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ABSTRACT

Motivation: Superpositioning is an essential technique in structural
biology that facilitates the comparison and analysis of conformational
differences among topologically similar structures. Performing a
superposition requires a one-to-one correspondence, or alignment,
of the point sets in the different structures. However, in practice,
some points are usually ‘missing’ from several structures, for
example, when the alignment contains gaps. Current superposition
methods deal with missing data simply by superpositioning a subset
of points that are shared among all the structures. This practice is
inefficient, as it ignores important data, and it fails to satisfy the
common least-squares criterion. In the extreme, disregarding missing
positions prohibits the calculation of a superposition altogether.
Results: Here, we present a general solution for determining an
optimal superposition when some of the data are missing. We use the
expectation–maximization algorithm, a classic statistical technique
for dealing with incomplete data, to find both maximum-likelihood
solutions and the optimal least-squares solution as a special case.
Availability and implementation: The methods presented here
are implemented in THESEUS 2.0, a program for superpositioning
macromolecular structures. ANSI C source code and selected
compiled binaries for various computing platforms are freely available
under the GNU open source license from http://www.theseus3d.org.
Contact: dtheobald@brandeis.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
How should we properly compare and contrast the 3D conformations
of similar structures? This fundamental problem in structural
biology is commonly addressed by performing a superposition,
which removes arbitrary differences in translation and rotation
so that a set of structures is oriented in a common reference
frame (Flower, 1999). For instance, the conventional solution
to the superpositioning problem uses the least-squares optimality
criterion, which orients the structures in space so as to minimize
the sum of the squared distances between all corresponding
points in the different structures. Superpositioning problems, also
known as Procrustes problems, arise frequently in many scientific
fields, including anthropology, archaeology, astronomy, computer
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vision, economics, evolutionary biology, geology, image analysis,
medicine, morphometrics, paleontology, psychology and molecular
biology (Dryden and Mardia, 1998; Gower and Dijksterhuis, 2004;
Lele and Richtsmeier, 2001). A particular case we consider here
is the superpositioning of multiple 3D macromolecular coordinate
sets, where the points to be superpositioned correspond to atoms.
Although our analysis specifically concerns the conformations
of macromolecules, the methods developed herein are generally
applicable to any entity that can be represented as a set of Cartesian
points in a multidimensional space, whether the particular structures
under study are proteins, skulls, MRI scans or geological strata.

We draw an important distinction here between a structural
‘alignment’ and a ‘superposition.’ An alignment is a discrete
mapping between the residues of two or more structures. One of the
most common ways to represent an alignment is using the familiar
row and column matrix format of sequence alignments using the
single letter abbreviations for residues (Fig. 1). An alignment may
be based on sequence information or on structural information (or on
both). A superposition, on the other hand, is a particular orientation
of structures in 3D space.

Calculating an optimal superposition normally requires a one-to-
one correspondence (a bijection) between the atoms in the different
structures (Bourne and Weissig, 2003; Flower, 1999; Gower, 1975).
For instance, a sequence alignment is necessary to superposition
protein molecules. In many real cases, however, certain residues
(and their atoms) are ‘missing’ in some of the structures. As a case
in point, one crystal structure of a protein may omit loop regions that
are present in another crystal structure of the same protein. Figure 2a
shows a sequence alignment of four protein structures that we wish
to superposition. In this example, the protein sequences are identical
except that several residues are missing from some structures; only
about half of the atoms to be superpositioned are shared among all
four proteins (indicated by blue asterisks). An analogous situation
exists when we wish to superposition a set of homologous proteins,
which in general will have different sequences, various lengths,
and gaps and insertions in the alignment (Fig. 1). In both cases,
particular columns in the alignment will have gaps, and immediately
the question emerges of how to properly incorporate these positions
into a global superposition.

Current multiple superposition methods explicitly require
complete data (Diamond, 1992; Flower, 1999; Gerber and Müller,
1987; Gower, 1975; Kearsley, 1990; Shapiro et al., 1992; Sutcliffe
et al., 1987; Theobald and Wuttke, 2006a), and hence current
superposition implementations deal with missing data crudely,
usually by excluding many atoms from the calculation (Birzele
et al., 2007; Dror, 2003; Guda et al., 2001; Hill and Reilly, 2006;
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Fig. 1. Cytochrome c alignment. An alignment of cytochrome c proteins,
each of known structure, from seven different species. The gaps can be
considered as ‘missing data’ in a likelihood framework. As in Figure 2, the
subset of residues completely shared among all four proteins is indicated by
asterisks

Fig. 2. Alignments with missing data. (a) A sequence alignment of four
identical proteins, except that different residues are missing in each of the
proteins. This could, for instance, correspond to the case of superpositioning
different crystal structures where different regions of the protein are
disordered in different crystal forms. The subset of residues completely
shared among all four proteins is indicated by asterisks. (b) A second
alignment of the same four proteins with different missing data. (c) A third
alignment of the same four proteins with no ‘common core,’ in which no
residues are completely shared among all four proteins

Konagurthu et al., 2006; Maiti et al., 2004; Menke et al., 2008; Ortiz,
2002; Shatsky et al., 2002; Ye and Godzik, 2005). For the proteins in
Figures 1 and 2, standard practice would calculate the superposition
based on only the small subset of fully shared residues, often
referred to as the ‘common core’ (indicated above the alignment by
blue asterisks). This method, which corresponds to superpositioning
based only on columns in the alignment that contain no gaps, is
therefore inefficient as it disregards much of the observed data.
Atoms that are not shared among all structures are nevertheless
informative, and ideally they should be considered in calculating
an optimal superposition. In the most extreme case, no residues
are completely shared among the macromolecules (Fig. 2c). Here,
the practice of disregarding positions with missing data prohibits
the calculation of a superposition altogether, because there is no

common core and consequently nothing to include in the calculation.
Ignoring some atoms in the superposition also clearly fails to satisfy
the least-squares criterion, where the object is to minimize the sum
of squared distances among all corresponding atoms, not just among
a subset of the atoms.

Despite the popularity of ordinary least squares as an optimality
criterion for determining the best superposition, other criteria are
better justified both theoretically and empirically (Theobald and
Wuttke, 2006a, b, 2008). According to the Gauss–Markov theorem,
two basic assumptions must be met to justify the use of least squares.
In terms of a superposition, these two assumptions require that
all atoms have the same variance and that none of the atoms are
spatially correlated. Both of these assumptions are strongly violated
with biological macromolecules, as certain regions of a structure
are more variable than others (due to a combination of experimental
imprecision, dynamics and conformational heterogeneity) and
because atoms physically communicate with each other (e.g. via
electrostatic, Van der Waals and covalent interactions).

We previously presented a maximum-likelihood superposition
method that addresses these problems with the least-squares criterion
by explicitly allowing individual atoms to be correlated and to have
different variances (Theobald and Wuttke, 2006a, b, 2008). As is
often true with Gaussian distributed data, the conventional least-
squares superposition solution falls out as a special case of the
likelihood analysis (namely, when assuming uncorrelated data with
equal variances). Most importantly for the present work, likelihood-
based methods can elegantly handle cases of missing data via the
expectation–maximization (EM) algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 1997).

Here, we present solutions for finding the optimal superposition
with incomplete structural data. We use the EM algorithm, a
classic statistical technique for dealing with missing data, to find
maximum-likelihood solutions, which include the conventional
least-squares solution as a special case. For completeness, we
present two different classes of solutions, listed in decreasing
order of generality, complexity and computational requirements:
(i) the ‘non-isotropic’ solution, which allows for heterogeneous
atomic variances but assumes that there are no correlations; and
(ii) the ‘isotropic’ solution, which corresponds to the least-squares
solution and assumes that all atomic variances are equivalent
and no atoms are correlated. This manner of presentation should
allow for the straightforward modification of existing least-squares
superpositioning routines to handle missing data.

2 APPROACH

2.1 A Gaussian statistical model for the superposition
problem

To analyze the superposition problem within a likelihood-based
framework and to use the EM algorithm, one must choose a
statistical model for the observed data. We assume a perturbation
model in which each structure is distributed according to a
Gaussian (or Normal) probability density (Goodall, 1991; Lele,
1993; Theobald and Wuttke, 2006a).

The EM algorithm is frequently used in likelihood analyses to
determine maximum-likelihood estimates of parameters of a model
when some data are missing (Dempster et al., 1977; Pawitan,
2001). The EM method involves cycling between two steps: (i) the
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Fig. 3. An alignment of three proteins with missing residues. Missing data
in this alignment is indicated by the three ‘observed’ indicator matrices ν1,
ν2 and ν3 corresponding to proteins p1, p2 and p3, respectively, which are
presented in equation (2)

‘E-step’ in which the expected likelihood function is calculated,
conditional on the observed data and the current estimates of the
model parameters; and (ii) the ‘M-step’ in which the expected
likelihood function is maximized over an unknown parameter.

3 METHODS

3.1 Representation of structures with missing atoms
Consider the case of superpositioning r different structures (Xi , i=1,...,r),
each with a total of k corresponding atoms. We represent each structure as a
k×3 matrix of k rows of atoms, where each atom is a 3-vector. Some of the
atoms in each structure may be missing (or unobserved). For each structure
Xi , there are mi missing atoms and a complementary number of ni observed
atoms, so that mi +ni =k.

To represent structures with missing points, we imagine that the complete
data are given in the matrix Xi .Aportion of this data is missing or unobserved.
The complete data matrix can then be represented as the sum of the observed
data and the unobserved data:

Xi =νiXi +μiXi (1)

where νiXi is the observed data and μiXi is the unobserved, missing data. The
complementary indicator matrices νi and μi are square, symmetric, diagonal,
k×k matrices. The ‘observed’ indicator matrix, νi , contains a one on the
diagonal if the corresponding atom in the structure Xi is observed (i.e. not
missing) and zeros otherwise. For example, the following three ‘observed’
ν indicator matrices correspond to the three small protein fragments in the
alignment in Figure 3:

ν1

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ν2

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ν3

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ (2)

Conversely, the ‘unobserved’ indicator matrix, μi , contains a 1 on the
diagonal if the corresponding atom in the structure Xi is missing, and
0s otherwise. Both indicator matrices, though redundant, are useful for
simplifying the presentation of the solutions. If no data are missing for
structure Xi then νi equals the identity matrix and μi =0, the square matrix
of zeros.

The following useful properties hold for the indicator matrices:

νi +μi =Ik (3)

mi = trμi (4)

ni = trνi (5)

where Ik is the k×k identity matrix and trA is the trace of matrix A (i.e. the
sum of the diagonal elements of A).

3.2 The Gaussian perturbation model
In our probabilistic model, each structure Xi is considered to be a randomly
rotated and translated Gaussian perturbation of a mean structure M:

Xi =
(
M+Ei

)
R′

i −1k t′i (6)

Fig. 4. Least-squares (isotropic) superpositions with missing data. In each
pane, four protein structures are superpositioned, each with a different
conformation. The top row, (a)–(c), compares superpositions of proteins
corresponding to the alignment in Figure 2a, where only residues in the
α-helix are fully shared among the structures. Other regions of the structures,
e.g. the two-stranded β-sheet in the right side of the images, are missing in
some of the structures. The bottom row, (d)–(f), compares superpositions
corresponding to the alignment in Figure 2b, where only residues in
the β-sheet are fully shared. The left-most column, (a) and (d), shows
superpositions found using the EM method described here. The middle
column, (b) and (e), shows the reference superposition using all of the
data; this can be thought of as the ‘true’ superposition before regions of
the structures were deleted. For ease of comparison, in these images, the
missing residues are not displayed, even though all of the original data were
included in the superposition calculation. The right-most column, (c) and (f),
shows conventional superpositions based on only the subset of fully shared
residues. The structures used in these superpositions were derived from four
NMR models of a zinc finger domain, PDB ID 1zfd

where ti is a 3×1 translational row vector, 1k denotes the k×1 column vector
of ones and Ri is a proper, orthogonal 3×3 rotation matrix. The k×3 matrix
Ei is a matrix of Gaussian random errors with mean 0, being a random variate
from a matrix Gaussian distribution i.e. Ei ∼Nk,3(0,�,I3). Here, � is a k×k
covariance matrix for the atoms, which describes the variance of each atom
and the covariances among the atoms. For simplicity, we assume that the
variance about each atom is spatially spherical. Extensions to higher (and
lower) dimensions are trivial (e.g. 4D data would be represented by a k×4
matrix and use 4×4 rotation matrices and 4×1 translation vectors).

For the non-isotropic solution, the covariance matrix is diagonal, with all
offdiagonal, covariance elements constrained to 0. For the isotropic solution,
which corresponds to least squares, the covariance matrix is constrained to
be diagonal and to have identical diagonal elements (i.e. �=σ 2I).

3.3 The superposition likelihood function
The full joint PDF for our likelihood superposition problem is thus obtained
from a multivariate matrix normal distribution (Dutilleul, 1999; Gupta
and Nagar, 2000) corresponding to the perturbation model described by
equation (6)

p
(
X|R,t,M,�

)∝ (7)

|�|−dr/2 exp

[
− 1

2

r∑
i

tr
{(

Yi −M
)′

�−1(Yi −M
)}]
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Fig. 5. Maximum-likelihood (non-isotropic) superpositions with missing
data. Aside from the optimization criterion, all other details, structures and
alignments are as in Figure 4

Fig. 6. Superpositions when there is no ‘common core.’ (a) and (b). Least-
squares superpositions when no residues are completely shared among the
four proteins. Panel (a) shows the results of the EM missing data algorithm,
based on the alignment shown in Figure 2c. (b) The original least-squares
superposition when all missing data are included in the calculations (c) and
(d). Corresponding non-isotropic ML superpositions

where

Yi =
(
Xi +1k t′i

)
Ri (8)

and d =3 for 3D data. The Jacobian for the transformation from Yi to Xi

is the product of the Jacobians for the translation and rotation, which are
each simply unity [see Chapter 1.3 of (Gupta and Nagar, 2000)]. Detailed
background and justification of this likelihood treatment can be found
elsewhere (Theobald and Wuttke, 2006a, b, 2008).

The full superposition log-likelihood �(R,t,M,�|X)=�S is therefore
given by

�S =− 1

2

r∑
i

tr
{(

Yi −M
)′

�−1(Yi −M
)}− dr

2
ln|�| (9)

With the likelihood function in hand, the ML estimate of a parameter can
be derived straightforwardly by taking the derivative of the log-likelihood
with respect to the parameter (producing the ‘score function’), setting the
derivative to zero, and solving for the parameter. Note that columns of
the alignment that contain all gaps except for one lone sequence have no
influence on the likelihood and should be excluded from the maximization
calculations. For the E-step of the EM algorithm, one first finds the expected
log likelihood, where the expectation is over the missing data conditional on
the observed data and current estimates of the other parameters. In practice,
these conditional expectations can be cast in terms of the current parameter
estimates, and hence the expectations can be combined with other terms in
the log likelihood containing those parameters. For the M-step, the expected
log likelihood is maximized over a given parameter by taking the derivative
as explained above. In the following sections, the conditional ML estimates
are provided for both the complete data and missing data cases. Detailed
derivations are provided in the Supplementary Material.

3.4 The translations
ML estimates of the translation parameters are given below.

3.4.1 Complete data solution Where t̂i is the estimate of the translation:

t̂non,i =− X′
i�

−11k

tr
(
�−1

) (10)

t̂iso,i =− 1

k
X′

i1k (11)

3.4.2 Missing data solution

t̂non,i =− (νiXi +μiMR′
i)

′�−11k

tr
(
νi�−1

) (12)

t̂iso,i =− 1

ni
(νiXi +μiMR′

i)
′1k (13)

For the remaining solutions, it will be convenient to define a centred structure:

X̌i =Xi +1k t̂′i (14)

3.5 The rotations
The optimal rotations are calculated using a singular value decomposition
(SVD). Let the SVD of an arbitrary matrix A be U�V′. The ML rotations
R̂i are estimated by

R̂i =VPU′ (15)

where rotoinversions can be avoided by constraining the determinant of R̂i

to be 1 by using P=I if |V||U|=1 or P=diag(1,...,1,−1) if |V||U|=−1.

3.5.1 Complete data solution In the non-isotropic case, the U and V
matrices are determined from the SVD as follows:

M̂′�̂−1X̌i =U�V′ (16)

and in the isotropic case, from

M̂′X̌i =U�V′ (17)

3.5.2 Missing data solution For the non-isotropic case

M′�−1νiX̌i =U�V′ (18)

and for the isotropic case

M′νiX̌i =U�V′ (19)
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3.6 The mean structure
3.6.1 Complete data solution The mean structure is estimated as the
arithmetic average of the optimally translated and rotated structures

M̂= 1

r

r∑
i

X̌iRi (20)

3.6.2 Missing data solution

M̂=
(

r∑
i

νi

)−1 r∑
i

νiX̌iRi (21)

Both of these solutions are independent of the covariance matrix.

3.7 Covariance matrix and superposition variance
The following equations for the covariance matrix estimates are only valid
when the translations are known (Theobald and Wuttke, 2006a). In general,
this is not the case, and thus a constrained (regularized) estimator of the
covariance matrix is necessary. For instance, the estimates given below may
be modified to give a hierarchical estimator as shown in equation (6) of
(Theobald and Wuttke, 2006a) or equation (10) of (Theobald and Wuttke,
2008). The estimators of the isotropic variance are already adequately
constrained and do not need to be adjusted.

To simplify the following formulae, we first define the matrix Di:

Di = X̌iRi −M (22)

3.7.1 Complete data solution The unconstrained estimate of the diagonal,
non-isotropic covariance matrix is

�̂U,non =Ik � 1

dr

r∑
i

DiD′
i (23)

where Ik is the k×k identity matrix and ‘�’ is the Hadamard operator for
elementwise matrix multiplication. The Hadamard operation simply sets all
offdiagonal elements of the covariance matrix to 0.

For a least-squares analysis, which is equivalent to assuming that �=σ 2I,
the ML estimate of the variance is

σ̂ 2 = 1

dkr
tr

{
r∑
i

DiD′
i

}
(24)

Note that in equation (24), one needs to only calculate the diagonal elements.

3.7.2 Missing data solution The ML estimate of the non-isotropic,
diagonal covariance matrix is

�̂U,non =Ik �
(

d
r∑
i

νi

)−1 r∑
i

νiDiD′
iνi (25)

The estimate of the isotropic covariance matrix (�=σ 2I) is given by

σ̂ 2 = 1

d
∑r

i ni
tr

r∑
i

νiDiD′
iνi (26)

In both isotropic cases, calculation of the isotropic variance σ 2 can often
be omitted, as it is not needed to estimate any of the other parameters. The
summation terms may be calculated easily by noting that

νiDi =νiX̌iRi −νiM̂ (27)

4 ALGORITHM
The simultaneous solution of the optimal parameters must be solved
numerically, as each of the unknown parameters is a function of
some of the others. Our iterative algorithm is an extension of similar

algorithms proposed previously, and it is based on nested rounds of
EM cycles and conditional maximization (Dempster et al., 1977;
Dutilleul, 1999; Goodall, 1991; Theobald and Wuttke, 2006a, b). As
with all superposition algorithms, this algorithm requires a priori
knowledge of the alignment (the one-to-one correspondence among
atoms/points in the structures):

(1) Initialize: Set �̂=I for all i. Estimate the mean structure M̂
by embedding the average of the distance matrices, including
gaps, for each structure (Crippen and Havel, 1978; Lele, 1993;
Lele and Richtsmeier, 2001). Rather than embedding, one may
simply choose one of the structures (preferably with the fewest
gaps) to serve as the mean for the first iteration, setting missing
coordinates to zeros (convergence may be hindered in cases
with a large fraction of gaps).

(2) Translate: Translate (i.e. centre) each Xi . For the first iteration,
the μiMR′

i term can be omitted from equations (12)–(13).

(3) Rotate: Calculate each rotation R̂i and rotate each translated
structure: Xi = X̌iR̂i .

(4) Estimate the mean: Recalculate the average structure M̂.
Return to Step 2 and loop until convergence.

(5) Estimate the covariance matrix �̂ or variance σ 2: If the
covariance matrix or the translations are unknown (the usual
case), calculate �̂ [equation (25)] and modify it to constrain
the eigenvalues to all be >0. In the isotropic case, this step
can be omitted if desired. Return to Step 2 and loop until
convergence.

5 IMPLEMENTATION
The algorithm described above for calculating optimal
superpositions with missing data is implemented in the
command-line UNIX program THESEUS (Theobald and Wuttke,
2006a, b). THESEUS functions in two modes: (i) one mode for
superpositioning structures with identical sequences [such as
different (NMR) models] and (ii) an ‘alignment mode,’ which
superpositions structures with different sequences (i.e. with
missing data) conditional on a known alignment. THESEUS does
not attempt to determine structure-based sequence alignments,
which is a distinct bioinformatics problem (Bourne and Weissig,
2003). When superpositioning homologous proteins with different
sequences or identical proteins with missing portions, a sequence
alignment must be provided to THESEUS. We provide a wrapper
script, theseus_align, to perform this latter procedure transparently
for the user. The theseus_align wrapper script will automatically
extract the proper sequences from the Protein Data Bank (PDB)
files, align them with a sequence alignment program of the users
choice and superposition the structures based on this alignment
with THESEUS.

THESEUS will superposition any number of structures within
the limits set by the operating system and memory capability.
Via command line options, users can choose to superposition
assuming an isotropic covariance matrix (i.e. the conventional
LS (least squares)-method) or using the non-isotropic model.
Specified alignment columns can also be excluded from the
calculation. On modern personal desktop computers, convergence
is usually very fast (within seconds for even very large
problems).
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Fig. 7. Standard deviation of α-carbons for least-squares superpositions. For each residue in the structures, the α-carbon standard deviation is plotted. The
reference superposition (‘complete data’) is plotted as the green line, a superposition using the conventional algorithm (based on only the subset of fully
shared residues) is plotted as the blue line, and the superposition from our EM algorithm, which includes all data, is plotted as the red line. The reference data
(green line) is in fact the same in all three panes; it is re-plotted in each for convenience. (a) Superpositions of proteins corresponding to the alignment in
Figure 2a, where only residues in the α-helix are fully shared among the structures. (b) Superpositions corresponding to the alignment in Figure 2b, where
only residues in the β-sheet are fully shared. (c) Superpositions when no residues are completely shared among the four proteins (‘no common core’)

Fig. 8. Standard deviation of α-carbons for non-isotropic maximum-likelihood superpositions. For details see the legend to Figure 7

6 RESULTS AND DISCUSSION
To demonstrate the advantages of the method, we constructed three
test sets of structures based on four NMR models of a zinc finger
domain protein. In each of the three test sets, different portions of the
the four structures were removed. In the first test set, the C-terminal
helix of the zinc finger is the only region fully shared among all
four partial structures (indicated by asterisks above the alignment
columns in Fig. 2a). In the second test set, the N-terminal β-sheet
is the only region fully shared (Fig. 2b). For the third test set, no
regions of the protein are fully shared among all four structures—in
this set, there is no ‘common core’ (Fig. 2c), and hence this test set
is impossible to superposition using conventional algorithms.

The four original, unmodified zinc finger structures were
superpositioned with THESEUS (using both the conventional

least-squares criterion and non-isotropic maximum likelihood) to
provide a ‘complete data’ superposition. For comparison, the
modified structures (with various portions deleted) were then
superpositioned using the EM algorithm and using the traditional
method which omits columns with gaps. The superpositions with
the modified structures can then be compared with the ‘complete
data’ superposition, which serves as a reference.

The EM method produces a least-squares superposition much
closer to the ‘true’complete data superposition than the conventional
method (Fig. 4). The EM superposition is also largely independent of
which portions were fully aligned. The EM variances are much lower
for the entire structure than the conventional method variances, and
they are generally much closer to the ‘true’variances (Fig. 7). Results
for the non-isotropic ML superpositions are similar to those of the
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LS superpositions (Figs. 5 and 8). The EM method can easily handle
the ‘impossible’ situation seen in Figure 2c, with results similar to
the true superposition (Figs. 6, 7c and 8c).

Because the conventional superpositions ignore regions of the
structure that have missing data, they are biased to closely
superposition only the regions that are fully shared. For instance,
in Figures 4c and 5c, the superposition is biased to closely orient the
α-helix at the expense of the β-sheet, as the α-helix is the only region
of the protein fully shared among the three structures. Similarly, the
conventional superposition is biased toward the β-sheet in panels
4f and 5f, since the β-sheet is the only region of the protein fully
shared among this set of structures.

Our test sets represent somewhat extreme cases, and we expect
the effect of accounting for missing data in real proteins to be more
subtle. In practice, the effect of missing data will vary from case to
case, depending on which regions are missing and on the patterns of
structural variability in the proteins. We have found, however, that in
many cases, properly handling missing data is an important concern

Fig. 9. Comparison of conventional superpositions versus our missing data
method for NMR families of two scorpion neurotoxins (PDB IDs 1big and
1i6g). The Centruroides neurotoxin (1i6g) contains two insertions, shown in
cyan, not found in the Chinese scorpion neurotoxin (1big). The cyan regions
hence represent positions with gaps in the alignment, whereas the dark blue
regions are fully aligned. The top row, (a) and (b), compares non-isotropic
ML superpositions of the two neurotoxins, with a conventional superposition
using only fully aligned residues at left and a superposition accounting for all
data using our EM algorithm at right. The middle row, (c) and (d), compares
analogous LS superpositions. The bottom row shows plots of α-carbon Root
Mean Square Deviation (RMSD) for each residue position

with significant effects on the superposition. One salient example
is given in Figure 9, which shows the effects of accounting for
missing data in the superpositions of the NMR structure families of
two different scorpion toxins. Using both ML and LS superposition
methods, significant differences are seen when the missing data
are accounted for properly. In all cases, our EM method results
in a closer superposition for the unaligned regions (shown in cyan)
that would conventionally be excluded from the analysis. The fully
aligned regions (shown in dark blue) also exhibit changes in relative
conformation, as seen clearly in the per residue RMSD plots.

7 CONCLUSION
We have developed a method for superpositioning multiple
structures when some of the structures have residues that other
structures lack. Our algorithm uses the EM algorithm to find the
optimal superposition by treating the gaps in an alignment as
‘missing data.’ To our knowledge, this is the first superposition
solution proposed for cases with incomplete or missing structural
information. The use of indicator matrices allows our EM method
to be incorporated easily in conventional LS superpositioning
procedures. Programs need only be modified to keep track of these
matrices and to adjust the calculations accordingly. Hence, our
method should be widely applicable to the diverse superposition
problems found throughout molecular biology.
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