cause

impaired BER in terminally differentiated muscle cells and neurons [14, 15]. Variations in

XRCC1 expression are observed in breast cancer patient samples [16–18], with low XRCC1

expression proposed as a target for PARPi treatment [16–19]. Defects in BER related to low

XRCC1 expression may sensitize breast cancer cells to PARPi, similar to homologous recombi-

nation and BRCA1/2 defects [16, 18, 20, 21]. However, the frequency of XRCC1-deficiency in

breast cancer is not known, and the susceptibility to PARPi across breast cancer subtypes is

undefined.

Defects in BER, including XRCC1 expression level changes, have not been fully explored in

triple negative breast cancers (TNBC). TNBC is associated with rapid growth, high metastatic

potential, and poor overall 5-year prognosis. TNBC primary tumors have a high level of geno-

mic instability and a high prevalence of DNA repair defects, though not always associated with

mutations in the BRCA1/2 genes [1, 16–18, 22]. Further, TNBC lack the estrogen receptor

(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2),

which are the molecular targets for current breast cancer therapies. The lack of these molecular

targets in TNBC limits treatment options for TNBC to surgery and DNA damaging radiother-

apy or chemotherapy.

Therefore, DNA repair defects in TNBC can play a critical role in dictating the response to

therapy. With changes in XRCC1 expression observed in some breast cancers, we hypothe-

sized that XRCC1 expression level changes in TNBC could indicate BER defects which could

be targeted to provide new treatment strategies for this aggressive breast cancer subtype.

Materials and methods

The Cancer Genome Atlas analysis

The Cancer Genome Atlas (TCGA) analysis was performed with an internet resource (UAL-

CAN: http://ualcan.path.uab.edu) as previously reported by Chandrashekar et al. [23] and

plotted as a Box and Whisker to show data distribution.
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Cell culture

MDA-MB-157 (MDA-157), MDA-MB-231(MDA-231) and MDA-MB-468 (MDA-468),

MCF10A, and HCC1806 cells were purchased from the American Type Culture Collection

(ATCC #’s HTB-24, HTB-26, HTB-132, CRL-10317, and CRL-2335, respectively) within the last

12 months and passaged< 15 times for all experiments. Cells were tested biweekly during experi-

ments for mycoplasma contamination using the Lonza MycoAlert (Lonza #LT07-318). HCC1806

cells were grown in RPMI 1640 Medium (Life Technologies #11875093) and supplemented with

10% Fetal Bovine Serum (FBS, Atlantic Biologicals Premium Select). MDA-157, MDA-231,

MDA-468, and MCF10A cells were grown in DMEM High Glucose + GlutaMAX (Life Technolo-

gies #10566016) and supplemented with 1% sodium pyruvate (Life Technologies #11360070) and

10% FBS. Cells were maintained in a humidified 37˚C incubator with 5% carbon dioxide.

shRNA knockdown of XRCC1

Plasmid constructs for stable depletion of human XRCC1 mRNA were obtained from Sigma-

Aldrich (MISSION shRNA). Two different shRNAs against XRCC1 were used: XRCC1

shRNA 1- (TRCN000011211): CCGGCGATACGTCACAGCCTTCAATCTCGAGATTGAAGGC
TGTGACGTATCGTTTTT XRCC1 shRNA 2- (TRCN0000007913): CCGGCCAGTGCTCCAG
GAAGATATACTCGAGTATATCTTCCTGGAGCACTGGTTTTT. pKLO.1 plasmid without insert

was also purchased from Sigma-Aldrich and transfected in parallel with shRNAs. MDA-468

cells were plated at 40,000 cells per well into a 12-well dish. The next day cells were transfected

with 0.5 μg plasmid DNA and JetPrime (Polyplus) at a 1:2 ratio of DNA to JetPrime. Cells

were allowed to recover for 48 h following transfection; then stable cell lines were recovered

after puromycin selection (0.5 μg/ml, Life Technologies). Single-cell clones were isolated and

after immunoblot analysis, those demonstrating significant XRCC1 knockdown were charac-

terized. No difference in XRCC1 expression or cell sensitivity was observed with the MDA-468

pLKO.1 control cell line compared to the MDA-468 parental.

Immunoblot

Immunoblot was performed as described previously [24]. Cells were grown in 150 mm dishes and

cultured to 70–80% confluence. Cells were rinsed with PBS, scraped, stored overnight at -80˚C,

then lysed. Lysates were separated on a 4–15% SDS Page gel (Biorad), and transferred to a nitro-

cellulose membrane. The membrane was then probed with antibodies diluted in 5% non-fat dry

milk in Tris buffered saline (VWR #J640-4L) and 0.1% Tween20 (Fisher Scientific #BP337,

TBS-T) and raised against PARP1 (Cell Signaling #9532) that was diluted 1:1000, XRCC1 (Fisher

Scientific #MS434P1) that was diluted 1:500, p53 (Santa Cruz Biotechnology #sc-6243) that was

diluted 1:1000, BRCA1 (Novus Biologicals #NBP1-45410) that was diluted 1:500, and glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) (Santa Cruz Biotechnology #sc-365062) that was

diluted 1:1000. The blots were incubated with either horseradish peroxidase (HRP)-labeled sec-

ondary antibodies: goat anti-rabbit-HRP or goat anti-mouse-HRP (Cell Signaling Technology).

HRP antibody target proteins were detected by incubating with WesternBright Sirius (Advansta).

All immunoblotting was conducted with three biological replicates. Where indicated, pro-

tein quantification was conducted with Image Lab Software (BioRad). Band intensity was nor-

malized to loading controls and averaged over the three biological replicates.

Subcellular fractionation

Nuclear and cytoplasmic fractions were prepared using the NE-PER Nuclear and Cytoplasmic

Extraction reagents (Thermo Scientific #78835). Briefly cells were grown to 80% confluency.
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The cells were then placed on ice, washed in ice-cold PBS, and harvested with 0.25% Trypsin-

EDTA (Thermo Fisher) and centrifuged at 500 x g for 5 min. The cell pellets were resuspended

in 50 μl of ice-cold Cytoplasmic Extraction Reagent I (CER I). The MDA-157, MDA-231, and

HCC1806 cells lines were vortexed at the highest setting for 15 sec to resuspend the cell pellet

and placed on ice for 10 min. The MDA-468 cells were gently resuspended by flicking the tube

and incubated on ice for 10 min. Then 2.25 μl of ice-cold Cytoplasmic Extraction Reagent II

(CER II) was added to all tubes. The MDA-157, MDA-231, MDA-468, and HCC1806 cells

lines were then vortexed at the highest setting for 5 sec and placed on ice for 1 min. The MDA-

157, MDA-231, and HCC1806 cells lines were then vortexed again at the highest setting for 5

sec, while the MDA-468 remained on ice. The cells were then centrifuged at 16,000 x g for 5

min at 4˚C. Cytoplasmic fraction (supernatant) was then transferred to a clean, pre-chilled

tube. Nuclear extraction was carried out according to the manufacturer’s protocol. Protein

concentration was quantitated using the Bradford protein assay kit (BioRad). Equal amounts

of cytoplasmic extract (~ 80 μg) and nuclear extract (5 μg) were loaded in each lane and sepa-

rated on a 10% Criterion TGX Stain-Free Protein Gel (BioRad), then transferred onto a nitro-

cellulose membrane. Membranes were probed with the following primary antibodies: mouse

anti-XRCC1 (clone 33-2-5) (Thermo Fisher, MA513412), mouse anti-β-actin (Thermo Fisher,

AM4302), mouse anti-Lamin A/C (Cell Signaling Technology, 4777). The blots were incubated

with either horseradish peroxidase (HRP)-labeled secondary antibodies: goat anti-rabbit-HRP

or goat anti-mouse-HRP (Cell Signaling Technology). HRP antibody target proteins were

detected by incubating with WesternBright Sirius.

Immunofluorescence

Cells were plated in 8-well slides (Nunc Chambered Coverglass, ThermoFisher). Wells were

coated with 250 μL EmbryoMax 0.1% Gelatin Solution (Millipore #ES-006-B) for 15–30 min at

room temperature (RT ~ 23˚C), EmbryoMax was removed and cells were added at 3 x 104

cells per well and allowed to reach 70–80% confluence before fixation in 3.7% formaldehyde

(Fisher Scientific #BP531) in PBS for 10 min at RT, then washed 3x in PBS. The cells were per-

meabilized using Permeabilization Buffer (Biotium #22016) for 10 min at RT, washed 3x in

PBS, and blocked using 2% bovine serum albumin (BSA, Jackson ImmunoResearch #001-000-

173) in PBS for 30 min at RT. Primary antibodies were diluted in 2% BSA in PBS and incu-

bated for 1 h at RT. XRCC1 (abcam #ab1838) was diluted 1:100; POL β (abcam #ab26343) was

diluted 1:200; 53BP1 (Novus #NB100-304) was diluted 1:750; γH2AX-647 (Millipore #05-

636-AF647) was diluted 1:750; Poly ADP-Ribose Polymer (PAR) (abcam #ab14460) was

diluted 1:200; p53 (Life Technologies #MA514516) was diluted 1:200; and PARP1 (Santa Cruz

Biotechnology #sc53643 clone C2-10) was diluted 1:200. After primary incubation, cells were

washed 3x in PBS and secondary antibodies were diluted 1:2000 in 2% BSA and incubated for

45 min at RT in the dark. Secondary antibodies were either goat anti-Mouse Alexa Fluor 546

(Invitrogen #A11003), goat anti-rabbit Alexa Fluor 546 (Invitrogen #A11010), goat anti-

Mouse Alexa Fluor 488 (Invitrogen #A11001), or goat anti-Rabbit Alexa Fluor 488 (Invitrogen

#A11008). One drop of NucBlue Fixed Cell Reagent (ThermoFisher #R37606) was added to

each chamber and chambers were incubated for 15 min at RT. Cells were washed 2x in PBS

and imaged immediately for analysis or stored at 4˚C overnight. Fluorescence images were

acquired using a Nikon A1r scanning confocal microscope with a Plan-Apochromat 20x/0.75

objective. For quantification, the region of interest (ROI) generator was used to automatically

detect nuclei in the DAPI channel, and the mean intensity in the channel of interest was

exported for analysis. For XRCC1 and POL β nucleus to cytoplasmic ratio (N/C), nuclei were

defined automatically and the whole cell was drawn using Bezier function. The nucleus was
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then subtracted from the whole cell intensity to determine cytoplasmic intensity described pre-

viously [25, 26].

DNA damage analysis utilizing RADD

Cells were plated in 8-well chambered coverglass, fixed, and permeabilized using the same pro-

cedure as for immunofluorescence. The Repair Assisted Damage Detection (RADD) assay

detects DNA base lesions and strand breaks using an enzymatic cocktail specific for these

lesions that removes the lesion and tags the resulting gap or strand break with a modified base

for fluorescent detection [27]. The assay was performed as described previously with minor

modifications. After permeabilization, cells were incubated with uracil DNA glycosylase

(UDG) to remove uracil (NEB #M0304S), formamidopyrimidine [Fapy]-DNA glycosylase

(Fapy-DNA glycosylase NEB #M0240S) to remove Fapy lesions, T4 Pyrimidine dimer glycosy-

lase (T4PDG NEB #M-308S) to remove pyrimidine dimer lesions, endonuclease IV (Endo IV

NEB #M0304S) to process oxidative damage, AP sites and modifies 3’ phosphates to 3’ OH,

and endonuclease VIII (Endo VIII NEB #M0299S) to remove damaged pyrimidines diluted in

1X Thermpol buffer and incubated at 37˚C for 1 h. Damage sites are labeled by DNA polymer-

ase I Klenow large fragment (lacking 5’ to 3’ exonuclease activity) incubated with Digoxigenin-

11-dUTP, alkali-labile (Dig) (Sigma-Aldrich #DIUTP-RO) at 37˚C for 1 h. The Dig-dUTP is

covalently incorporated into the DNA for detection of damage sites. Cells were then washed in

PBS, blocked using 2% BSA in PBS and Dig was then detected using an anti-Dig antibody

(abcam #ab420 clone 21H8) at a dilution of 1:250 in 2% BSA in PBS for 1 h at RT. Samples

were then stained with goat anti-Mouse Alexa Fluor 546 at 1:400 in 2% BSA in PBS for 45 min

at RT, and nuclei were stained as for immunofluorescence. Image analysis was performed as

described previously [27]. MDA-231 cells were used to set the 546 nm laser gain, and the other

cells were imaged at that gain. The control experiment was performed with the complete

RADD cocktail and Klenow but without the insertion of Dig-dUTP. Antibody staining in this

sample was used to ensure the specificity of RADD measurements. A minimum of 200 cells

per experiment were analyzed over three biological replicates. The mean nuclear fluorescence

intensity was normalized to the MDA-231 cells and reported as ratio of change over MDA-

231.

355 nm laser microirradiation

Cells were plated as for immunofluorescence in 8-well chambered coverglass at 4 x 104 cells per

chamber as described above. The next day, cells were treated with 10 μM bromodeoxyuridine

BrdU (Sigma Aldrich #B5002) for 24 hours to sensitize the cells to microirradiation. Microirra-

diation was performed on a Nikon A1r scanning confocal microscope that was modified to

include a 355 nm laser. Experiments were performed using an ultraviolet passing S Fluor 20x/

0.75 objective as described previously [28, 29]. Samples were fixed with 3.7% formaldehyde at

various time points and processed by immunofluorescence for XRCC1 fluorescence intensity.

Intensity levels of damage foci were normalized by subtracting an adjacent region within the

nucleus and reported as fluorescence intensity in arbitrary units (a.u.) as described [28].

Fluorescence multiplex host cell reactivation

Fluorescence multiplex host cell reactivation (FM-HCR) assays were performed as described

previously [30, 31]. Briefly, the cells were seeded 48 h before transfection into T25 tissue cul-

ture flasks (Thermofisher,156367) and collected for transfection at 85% confluence. Cells were

electroporated using the Neon transfection system (ThermoFisher, MPK5000) at 1200 V, and

20 ms, with 2 pulses. Transfected cells were seeded into 12-well culture plates and harvested 24
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h after transfection for flow cytometric analysis. Transfection efficiency for each assay is con-

trolled for by the inclusion of an undamaged fluorescent reporter plasmid with the repair

reporter constructs as described in [31]. Fluorescent reporter expression is given as the per-

centage of the fluorescent reporter protein expressed compared to the undamaged control

plasmids from a second transfection as described in detail in [30, 31]

Cytotoxicity

Cytotoxicity was determined with cell growth inhibition assays. Cells were seeded at 3 x 104

cells per well in 6-well dishes. HCC1806 cells were treated the next day, and MDA-157, MDA-

231, and MDA-468 were treated after 48 h. All treatments were performed in triplicate with a

minimum of 3 replicates each. Cells were treated with carboplatin (Sigma-Aldrich #C2538) or

doxorubicin (Selleck Chem #S1208) diluted to 10 mM in DMSO, then diluted in growth

medium. The cells were exposed to DMSO vehicle, carboplatin or doxorubicin continuously for

5 days. Methyl methanesulfonate (MMS) (Sigma-Aldrich #129925) or potassium bromate

(KBrO3) (Sigma-Aldrich #60085) were diluted in growth medium for 1 h exposures. Cells were

washed in phosphate buffered saline (PBS, Cellgro #21-031-CV), growth medium was replaced,

and the cells were incubated for 5 days. Cells were treated with olaparib (Selleck Chemicals

#S1060) diluted to 10 mM in DMSO then diluted in growth medium for 24 hours. Cells were

washed with PBS, growth medium was replaced, and the cells were incubated for 5 days. All

cells were counted with a Bio-Rad TC20 automated cell counter. Results were normalized to

either DMSO vehicle control or medium control exposed cells and graphed to generate values

of half maximal inhibitory concentration (IC50) values using GraphPad Prism software.

Statistical analysis

Quantification of fluorescent images was performed in the Nikon Elements software package

with a minimum of at least 150–200 cells per experiment, with each experiment performed at

least three times. The mean intensity or N/C ratio is reported. IC50 values were generated uti-

lizing the GraphPad Prism software with three replicates for each concentration, repeated a

minimum of three times, and average IC50 values reported. The fluorescent signal generated

from the repair of the damaged and undamaged substrates is quantitated in each triplicate,

and the mean reported. One-way ANOVA and means were compared with Dunnett post hoc

analysis. Comparison groups are indicated after values. All means are reported ± standard

error of the mean (SEM).

Results

XRCC1 expression in the TCGA

The TCGA Breast Invasive Carcinoma dataset was analyzed using the UALCAN data portal

[23] for XRCC1 expression. Despite previous publications indicating a loss in XRCC1 to be an

important indicator for TNBC [16], XRCC1 transcript expression levels were significantly

higher in primary tumor samples than in normal tissues with a p value of 1.6 x 10−12 (Primary

tumor to Normal)(Fig 1A). Further analysis of XRCC1 expression across breast cancer types

shows increased expression of XRCC1 in Luminal (p< 1 x 10−12, Luminal to Normal) and

TNBC (p< 0.001, TNBC to Normal) tumor types (Fig 1B), but not in HER2 positive tumors.

Base excision repair protein expression

To further examine XRCC1 expression and the expression of other key DNA repair proteins

in vitro, we utilized four highly characterized TNBC cell lines: MDA-157, MDA-231,
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HCC1806, and MDA-468 [32–34]. Levels of XRCC1 expression were lowest in MDA-157 cells

similar to non-tumorigenic epithelial MCF10A cells, higher in MDA-231 and HCC1806 cells,

and the highest in MDA-468 cells (Fig 2A, quantified in S1A Fig). The expression levels of

PARP1 were moderate and similar in MDA-157, HCC1806, and MDA-468 but lower in

MDA-231 cells (Fig 2B). We observed low POL β protein levels in all cell lines. MDA-231 and

MDA-468 had high levels of p53 due to gain-of-function stabilizing mutations that also pro-

mote tumorigenesis [35, 36]. No p53 protein was detected in MDA-157 cells, and low levels

were detected in HCC1806 cells; both cell lines contain truncating mutations in p53 (Fig 2B,

S1A Fig) [37–40]. We observed an increased expression pattern in BRCA1 across the cell lines

with MDA-468 having the highest expression of BRCA1 (S1B Fig). There are no reported

Fig 1. TCGA analysis of XRCC1. A) TCGA analysis using the UALCAN web interface [23] revealed XRCC1

transcript expression to be significantly higher in breast tumor tissue over normal tissue (p = 1.6 x 10−12, Primary

tumor to Normal). B) XRCC1 was increased in Luminal (p< 1 x 10−12, Luminal to Normal) and TNBC (p< 0.001,

TNBC to Normal) tumor types compared to normal tissue using the same analysis interface. ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0223725.g001

Fig 2. Base excision repair proteins in TNBC cell lines. A) Lysates of MCF10A, MDA-157, MDA-231, HCC1806,

and MDA-468 were probed by immunoblot for the expression of XRCC1 with GAPDH serving as loading control. B)

Lysates of MDA-MB-157 (MDA-157), MDA-MB-231 (MDA-231), HCC1806, and MDA-MB-468 (MDA-468) were

probed by immunoblot for the expression of PARP1, p53, POL β, and GAPDH as a loading control.

https://doi.org/10.1371/journal.pone.0223725.g002
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BRCA1 mutations in these cell lines [33]. Variation in the expression of BER proteins are

observed across the four TNBC model cell lines, with XRCC1 showing increased expression

over the non-tumorigenic epithelial MCF10A cells, consistent with the TCGA trends.

Subcellular localization of critical base excision repair proteins

For effective DNA repair and maintenance of genomic fidelity, the proteins involved must be

localized in the nucleus. We examined the expression and nuclear localization of key BER

interactors XRCC1 and POL β using immunofluorescence. XRCC1 has primarily nuclear

localization, which is consistent with its DNA repair functions [25]. POL β functions in both

nuclear and mitochondrial BER and is observed within the cytoplasm, mitochondria, and

nucleus of cells [26, 41].

We assessed the nuclear to cytoplasmic ratio (N/C) of XRCC1 and POL β, with a value of 1

representing equal distribution between the nucleus and cytoplasm, while a value of less than

one represents exclusion from the nucleus, and a value greater than one represents predomi-

nantly nuclear localization. The MDA-157 cells exhibited a relatively equal distribution of

XRCC1 between the nucleus and cytoplasm with an N/C ratio of 1.01 ± 0.03 (Fig 3A and 3C

and S2 Fig). MDA-231 showed higher nuclear content of XRCC1 with an N/C ratio of

2.02 ± 0.12, though some cytoplasmic content is still observed (Fig 3A and 3C, S2 Fig).

HCC1806 cells had partial exclusion of XRCC1 from the nucleus with an N/C ratio of

0.79 ± 0.02 (Fig 3A and 3C, S2 Fig). MDA-468 cells had the highest N/C ratio of the cell lines

tested (2.36 ± 0.12) with XRCC1 almost exclusively in the nucleus (Fig 3A and 3C, S2 Fig). All

N/C ratios of XRCC1 were significantly different when compared with each other with the

exception of MDA-157 compared with HCC1806. Examination of the mean nuclear intensity

of XRCC1 within these cell lines shows similar amounts of XRCC1 are localized into the

nucleus for MDA-157, MDA-231, and MDA-468 (Fig 3A right), so the changes in N/C ratio

are driven by increasing amounts of XRCC1 within the cytoplasm for MDA-157 and MDA-

231 (Fig 3A and 3C). While the decreased mean nuclear intensity of XRCC1 in the HCC1806

confirmed the cytoplasmic level of XRCC1 was higher than the nuclear (Fig 3A and 3C). The

N/C ratio of XRCC1 was confirmed by immunoblot following subcellular fractionation for

each cell line (S2 Fig).

Some studies have suggested POL β localization and protein stability is dependent on

XRCC1. Given the diminished nuclear localization of XRCC1 in HCC1806 cells, we also exam-

ined the nuclear content of POL β across the cell lines. Consistent with immunoblot results,

POL β staining was low across all cell lines despite high levels of XRCC1 (Fig 3B and 3D, S2

Fig). Localization of POL β to the nucleus was also variable between cells (Fig 3B and 3D, S2

Fig). Low nuclear content of POL β was observed in MDA-157 and MDA-231 cells with N/C

ratios of 0.39 ± 0.02 and 0.45 ± 0.02, respectively (Fig 3B). HCC1806 showed significantly

higher nuclear enrichment of POL β with an N/C of 1.40 ± 0.37, despite XRCC1 being pre-

dominately cytoplasmic when compared with both MDA-157 and MDA-231 (Fig 3B and 3D).

MDA-468 cells also showed significantly enriched nuclear POL β with an N/C of 1.24 ± 0.08

when compared to both MDA-157 and MDA-231. Examination of the mean nuclear fluores-

cent intensity showed higher mean fluorescence intensity of POL β in the nucleus of

HCC1806, suggesting the majority of the protein is localized there (Fig 3B). Even though

MDA-157, MDA-231, and MDA-468 show different mean fluorescent intensities of POL β,

the differences are small compared to the HCC1806, so the changes in N/C ratios in these cell

lines is driven by the cytoplasmic content of the POL β (Fig 3B).

Given the unexpected cellular distribution of key BER factors XRCC1 and POL β, we also

examined cellular levels of PAR, which is polymerized by PARP1 at sites of DNA damage and
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Fig 3. Subcellular localization and quantification of BER proteins. A) Left, XRCC1 nuclear to cytoplasmic ratio (N/

C) is reported as 1 representing equal distribution (MDA-157),> 1 representing nuclear localization (MDA-231 and

MDA-468), and< 1 representing nuclear exclusion (HCC1806). (���� P< 0.0001, MDA-157 to MDA-231, MDA-157

Defective BER in triple negative breast cancer
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increases in the presence of BER defects [42, 43]. Nuclear levels of PAR were largely consistent,

with only the MDA-468 cells having significantly higher nuclear intensity of PAR. The

HCC1806 cells has similar PAR levels to MDA-157 and MDA-231, despite XRCC1 being

largely cytoplasmic in these cells (Fig 4A).

We then examined the nuclear content of PARP1 and p53. MDA-157 contained roughly

2.4-fold more nuclear PARP1 than MDA-231 cells. HCC1806 had 1.6-fold and MDA-468

1.9-fold more nuclear PARP1 than MDA-231 cells (Fig 4A). PARP1 highly localized to the

nucleus in all cell lines, yet expression levels were highly variable across all cell lines, consistent

with immunoblotting (Figs 2B and 4B). We observed that p53 nuclear localization was consis-

tent with mutational status, with HCC1806 and MDA-157 displaying significantly low nuclear

staining, in contrast with strong nuclear staining of p53 in MDA-231 and MDA-468 cells, con-

sistent with immunoblot data in Fig 2. Representative images of all cell lines are shown in Fig

4B, with PARP1 shown in green, while PAR and p53 are shown in red.

Significant differences in the nuclear localization of PARP1, XRCC1 and POL β are

observed across the TNBC cell lines. MDA-468 has the most “normal” distribution of PARP1,

XRCC1 and POL β of the cell lines with nuclear enrichment of both factors. MDA-157 and

MDA-231 showed high cytoplasmic content for both XRCC1 and POL β and high levels of

PAR, suggesting deficiencies in BER may exist in these cell lines. HCC1806 is the most defec-

tive in XRCC1 nuclear localization, though PARP1 and POL β are highly enriched.

Basal levels of DNA damage in TNBC cell lines

Based on the altered protein expression and localization of BER proteins in TNBC cells, we evalu-

ated the cells for variation in levels of basal DNA damage using the broad spectrum DNA damage

assay, Repair Assisted Damage Detection (RADD) [27]. RADD uses bacterial DNA glycosylases

to detect and excise abasic sites, oxidative base lesions, bulky DNA adducts, and thymine dimers

(see Material and Methods). Then the gaps in the DNA where the lesions were excised or strand

breaks occur are tagged by Klenow polymerase with a Digoxigenin-11-dUTP. Damage sites are

detected by immunofluorescence as described in the materials and methods [27]. RADD was

applied to the TNBC cell panel, and the nuclear fluorescence intensity of basal DNA damage

quantified (Fig 5, S3 Fig). MDA-157 and MDA-231 cells had similar low levels of basal DNA dam-

age (Fig 5B). However, HCC1806 cells had 1.4-fold more DNA damage over MDA-231 (P = 0.09,

HCC1806 to MDA-231) and MDA-468 cells had 1.5-fold more damage than MDA-231 cells

(P< 0.01, MDA-468 to MDA-231) (Fig 5A). Representative images of nuclear fluorescence for all

cell lines are shown in Fig 5A. Knockdown of XRCC1 utilizing two distinct shRNA constructs in

MDA-468 cells (Fig 5C) shows a decrease in the basal amounts of DNA damage (Fig 5B), indicat-

ing that excess XRCC1 plays a role in higher levels of basal DNA damage.

XRCC1 recruitment to single-strand breaks is altered in TNBC cells

The varied levels of basal DNA damage seen in Fig 5 and altered expression and localization of

XRCC1 in Fig 2 and Fig 3 indicated that DNA repair functions of XRCC1 may be altered in

TNBC cells. As XRCC1 has no known enzymatic activity, we assessed DNA repair activity by

to MDA-468, MDA-231 to HCC1806, HCC1806 to MDA-468; � P< 0.05, MDA-231 to MDA-468). Right, mean

fluorescence intensity of XRCC1. (���� P< 0.0001, HCC1806 to MDA-157, MDA-231, and MDA-468) B) Left, N/C

ratio of POL β. (�� P< 0.01, MDA-157 to HCC1806, MDA-231 to HCC1806; � P< 0.05, MDA-157 to MDA-468,

MDA-231 to MDA-468) Right, mean fluorescence intensity of POL β. (���� P< 0.0001, MDA-157 to MDA-231,

MDA-157 to HCC1806, MDA-231 to HCC1806, MDA-231 to MDA-468, HCC1806 to MDA-468; �� P< 0.01, MDA-

157 to MDA-468) C) Representative images of localization of XRCC1 in TNBC cell lines. D) Representative images of

localization of POL β in TNBC cell lines. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0223725.g003
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examining the recruitment and retention of XRCC1 at sites of DNA damage induced by laser

microirradiation. Single-strand breaks were induced in a subnuclear region by microirradia-

tion with a 355 nm laser, and we assessed XRCC1 recruitment and retention to the damage

site at various time points after inducing damage [28, 29].

As shown in Fig 6, XRCC1 recruitment over time is graphed on the left, with corresponding

images of peak XRCC1 recruitment foci shown on the right. XRCC1 recruited to the DNA

damage site in MDA-157 cells with an average intensity of 707 a.u. and dissociated within 5

min, with 50% retention at 1.7 min (Fig 6A). In contrast, MDA-231 cells had two XRCC1

recruitment peaks at 364 a.u. within 0.5 min that resolved by 3 min and at 8 min, respectively

(Fig 6B). XRCC1 weakly recruited to the damage site in HCC1806, peaking only at 258 a.u.

(Fig 6C). In MDA-468 cells, XRCC1 recruitment was rapid and robust, peaking at 1025 a.u.

within 0.5 min (Fig 6D). XRCC1 was rapidly dissociated from the damage site with 50%

Fig 4. Nuclear intensity of key BER proteins. A) Quantification of mean nuclear fluorescence intensity is shown for

PARP1 (���� P< 0.0001, MDA-231 to MDA-157, HCC1806, and MDA-468), PAR (���� P< 0.0001, MDA-468 to

MDA-157, MDA-231, and HCC1806), and p53 (���� P< 0.0001, MDA-157 to MDA-231, MDA-157 to MDA-468,

MDA-157 to HCC1806, MDA-231 to MDA-468, MDA-231 to HCC1806, and MDA-468 to HCC1806). B)

Representative fluorescent images used for quantification in A for PARP1, PAR, and p53 for all cell lines tested. Scale

bar = 20 μm.

https://doi.org/10.1371/journal.pone.0223725.g004
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retention at 2.2 min and complete resolution of the damage foci within 3 min of microirradia-

tion (Fig 6D). Double-strand breaks (DSBs) were absent in all cell lines as confirmed by the

lack of co-localization of DSB markers 53BP1 and γH2AX at 10 min after microirradiation,

except for a slight increase of γH2AX at 10 min in HCC1806 cells which displayed weak

XRCC1 recruitment, likely due to XRCC1’s cytoplasmic localization (Fig 3, S5 Fig, S6 Fig).

Base excision repair capacity is altered in TNBC cells

Given the BER defects observed through expression, localization, and response to induced

DNA damage, we utilized a flow cytometric host cell reactivation assay (FM-HCR) to assess

Fig 5. Basal DNA damage in TNBC cell lines. A) Representative images of basal levels of DNA damage as measured

by RADD in MDA-157, MDA-231, HCC1806, MDA-468 with insets showing blown up cropped images. Scale

bar = 100 μm. B) Quantification of images in A normalized to MDA-231 show an increase in DNA damage in

HCC1806, and a significantly higher amount (P< 0.01, MDA-468 to MDA-231) of DNA damage for MDA-468.

MDA-468 cells with XRCC1 knockdown show decreased levels of basal DNA damage. C) Expression of XRCC1 in

MDA-468 and MDA-468 XRCC1 knockdown cells.

https://doi.org/10.1371/journal.pone.0223725.g005
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the repair capacities of TNBC cells across BER substrates [30, 31]. The FM-HCR assays mea-

sured DNA repair capacity using transiently transfected fluorescent reporter plasmids. By

reporting repair of each DNA lesion in a different fluorescent channel, simultaneous measure-

ments were made for multiple DNA repair pathways to assess the diverse BER capacity in

TNBC cells. The BER reporters include GFP_hypoxanthine:T, which primarily reports AAG

(also known as MPG) glycosylase-mediated excision of hypoxanthine opposite thymine (Fig

7A); mPlum_A:8-oxo-dG, which reports MUTYH glycosylase catalyzed excision of adenine

opposite 8-oxo-2’-deoxyguanosine (8-oxo-dG) (Fig 7B); mOrange_8-oxo-dG:C, which reports

the activity of several glycosylases (OGG1, NEIL1, NEIL2) that excise 8-oxo-dG opposite cyto-

sine (Fig 7C); and BFP_Uracil:G, which primarily reports UNG glycosylase catalyzed excision

of uracil opposite guanine (Fig 7D). mPlum_O6-methylguanine:C was used to assess the

removal of O6-methylguanine opposite thymine by MGMT (Fig 7E).

In the selected TNBC cells, MDA-468 cells were the most BER proficient with efficient repair

observed for all BER substrates. MDA-468 also efficiently repaired O6-methylguanine by direct

reversal. MDA-231 cells were defective for repair of O6-methylguanine, and overall the least

proficient at repairing BER substrates. MDA-157 cells repaired most BER substrates efficiently

except for 8-oxo-dG:C and uracil. Intermediate repair efficiency for O6-methylguanine was

Fig 6. XRCC1 recruitment following 355 nm laser microirradiation in TNBC cell lines. Microirradiation with a 355

nm laser occurred and cells were fixed at the indicated time points and processed for immunofluorescence of XRCC1.

Quantification over time is shown on the left with a representative image from 0.5 min shown on the right for A)

MDA-157, B) MDA-231, C) HCC1806, and D) MDA-468. A minimum of 18 cells were irradiated over three separate

experiments and quantified as described in the materials and methods section and reported as XRCC1 Foci Intensity

in arbitrary units (a.u.). Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0223725.g006
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observed for MDA-157. HCC1806 cells repaired O6-methylguanine efficiently but had low

repair capacity for all BER substrates except uracil, for which the repair proficiency matched

MDA-468 cells.

DNA damaging agents induce selective cytotoxicity in TNBC cells

We then analyzed the sensitivity of the four TNBC cell lines to clinical DNA damaging agents.

Cytotoxicity of carboplatin and doxorubicin have been widely reported for these cell lines with

a large range of IC50 values observed utilizing various methods. BER proteins, including

XRCC1, are involved in the repair of the platinum-DNA adducts, strand breaks, and DNA-

protein crosslinks induced by these agents, though other repair pathways are more dominant

[44–47]. TNBC cell line sensitivity was determined by growth inhibition following continuous

Fig 7. FM-HCR analysis of DNA repair capacity in TNBC cell lines. Cells were transfected with fluorescent reporter

plasmids containing the indicated DNA lesions, A) Hypoxanthine:T (P< 0.05, MDA-231 to MDA-468), B) A:8-oxo-

dG, C) 8-oxo-dG:C (P< 0.05, MDA-231 to MDA-468), D) Uracil:G, E) O6-methylguanine:C (���� P< 0.0001, MDA-

157 to MDA-231, HCC1806 to MDA-231, MDA-468 to HCC1806), as well as an undamaged plasmid to normalize for

transfection efficiency. DNA repair capacity is inversely proportional to % reporter expression.

https://doi.org/10.1371/journal.pone.0223725.g007
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exposure to carboplatin and doxorubicin (Table 1). MDA-468 were the most sensitive to both

carboplatin and doxorubicin compared with the other cell lines tested, consistent with previ-

ously reported data on these cell lines with platinum-based therapies and doxorubicin [34, 48,

49].

We also determined TNBC cell line sensitivity to the PARPi olaparib. PARP1 recognizes

abasic sites and single-strand breaks and synthesizes poly(ADP-ribose) (PAR) polymers to

recruit additional BER proteins such as XRCC1, POL β, and DNA LIG3 for repair [8, 21]. Ola-

parib inhibits PAR production thereby reducing BER mediating repair [46, 50]. Cells were

treated with increasing concentrations of olaparib up to 25 μM for 24 h, and cytotoxicity deter-

mined by growth inhibition. MDA-231 cells were most resistant to olaparib treatment up to

the highest concentration tested of 25 μM, despite BER defects (Fig 7, Table 1). MDA-157 and

MDA-468 cells were sensitive to olaparib treatment with IC50 values of 6.2 and 5.88 μM,

respectively, while HCC1806 cells were the most sensitive to olaparib treatment with an IC50

of 2.22 μM (Table 1).

BER is also responsible for the repair of oxidative DNA lesions [51, 52]. TNBC cell sensitiv-

ity to the oxidizing agent potassium bromate (KBrO3 [51]) was tested at increasing concentra-

tions up to 25 mM. MDA-231 and MDA-157 exhibited IC50 values of 24.98 mM and 22.56

mM, respectively, with no significant difference between the two. HCC1806 cells were sensi-

tive to KBrO3 with an IC50 value of 16.22 mM representing a significant difference compared

to MDA-231 (P< 0.05, HCC1806 to MDA-231) (Table 1). MDA-468 cells were also sensitive

to KBrO3 with an IC50 of 11.87 mM representing a significant difference compared to MDA-

231 cells (P< 0.01, MDA-468 to MDA-231) (Table 1).

Finally, we determined TNBC cell line sensitivity to the DNA methylating agent methyl

methanesulfonate (MMS). BER is responsible for the resolution of alkylation base damage

induced by MMS, and XRCC1-deficient cells are hypersensitive to MMS [53]. We determined

the MMS sensitivity (IC50) of the four TNBC cell lines. MDA-468 cells were the most resistant

to MMS with an IC50 of 1.84 mM, followed by MDA-157 (0.75 mM) and HCC1806 cells (0.61

mM). MDA-231 cells were the most sensitive to MMS with an IC50 of 0.28 mM (Table 1).

Knockdown of XRCC1 by two distinct shRNAs in the MDA-468 cell line sensitized these cells

to growth inhibition by MMS (S8 Fig), confirming the role that XRCC1 plays in the repair of

alkylation by BER.

Discussion

DNA repair defects are increasingly focused on for clinical assessments with gene expression

panels and protein biomarkers sought to predict patient response and improve therapeutic

outcomes. However, characterization of DNA repair pathways is often lacking in preclinical

models and is essential for understanding the effects of DNA repair defects on the efficacy of

therapeutic agents. Several studies have noted deficiency in XRCC1 in breast cancers and pro-

posed defects in BER as targets for therapeutic intervention [16, 18, 19]. However, little is

known about BER defects in breast cancer, particularly those linked to XRCC1. Given the

Table 1. Sensitivity of TNBC cell lines to DNA damaging agents.

Cell Line Carboplatin

IC50 (μM)

Doxorubicin

IC50 (nM)

MMS

IC50 (mM)

Olaparib

IC50 (μM)

KBrO3

IC50 (mM)

MDA-157 9.53 ± 1.12 10.11 ± 1.05 0.75 ± 0.07 6.2 ± 2.1 22.56 ± 3.55

MDA-231 7.62 ± 0.79 18.50 ± 6.83 0.28 ± 0.02 > 25 24.98 ± 1.91

HCC1806 1.11 ± 0.07 17.90 ± 1.00 0.61 ± 0.07 2.22 ± 0.46 16.22 ± 2.13

MDA-468 1.01 ± 0.07 10.52 ± 0.67 1.84 ± 0.10 5.88 ± 2.27 11.87 ± 1.01

https://doi.org/10.1371/journal.pone.0223725.t001
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aggressiveness of TNBC and the poor treatment options for recurrent TNBC, identifying and

characterizing BER defects, which may promote resistance to standard of care treatment is

critical.

While expression changes in PARP1 and POL β occur in TNBC, these expression changes

have failed to serve as effective biomarkers for therapeutic response [1–3]. So we evaluated

XRCC1 expression in the TCGA Breast Invasive Carcinoma dataset using the UALCAN data

portal [23]. Unlike previous reports, over-expression of XRCC1 was observed in this dataset

similar to the over-expression observed in the four preclinical models used in this study.

XRCC1 transcript expression levels were higher in tumor samples than in normal tissues, and

in Luminal and TNBC subtypes compared with normal tissue. Pathology images from the

TCGA dataset also showed high protein content in breast carcinomas consistent with the high

transcript levels [54]. Therefore, XRCC1 over-expression may be more relevant to examining

DNA repair defects in TNBC than XRCC1 deficiency.

To explore this hypothesis, we examined XRCC1 in four TNBC preclinical models to deter-

mine if XRCC1 expression changes account for varied responses to DNA damaging agents fre-

quently observed [32–34]. XRCC1 protein levels varied across the four common preclinical

model cell lines, and more importantly, XRCC1 localization also varied among the cell lines.

XRCC1’s function as a scaffold protein in BER is well described, as is its localization into the

nuclear compartment [25, 55, 56]. There is no evidence that XRCC1 is involved in mitochon-

drial BER, and mislocalization of XRCC1 into the cytoplasm by the single nucleotide polymor-

phism R280H has been associated with defective nuclear BER [57–59]. While the TNBC cell

lines used in this study do not contain the R280H polymorphism, we observed significant cyto-

plasmic content of XRCC1 that correlated with BER defects measured by micro-irradiation

and FM-HCR [60]. HCC1806 had low nuclear and high cytoplasmic content, which resulted

in low recruitment and retention of XRCC1 to laser-induced DNA damage and low repair of

all BER substrates except uracil in the FM-HCR assay. MDA-157 and MDA-231 also showed

cytoplasmic localization of XRCC1, low repair of some BER substrates and altered XRCC1

recruitment profiles, despite having sufficient levels of nuclear XRCC1 (Fig 3A right). Only

MDA-468 with the almost exclusive nuclear localization of XRCC1 was highly proficient at

BER (Fig 7).

In addition to being a critical component in BER, XRCC1 has been proposed to stabilize

the expression of POL β and participate in POL β nuclear localization [43, 61, 62], With the

altered expression and localization of XRCC1, we examined POL β expression and localization

in the TNBC cell models. POL β expression also varied between the cell lines, with higher

XRCC1 levels correlating with higher POL β protein content. However, the TNBC cells also

showed altered localization of POL β that did not correlate with altered XRCC1 localization.

The MDA-157 and MDA-231 cells showed low nuclear content of POL β, whereas HCC1806

and MDA-468 showed POL β nuclear enrichment [26, 41]. Loss of POL β does not induce the

same level of hypersensitivity to DNA damaging agents as loss of XRCC1 [53, 63, 64]. How-

ever, loss of nuclear POL β may reduce the efficiency of repair and likely contributes to

reduced BER capacity and sensitivity of MDA-157and MDA-231 cells to DNA damaging

agents (Fig 7, Table 1).

Defective repair leaves DNA damage within the genome promoting mutation and instabil-

ity. To observe the consequences of DNA repair defects, we measured DNA damage levels in

the TNBC cells using a broad spectrum DNA lesion detection assay [27]. Expression levels of

XRCC1 (Fig 2) correlated with increased levels of basal DNA damage. Low levels of XRCC1 in

MDA-157 and MDA-231 cells corresponded to low levels of basal DNA damage, similar to

that in the non-tumorigenic epithelial cell line MCF10A (S3 Fig). However, HCC1806 and

MDA-468 cells had increased XRCC1 levels that corresponded to higher levels of DNA
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damage (Fig 5). We expected high levels of DNA damage in HCC1806 cells, where XRCC1 is

mislocalized to the cytoplasm. However, the high levels of DNA damage in MDA-468 cells,

and the lack of known BRCA1 mutations and dependence on mutant p53 for survival [36]

were surprising. Other DNA repair defects in the MDA-468 cells may contribute to the DNA

damage level. However, knockdown of XRCC1 in the MDA-468 significantly decreased basal

levels of DNA damage, suggesting that elevated levels of on-going repair from increased

expression of XRCC1, PARP1, and POL β contribute to the high basal levels of DNA damage.

Elevated levels of BER in MDA-468 cells are consistent with the proficiency of these cells to

repair BER substrates (Fig 7) by the rapid and robust recruitment of XRCC1 to laser-induced

DNA damage (Fig 6), and the resistance of these cells to MMS (Table 1). The recruitment of

XRCC1 was greater in MDA-468 than MDA-157 and HCC1806 cells, in which defects in

XRCC1 expression and localization were observed. MDA-468 cells also recruited XRCC1

more robustly than MDA-231 cells, which had two recruitment waves of XRCC1 similar to a

recent report examining XRCC1 in U2OS cells [65]. Interestingly, the second wave of XRCC1

recruitment observed in the U2OS cells was observed after CRISPR editing made the cell

XRCC1 deficient and ectopic expression of XRCC1 was introduced. It is unclear if the second

wave of recruitment in MDA-231 is due to inefficient recruitment of POL β to the damage site

from the low nuclear content of these cells (Fig 6) [43], or could possibly be due to a more

complex BER pathway that is needed for correct end-tailoring of nicked DNA before gap-fill-

ing by the polymerase [28]. Further work is needed to better understand these recruitment

dynamics.

The inefficiency in BER repair by MDA-231 cells was confirmed by the FM-HCR assays

(Fig 7) and high sensitivity of MDA-231 cells to MMS (Table 1). The MDA-231 cells were not

sensitive to olaparib alone and the least sensitive to KBrO3 of the lines tested, despite defects in

BER (Table 1). The lack of sensitivity to olaparib may result from the lower levels of its target

PARP1 in the MDA-231 cells (Fig 2), while the lack of sensitivity to KBrO3 is likely due to the

fact that while the MDA-231 cells are the least efficient in BER, XRCC1 is still able to recruit to

sites of damage and conduct SSBR (Fig 6). As the levels of DNA damage observed in this cell

line are more comparable to the more BER competent MDA-157, low levels of PARP1 and the

gain-of-function mutation in p53 observed in MDA-231 cells likely promote alternative repair

pathways, like NHEJ, to reduce basal damage levels (Fig 5) [33]. Competition or ineffective sig-

naling by these alternative repair pathways also may explain the altered recruitment profile for

XRCC1 in the MDA-231 cells.

Although MDA-468 and MDA-231 cells represented the extremes of BER competencies, the

observed sensitivity of MDA-157 and HCC1806 cells to MMS likely resulted from the observed

defects in localization of BER proteins, which has not been previously assessed (Fig 3).

Characterization of XRCC1 expression in these preclinical models demonstrates that pro-

tein expression, localization, and the basal DNA damage levels are important indicators of

DNA repair capacities. Despite the high proficiency for BER observed by FM-HCR, MDA-468

cells are well documented to be sensitive to DNA damaging agents [32, 49, 66]. Over-repair by

the BER pathway and high basal DNA damage levels in these cells may generate too many

cytotoxic intermediates that promote cell death and increase cellular sensitivity to DNA dam-

aging agents, such as KBrO3 (Table 1), rendering these cells an ineffective model for drug eval-

uation. The present data also demonstrate that defects in BER are prominent in the commonly

used TNBC preclinical models. These BER defects have not been characterized or examined

previously and need to be investigated in patient tumor samples.

In summary, XRCC1 expression and localization may vary and serve as critical indicators

of BER defects in TNBCs and likely other cancers. However, the expression of a single protein

may not determine the true extent of DNA repair defects. Our work demonstrates the
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importance of assessing expression, basal levels of DNA damage, and protein localization in

cells and tissues may better predict treatment outcomes when DNA repair defects are present.

Supporting information

S1 Fig. A) Immunoblots from Fig 1A, Fig 1B, and S1B Fig were quantified, normalized to

loading control, and reported as fold change relative to MDA-231. ND = no signal detected. B)

Lysates for MDA-157, MDA-231, HCC1806, and MDA-468 were probed for BRCA1, with

GAPDH serving as a loading control.

(TIF)

S2 Fig. Subcellular fractionation of MDA-157, MDA-231, HCC1806, and MDA-468. Cyto-

plasmic and nuclear fractions of all cells were probed for XRCC1. β-ACTIN was used as a load-

ing control for the cytoplasmic fraction while LAMIN A/C was used as a loading control for

the nuclear fraction.

(TIF)

S3 Fig. Basal DNA damage in TNBC cell lines in comparison to MCF10A. A) Replotting

data from Fig 5B in the presence of MCF10A shows similar levels of DNA damage to that of

MDA-157 and MDA-231. (P = 0.09, HCC1806 to MDA-231; � P< 0.01, MDA-468 to MDA-

231) B) Representative images of basal levels of DNA damage as measure by RADD including

MCF10A. Scale bar = 100 μm.

(TIF)

S4 Fig. MDA-157, MDA-231, HCC1806, MDA-468, and MDA-468 XRCC1 shRNA cell

lines were tested by immunofluorescence for the presence of γ-H2AX and 53BP1 as indica-

tors of strand breaks. This data indicates that strand breaks are not significantly different in

MDA-468 cell lines compared to MDA-468 XRCC1 shRNA cell lines further confirming the

ability of RADD to detect broad spectrum DNA damage.

(TIF)

S5 Fig. Double strand break markers post microirradiation. DSB markers 53BP1 (Green)

and γ-H2AX (Violet) were stained by immunofluorescence at 10 min after micro-irradiation

and representative images are shown for A) MDA-157, B) MDA-231, C) HCC1806, and D)

MDA-468. Scale bar = 20 μm.

(TIF)

S6 Fig. Fluorescence intensity of double-strand break markers from S4 Fig. A) Foci Inten-

sity for γ-H2AX (Left), and 53BP1 (Right) for MDA-157, MDA-231, HCC1806, and MDA-

468. B) Mean ± SEM for γ-H2AX and 53BP1 from S5A Fig.

(TIF)

S7 Fig. FM-HCR analysis from Fig 6 including the non-tumorigenic cell line MCF10A. A)

Hypoxanthine:T (P< 0.05, MDA-231 to MDA-468), B) A:8-oxo-dG, C) 8-oxo-dG:C

(P< 0.05, MDA-231 to MDA-468), D) Uracil:G (P< 0.05, MCF10A to HCC1806, MCF10A

to MDA-468), E) O6-methylguanine:C (���� P< 0.0001, MCF10A to MDA-231, MDA-157 to

MDA-231, HCC1806 to MDA-231, MDA-468 to HCC1806), as well as an undamaged plasmid

to normalize for transfection efficiency. DNA repair capacity is inversely proportional to %

reporter expression.

(TIF)

S8 Fig. A) MMS sensitivity graphs for MDA-468, MDA-468 XRCC1 shRNA1, and MDA-468

XRCC1 shRNA2. XRCC1 shRNA2 showed significantly more cell death at 0.5 mM MMS
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compared to MDA-468, while at 1.0 mM MMS both XRCC1 shRNA1 and XRCC1 shRNA2

showed significantly more cell death compared to MDA-468. (� P< 0.05, 0.5 mM MMS

XRCC1 shRNA2 to MDA-468; �� P< 0.01, 1.0 mM MMS XRCC1 shRNA1 to MDA-468; ���

P< 0.001, 1.0 mM MMS XRCC1 shRNA2 to MDA-468) B) IC50 values for MMS in MDA-468

(1.84 ± 0.10 mM) (mean ± SEM), MDA-468 XRCC1 shRNA1 (1.15 ± 0.11), and MDA-468

XRCC1 shRNA2 (1.06 ± 0.07).

(TIF)
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