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Objective: The aim of this feasibility study was to investigate methemoglobin modulation

in vivo as a potential magnetic resonance imaging (MRI) gadolinium based contrast agent

(GBCA) alternative. Recently, gadolinium tissue deposition was identified and safety

concerns were raised after adverse effects were discovered in canines and humans.

Because of this, alternative contrast agents are warranted. One potential alternative is

methemoglobinemia induction, which can create T1-weighted signal in vitro. Canines

with hereditary methemoglobinemia represent a unique opportunity to investigate

methemoglobin modulation. Our objective was to determine if methemoglobinemia could

create high intravascular T1-signal in vivo with reversal using methylene blue.

Methods: To accomplish this study, a 1.5-year-old male-castrated mixed breed

canine with hereditary methemoglobinemia underwent 3T-MRI/MRA with T1-weighted

sequences including 3D-T1-weighted Magnetization Prepared Rapid Acquisition

Gradient Echo (MPRAGE) and 3D-Time-Of-Flight (TOF). Images were acquired during

baseline methemoglobinemia and rescued using intravenous methylene blue (1 mg/kg).

Intravascular T1-signal was compared between baseline methemoglobinemia and

post-methylene blue. N = 10 separate T1-signal measurements were acquired for each

vascular structure, normalized to muscle. Significance was determined using paired

two-tailed t-tests and threshold alpha = 0.05. Fold-change was also calculated using

the ratio of T1-signal between methemoglobinemia and post-methylene blue states.

Results: At baseline, methemoglobin levels measured 19.5% and decreased to 4.9%

after methylene blue. On 3D-T1-weighted MPRAGE, visible signal change was present

in internal vertebral venous plexus (IVVP, 1.34 ± 0.09 vs. 0.83 ± 0.05, p < 0.001,

1.62 ± 0.06-fold) and external jugular veins (1.54 ± 0.07 vs. 0.87 ± 0.06, p < 0.001,

1.78 ± 0.10-fold). There was also significant change in ventral spinal arterial signal (1.21

± 0.11 vs. 0.79 ± 0.07, p < 0.001, 1.54 ± 0.16-fold) but not in carotid arteries (2.12

± 0.10 vs. 2.16 ± 0.11, p = 0.07, 0.98 ± 0.03-fold). On 3D-TOF, visible signal change

was in IVVP (1.64 ± 0.14 vs. 1.09 ± 0.11, p < 0.001, 1.50 ± 0.11-fold) and there was
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moderate change in external jugular vein signal (1.51 ± 0.13 vs. 1.19 ± 0.08, p < 0.001,

1.27± 0.07-fold). There were also small but significant differences in ventral spinal arterial

signal (2.00± 0.12 vs. 1.78 ± 0.10, p= 0.002, 1.13 ± 0.10-fold) but not carotid arteries

(2.03 ± 0.17 vs. 1.99 ± 0.17, p = 0.15, 1.02 ± 0.04-fold).

Conclusion: Methemoglobin modulation produces intravascular contrast on

T1-weighted MRI in vivo. Additional studies are warranted to optimize

methemoglobinemia induction, sequence parameters for maximal tissue contrast,

and safety parameters prior to clinical implementation.

Keywords: animal models, magnetic resonance imaging, magnetic resonance contrast, contrast, hereditary

methemoglobinemia, cytochrome b5 reductase deficiency, canine, gadolinium

INTRODUCTION

Gadolinium based contrast agents (GBCA) utilize T1 and
T2 shortening effects to create tissue contrast (1). A large
retrospective study in dogs demonstrated few severe adverse
effects of GBCA requiring immediate treatment (<1%), though
mild tomoderate changes in pulse rate, respiratory rate andmean
arterial pressure occur on the order of 10 and 20%, respectively
(2). Still, more recent studies have demonstrated retention of
gadolinium in brains of healthy canines after a single intravenous
administration (3). In a previous blood brain barrier disruption
model, the addition of gadolinium resulted in a dose-dependent
increase in the frequency of delayed seizures (4). These studies
raise concern about gadolinium deposition and suggest there
may be a dose-related neurotoxicity possible with gadolinium in
certain circumstances, but still warrant further study given that
the long term effects in normal canines are unknown. Similarly,
the use of GBCA in humans is not without potential risk, with
known risks of gadolinium in the setting of renal failure and
recent research demonstrating gadolinium tissue deposition
in those with normal renal function after MRI (5). Because of
this, the United States Food and Drug Administration (https://
www.fda.gov/Drugs/DrugSafety/ucm589213.htm) and European
Medicines Agency (https://www.ema.europa.eu/documents/
press-release/emas-final-opinion-confirms-restrictions-use-
linear-gadolinium-agents-body-scans_en.pdf) have urged
caution and investigation into alternatives.

One potential alternative is methemoglobinemia.
Methemoglobin creates T1-hyperintense signal on MRI
and can be used to diagnose the subacute stage of intracranial
hemorrhage (6), intramural hematoma in dissection (7), and
intraplaque hemorrhage (8). Blood methemoglobin levels
linearly correlate with T1-weighted signal (r2 = 0.94, p =

0.0015) (9). Methemoglobinemia occurs when ferrous iron
(Fe2+) in hemoglobin (Hb) is oxidized to ferric iron (Fe3+),
forming methemoglobin (10, 11). Methemoglobin concentration
can be measured directly by blood gas analysis or indirectly
with pulse co-oximetry (12). Normal canine and human
blood contains ≤3% methemoglobin as a result of exposure
to endogenous (e.g., by-products of metabolic pathways and
reactive oxygen and nitrogen species) and exogenous oxidants
(11). Mild methemoglobinemia in humans causes minimal

symptoms; however, anxiety, lightheadedness, headache, and
tachycardia occur once methemoglobin levels reach 20–30%,
and coma, seizures, arrhythmias, acidosis, and death can occur
when methemoglobin exceeds 50% (10). While these adverse
effects of high levels of methemoglobinemia may be at odds
for its use as an alternative contrast agent, low levels of <10%
methemoglobinemia can induce measurable changes in MRI
contrast (9). If these concentrations can be attained and closely
monitored in vivo, mild methemoglobinemia induction may
serve as an alternative to gadolinium that does not result in heavy
metal deposition.

Most methemoglobin reduction (99%) occurs through the
cytochrome b5 reductase (CYB5R) system also known as the
methemoglobin reductase pathway (10). Hereditary defects in
the CYB5R3 gene, which encodes the CYB5R protein, can result
in autosomal recessive methemoglobinemia. Two phenotypes of
CYB5R3 mutations are present involving isoforms of the same
gene, either restricted to red blood cells (type I, soluble form)
or affecting all cells (type II, membrane bound form) (13–15). In
erythrocytes, the soluble enzyme reducesmethemoglobin (16, 17)
whereas the membrane bound form participates in fatty acid,
cholesterol and drug metabolism (18–20).

Hereditary methemoglobinemia caused by CYB5R deficiency
was first identified in a canine in 1974 and several other
reports have since been published in the veterinary literature
(21–25). This hereditary condition provides a unique model
to investigate the plausibility of modulating methemoglobin
levels as an alternative contrast agent. In this model, magnetic
resonance imaging (MRI) sequences at baseline represent high
methemoglobin levels, which can then be compared to images
after normalization of methemoglobin level with administration
of methylene blue. Using this canine model, the objective of
this proof of concept study was to determine if methemoglobin
modulation could create intravascular contrast in vivo.

MATERIALS AND EQUIPMENT

The study was approved by the Institutional Animal Care
and Use Committee at the University of Missouri Veterinary
Health Center under protocol #9270 and the owner provided
informed consent. A 1.5 year old, male-castrated, mixed
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breed canine with previously reported hereditary CYB5R
deficiency was included in this proof of concept study
(23). The canine was otherwise healthy based on physical
examination and laboratory investigations (complete blood
count, plasma biochemistry, and urinalysis) reviewed by a
boarded-certified small animal internist (JAJ). The canine
was fasted overnight and presented for participation the
next morning. Sedation was accomplished by intramuscular
administration of dexmedetomidine (3.3 µg/kg) and nalbuphine
(0.3 mg/kg), followed by intravenous administration of propofol
for endotracheal intubation. Isoflurane in oxygen was used to
maintain adequate anesthesia for imaging. A 20-gauge catheter
was placed in a dorsal pedal artery for direct arterial blood
pressure measurement throughout anesthesia as well as for
whole blood acquisition for serial arterial blood gas analyses.
Pulse, respiratory rate, arterial blood pressure, and hemoglobin
oxygen saturation were recorded once every 5min. After baseline
MRI sequences were obtained, methylene blue (1 mg/kg) was
administered intravenously over 30min. Four 1mL arterial blood
samples were obtained pre (time 0), and 12, 30, and 45min after
intravenous methylene blue administration. Methemoglobin
concentrations were measured using Stat Profile, Prime Plus
VET blood gas analyzer (Nova Biomedical, Waltham, MA)
within 5min of acquisition. Methemoglobin was reported as
the percentage (MetHb%) of total hemoglobin concentration.
Hemoglobin oxygen saturation was measured using standard
pulse-oximetry with measurements obtained from the prepuce.
After the end of the study at the days’ end, the canine was
returned to the owner.

Imaging
3T MRI was performed (Vantage Titan, Canon, Tustin, CA)
using a large knee 6-channel array coil. Images were acquired

FIGURE 1 | Serial arterial methemoglobin levels (MetHb%) at baseline (time 0)

and 12, 30, and 45min after intravenous methylene blue administration. The

black dotted line denotes the upper limit of normal methemoglobin level in

canines (<3%).

from the brain through the C7 vertebra, pre and 45min
post intravenous methylene blue administration with (1)
3D-Magnetization-Prepared Rapid Acquisition Gradient Echo
(MPRAGE) with repetition time (TR) = 6.8ms, echo time (TE)
= 2.7ms, inversion time (TI) = 800ms, slice thickness = 1mm,
interslice gap = 0.5mm, number of acquisitions (NAQ) = 1,
acquisition matrix = 208 × 178, flip angle = 9◦, field of view

TABLE 1 | Change in signal on 3D-MPRAGE of internal vertebral venous plexus

(IVVP), external jugular veins, ventral spinal artery, and carotid arteries comparing

pre (methemoglobinemia) to post-methylene blue.

3D-MPRAGE Baseline Post me blue Fold change p-value

(X muscle) (X muscle)

IVVP 1.34 ± 0.09 0.83 ± 0.05 1.62 ± 0.06 < 0.001

External jugular veins 1.54 ± 0.07 0.87 ± 0.06 1.78 ± 0.10 < 0.001

Ventral spinal artery 1.21 ± 0.11 0.79 ± 0.07 1.54 ± 0.16 < 0.001

Carotid arteries 2.12 ± 0.10 2.16 ± 0.11 0.98 ± 0.03 0.07

N = 10 separate T1-signal measurements were acquired for each structure.

FIGURE 2 | Dorsal 3D-Magnetization Prepared Rapid Acquisition Gradient

Echo (MPRAGE) (A,B) and dorsal 3D-Time Of Flight (TOF) (C,D) with high

venous signal at baseline [A,C, white arrowheads = internal vertebral venous

plexus (IVVP)] and decreased signal after methylene blue (B,D). Arrows,

ventral spinal artery.
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(FOV) = 18 × 21 cm and (2) 3D-Time Of Flight (TOF) with TR
= 32.0ms, TE= 3.4ms, slice thickness= 1mm, interslice gap=

0.5mm, NAQ = 1, acquisition matrix = 224 × 224, flip angle =
15o, FOV= 23× 23 cm.

Image Analysis
Qualitative image analysis was performed on Digital Imaging
and Communications in Medicine (DICOM) images and regions
of interest (ROI’s) were traced using OsiriX. Tissue contrast
was measured by calculating signal intensities of veins and
arteries of four different structures, with n = 10 separate T1-
signal measurements for each vascular structure. The following
four vascular structures were measured: (1) internal vertebral
venous plexus (IVVP), (2) external jugular veins, (3) ventral
spinal artery, and (4) carotid arteries. N = 10 ROI’s were
made from the C1 level through C3 on baseline (pre) and
copied with equivalent areas for rescue (post methylene blue)
images. ROI’s were hand drawn fitting each vascular structure
but being careful to leave a rim outside of each ROI. Vascular
signal was expressed as a multiplicative of muscle signal
(M) which was drawn as a replicated circular ROI with
equivalent areas on all images. Values were compared during
methemoglobinemia (pre) vs. rescue (post methylene blue), with
fold-change calculated using the ratio of T1-signal between the
two states (methemoglobinemia/methylene blue).

Statistical Analysis
Stata 14.1 was used for statistical analysis. Significant differences
in tissue contrast were determined between methemoglobinemia

and post-methylene blue images by using paired two-tailed t-
tests and threshold alpha = 0.05 from n = 10 separate T1-signal
measurements acquired per structure. Because t-tests are robust
to non-normal distributions and heterogeneity of variance, there
was no need to test or account for these in our dataset (26–28).

RESULTS

Methemoglobinemia and Methylene Blue
Treatment
Methylene blue substantially decreased methemoglobin
levels and normalized hemoglobin oxygen saturation. Total
hemoglobin content was 16 g/dL (reference range, 12–18
g/dL). Initial hemoglobin oxygen saturation before intravenous
methylene blue administration (time 0) was 83% (reference
range, >97%) with concomitant inhalant oxygen delivered at
0.5 L/min. Forty-five minutes after intravenous methylene blue
administration the hemoglobin oxygen saturation increased to
97%. Likewise, the methemoglobin level gradually decreased
from 19.5% (reference range, <3%) at time 0 to 4.9% 45min
after intravenous methylene blue administration (Figure 1).

3D-MPRAGE
On 3D-MPRAGE, the most visible signal change was in the
internal vertebral venous plexus (IVVP) and external jugular
veins, and less so involving the ventral spinal artery but not in
carotid arteries (Table 1 and Figures 2–5). IVVP signal change
was 1.62± 0.06-fold (p < 0.001), external jugular vein signal was

FIGURE 3 | Transverse 3D-Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) (A,B) and 3D-Time Of Flight (TOF) (C,D) with very high venous signal

at baseline [A,C, white arrowheads = internal vertebral venous plexus (IVVP), white arrows = external jugular veins] and decreased signal after methylene blue (B,D).

Slightly higher arterial signal is also present at baseline (A,C, black arrowheads = ventral spinal artery, black arrows = carotid artery) compared to signal after

methylene blue (B,D), though somewhat masked by background arterial flow related enhancement intrinsic to these sequences. Regions of interest in veins and

arteries were normalized to muscle (circles) and compared between baseline and methylene blue. On MPRAGE, these representative images demonstrated increased

signal compared to muscle as follows: ventral spinal artery pre vs. post 1.25 X muscle (1.25M) vs. 0.76M, IVVP pre vs. post = 1.39 vs. 0.81M. On TOF, representative

images demonstrated increased signal compared to muscle as follows: ventral spinal artery pre vs. post 1.93 vs. 1.75M, IVVP pre vs. post = 1.60 vs. 1.10M.
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FIGURE 4 | Transverse subtraction data from 3D-Magnetization Prepared

Rapid Acquisition Gradient Echo (MPRAGE) (A) and 3D-Time Of Flight (TOF)

images (B). High relative signal is present on the MPRAGE subtraction images

(A) in the veins (IVVP, white arrowheads) and arteries (ventral spinal artery,

black arrowheads). MPRAGE fold increases in signal (ratio of signal during

methemoglobinemia/methylene blue) were for the ventral spinal artery =

1.57-fold and for the IVVP = 1.66-fold. There was also high relative signal on

TOF subtraction images (B) in the veins (IVVP, white arrowheads) and arteries

(ventral spinal artery, black arrowheads). TOF fold increases in signal (ratio of

signal during methemoglobinemia/methylene blue) were for the ventral spinal

artery = 1.25-fold and for the IVVP = 1.54-fold.

1.78± 0.10-fold (p < 0.001), ventral spinal artery signal was 1.54
± 0.16-fold (p < 0.001).

3D-TOF
On 3D-TOF, the most visible signal change was in IVVP. There
was also moderate change in external jugular vein signal. There
was a smaller but significant difference in ventral spinal arterial
signal but carotid artery signal was not different (Table 2 and
Figures 2–5). IVVP signal change was 1.50 ± 0.11-fold (p <

0.001), external jugular vein signal change was 1.27 ± 0.07-fold
(p < 0.001), and ventral spinal arterial signal change was 1.13 ±
0.10-fold (p= 0.002).

DISCUSSION

This feasibility study created T1-weighted tissue contrast onMRI
using in vivo methemoglobin modulation. This technique may

FIGURE 5 | Pooled data showing intravascular T1-signal at baseline

compared to post-methylene blue (both normalized to muscle signal). N = 10

separate T1-signal measurements were acquired per structure. P-values from

two-tailed t-tests were placed above comparisons between baseline

methemoglobinemia (black bars) and post-methylene blue states (white bars),

with asterisks* indicating p < 0.001. On 3D-MPRAGE (A), there were

significant changes between baseline and methylene blue in IVVP and external

jugular veins and slightly less so in the ventral spinal artery, but the difference in

carotid artery signal was minimal and did not meet our significance threshold

of p < 0.05. On 3D-TOF (B), there were moderate but significant changes in

IVVP signal, slightly less though significant changes in external jugular vein

signal, and mild but significant changes in the ventral spinal artery signal, but

no significant change in carotid artery signal.

have potential as an alternative intravascular contrast agent in
both humans and canines. This is supported by the significant
increase in contrast signal on standard T1-weighted sequences
obtained at time 0 (MetHb% of 19.5%) compared to those
obtained 45min after intravenous methylene blue administration
(MetHb% of 4.9%).

While MR contrast agents in veterinary patients are primarily
used to evaluate brain, spine, and other structures for abnormal
enhancement as opposed to vascular pathology, in some cases
MR vascular imaging may be useful. Future applications
of MR vascular imaging may include preoperative planning
or characterization of vascular pathology as a non-invasive
alternative to catheter angiography. While vascular imaging
is used extensively in humans for diagnostic use, the true
incidence of cerebrovascular disease in animals is unknown
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TABLE 2 | Change in signal on 3D-TOF of internal vertebral venous plexus (IVVP),

external jugular veins, ventral spinal artery, and carotid arteries comparing pre

(methemoglobinemia) to post-methylene blue.

3D-TOF Baseline Post me blue Fold change p-value

(X muscle) (X muscle)

IVVP 1.64 ± 0.14 1.09 ± 0.11 1.50 ± 0.11 <0.001

External jugular veins 1.51 ± 0.13 1.19 ± 0.08 1.27 ± 0.07 <0.001

Ventral spinal artery 2.00 ± 0.12 1.78 ± 0.10 1.13 ± 0.10 0.002

Carotid arteries 2.03 ± 0.17 1.99 ± 0.17 1.02 ± 0.04 0.15

N = 10 separate T1-signal measurements were acquired for each structure.

(29). Veterinary vascular imaging may be useful to assess this
incidence in a non-invasive manner, and may be useful clinically
to assess feeding vessels in tumors or diagnose vascular pathology
including hemorrhages (30, 31), thrombosis (31), congenital
vascular malformations (32), intravascular cerebral lymphoma
(33), aneurysms, and post traumatic arteriovenous fistulas (34),
all being potential clinical indications in veterinary patients.
MRA may also play a future role in the diagnosis of acute
ischemic stroke as this has been increasingly recognized in
canines (35, 36). Case reports have shown that MRA can
non-invasively study normal canine vascular anatomy as well
as feeding vessels in veterinary patients with meningiomas
or arteriovenous fistulas (37). MRA may also add value in
pre-operative tumor typing between canine meningioma and
intracranial histiocytic sarcoma (38).

One limitation of this study is the focus on a single canine
with hereditary methemoglobinemia. While the current canine
model took advantage of baseline methemoglobinemia related
to hereditary CYB5R deficiency and used methylene blue for
rescue, clinical applications would require methemoglobinemia
induction. An essential next step is to induce and modulate
methemoglobinemia levels in a healthy animal model to
determine safety and efficacy prior to human studies. The
United States Food and Drug Association has approved two
agents that can induce methemoglobinemia in humans: (1)
sodium nitrite is approved to treat cyanide toxicity and (2)
inhaled nitric oxide is approved to treat newborns with
pulmonary hypertension and acute respiratory failure. A recent
experimental study in canines demonstrated that the use of
intravenous sodium nitrite was safe and well-tolerated in canines
when induced methemoglobin levels were ≤ 40% (39).

Controlled induction of methemoglobinemia as a contrast
agent has advantages and disadvantages. One benefit of
methemoglobinemia is that it remains within erythrocytes
and is a true intravascular contrast agent that can be used
for blood pool imaging. This could also be viewed as a
disadvantage, and parenchymal enhancement may not be present
without capillary leakage or active extravasation. Future studies
could envision induction of methemoglobinemia in animal
models of blood brain barrier injury to test this possibility.
Methemoglobinemia can be monitored non-invasively using
pulse co-oximetry and titrated to avoid toxicity. Standard

pulse oximetry in patients with methemoglobinemia is not
useful because methemoglobin absorbs both infrared and red
light equally, which interferes with the measured percentage
of oxyhemoglobin and deoxyhemoglobin as was seen at time
0 (hemoglobin oxygen saturation of 83%) (10). In contrast
to standard pulse oximetry, a co-oximeter measures light
absorbance at four different wavelengths, which allows for
characterization of methemoglobin with a peak absorbance of
light at 630 nm (10). A pulse co-oximeter was not available
for this study, which necessitated the measurement of arterial
methemoglobin levels. Another benefit of utilizing controlled
induction of methemoglobinemia as a contrast agent is that it can
rapidly and safely be reversed with intravenous administration
of methylene blue if concern for toxicity develops. As an
alternative, ascorbic acid has also been used to reverse
methemoglobinemia in case reports (40), though in canines this
was used in combination with N-acetylcysteine for concomitant
acetaminophen toxicity (41). In the absence of toxicity, there
is no need to administer antidotal therapy like methylene blue
because methemoglobin reductase, the primary endogenous
redox pathway quickly reduces methemoglobin to hemoglobin.
In fact, the half-life of methemoglobin in a patient with normal
methemoglobin reductase function is 55 min (42).

While methemoglobinemia can transiently decrease oxygen
carrying capacity, supplemental oxygen might partially obviate
its impact sufficiently to limit potential toxicity. Methemoglobin
levels below 30% in a healthy person produce minimal symptoms
(10). However, methemoglobin levels of 30–50% can result
in cardiovascular and central nervous system derangements
(e.g., weakness, tachycardia, tachypnea, and mild dyspnea) and
levels ≥50% can result in coma, seizures, and arrhythmias
(10). Methemoglobin and clinical correlation studies have not
been performed in canines but are postulated to be similar to
humans. Importantly, these clinical predictions are based on
the assumption that a human patient has a total hemoglobin
concentration of 15 g/dL and lacks comorbid conditions that
could decrease arterial oxygen tension or perfusion. It is
clear that future studies investigating methemoglobinemia as a
contrast agent in canines and humans should focus on achieving
the lowest possible level of methemoglobinemia to adequately
increase the T1-weighted signal intensity of blood. Further,
methemoglobinmodulationmight be inappropriate, ormay need
to be used with added caution, in vulnerable canines and humans
with decreased oxygen delivery. Anemia or cardiopulmonary
diseasemay increase risk of adverse effects associated with a given
methemoglobin level (10).

In conclusion, this feasibility study shows that
methemoglobinemia could serve as a potential alternative
MRI contrast agent in canines and humans. This technique
may apply to a subset of patients and indications, particularly
those that require intravascular contrast. Additional studies are
necessary prior to any recommendations on this technique.
Future studies could be performed on the various methods
of methemoglobinemia induction, sequences used for
maximal tissue contrast, and safety parameters prior to
clinical implementation.
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