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ABSTRACT: Development of simple, fast, and non-invasive tests
for lung cancer diagnostics is essential for clinical practice. In this
paper, exhaled breath and skin were studied as potential objects to
diagnose lung cancer. The influence of age on the performance of
diagnostic models was studied. Gas chromatography in combina-
tion with mass spectrometry (MS) was used to analyze the exhaled
breath of 110 lung cancer patients and 212 healthy individuals of
various ages. Peak area ratios of volatile organic compounds
(VOCs) were used for data analysis instead of VOC peak areas.
Various machine learning algorithms were applied to create diagnostic models, and their performance was compared. The best
results on the test data set were achieved using artificial neural networks (ANNs): classification of patients with lung cancer and
young healthy volunteers: 88 ± 4% sensitivity and 83 ± 3% specificity; classification of patients with lung cancer and old healthy
individuals: 81 ± 3% sensitivity and 85 ± 1% specificity. The difference between performance of models based on young and old
healthy groups was minor. The results obtained have shown that metabolic dysregulation driven by the disease biology is too high,
which significantly overlaps the age effect. The influence of tumor localization and histological type on exhaled breath samples of
lung cancer patients was studied. Statistically significant differences between some parameters in these samples were observed. A
possibility of assessing the disease status by skin analysis in the Zakharyin-Ged zones using an electronic nose based on the quartz
crystal microbalance sensor system was evaluated. Diagnostic models created using ANNs allow us to classify the skin composition
of patients with lung cancer and healthy subjects of different ages with a sensitivity of 69 ± 2% and a specificity of 68 ± 8% for the
young healthy group and a sensitivity of 74 ± 7% and a specificity of 66 ± 6% for the old healthy group. Primary results of skin
analysis in the Zakharyin-Ged zones for the lung cancer diagnosis have shown its utility, but further investigation is required to
confirm the results obtained.

■ INTRODUCTION
Death rates of lung cancer are the highest among all types of
cancer1 mainly due to its difficult diagnostics in the early stage.
Biopsy and computed tomography are the most useful
methods for lung cancer diagnostics. The former procedure
is invasive, while the latter involves radiation exposure which is
potentially harmful for patients. Therefore, the development of
a cheap, non-invasive, simple, and fast alternative to these tools
is an urgent task in modern medicine. Different biological
matrices are vigorously investigated for the development of
new diagnostic methods.2,3 Among them, exhaled breath and
skin are especially attractive for clinical diagnostics because
these samples can be easily obtained and analyzed.4

A plethora of approaches have been applied for the analysis
of exhaled breath to identify lung cancer biomarkers and create
artificial olfactory systems.5,6 Among analytical methods, gas
chromatography hyphenated with mass spectrometry (GC−
MS) is highly informative for quantitative and qualitative
analysis of exhaled breath. Results of exhaled breath analysis

applying GC−MS with preconcentration of volatile organic
compounds (VOCs) on sorbent tubes7,8 or solid phase
microextraction fibers (SPME)9−11 to identify lung cancer
biomarkers were presented by different research groups.
Implementation of multidimensional GC is especially attractive
for solving such complex tasks as biomarker identification.7

Despite the informativeness of GC−MS, the analysis
procedure is time-consuming and requires highly qualified
staff. Ion mobility spectrometry (IMS),12 proton transfer
reaction MS,13 and selected ion flow tube (SIFT) MS14 are the
other prospective approaches which provide rapid exhaled
breath analysis without the preconcentration step.
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An alternative approach is to obtain a response not from an
individual compound, but a combination of VOCs in a sample.
Various kinds of electronic nose systems have already been
proposed for this purpose. Cyranose 32015 and Aeonose16 are
commercially available electronic noses which were applied for
the analysis of exhaled breath to diagnose lung cancer. Other
electronic olfaction systems based on a number of gas-sensing
technologies such as nanomaterials,11 quartz crystal micro-
balance systems,17 colorimetric sensors,18 and metal oxide gas
sensors19 have also been applied to analyze exhaled breath.

To date, no compounds, presence or absence of which in
exhaled breath can indicate lung cancer, have been found. In
most cases, lung cancer patients and healthy volunteers can be
classified using statistical data analysis. Various algorithms of
machine learning, that is, logistic regression,10 support vector
machine,19 decision trees,20 gradient boost decision trees,21

random forest,7 and neural networks,15,19 have been used for
the creation of classification models. Statistical data analysis
allows us to achieve high predictive power even if differences in
VOC concentrations are not obvious.

The findings of different scientists in the field of exhaled
breath analysis to diagnose lung cancer using different
analytical methods are presented in Table 1. As can be seen,
there is no conformity in the list of biomarkers, statistical data
analysis methods, performance of predictive models, and
number of participants involved in the research. Also, in some
papers, significant difference can be observed in the age of
healthy individual and patient with lung cancer groups,12,22,23

which can cause false-positive results. Therefore, it seems
important to compare different approaches for VOC
determination, statistical data analysis methods, and groups
with different ages and find out the optimal strategy.

Skin is another perspective source of potential biomarkers.
VOCs are produced by skin through homolytic b-scission due
to lipid oxidation activity of bacteria or UV radiation. Among
the skin VOCs, alcohols, aldehydes, and ketones are the most
prevalent compounds. Additionally, skin emanations contain
acids, alkanes, aromatics, and esters.24,25 Skin analysis can be
carried out by different techniques, namely, IMS, SPME24 or

thermal desorption,25 GC−MS, thermal desorption secondary
electrospray ionization time of flight MS (TD−SESI−
TOFMS),26 and nanomaterial-based sensors array.27 However,
all these methods require sophisticated sample preparation
equipment and are hard to implement.24

The diagnostic potential of skin analysis has already been
shown on the example of tuberculosis.27 However, skin can
also be a source of other diseases biomarkers, which remains to
be explored. On the skin, there exist zones which can reflect
the diseases of internal organs through reflected pain and
hyperesthesia, which was first described by Zakharyin and
Head.28 Afterward, these zones were termed as Zakharyin-Ged
zones. Accordingly, there is a possibility that the skin can
reflect alterations occurring in lungs in lung cancer. However,
this hypothesis has never been investigated before.

In this work, exhaled breath and skin of patients with lung
cancer and healthy individuals were investigated. To study the
influence of age, the healthy volunteer group was divided into
two subgroups: young and old healthy individuals. The disease
group was compared with two healthy volunteer subgroups
separately. TD−GC−MS was applied for the analysis of
exhaled breath samples. Performance of different machine
learning algorithms was studied to create a diagnostic model.
Also, the analysis of skin in Zakharyin-Ged zones relevant to
the heart and lungs of patients with lung cancer and healthy
subjects was conducted using electronic nose. Differences
between skin chemical composition of investigated groups
were estimated by chemometric methods.

■ RESULTS AND DISCUSSION
Exhaled Breath Analysis Using GC−MS. Numerous

studies have demonstrated the ability of lung cancer
diagnostics using analysis of exhaled breath.7,8,10,19 However,
the findings obtained by various researchers were inconsistent
(Table 1). Various analysis conditions, cohorts of participants,
lists of putative biomarkers applied to develop diagnostic
models, different learning algorithms, and test data set
percentage were used, and different performances of created

Figure 1. Total ion current chromatograms of a lung cancer patient (a) an old healthy individual (b) and a young healthy volunteer (c): 1�
acetaldehyde, 2�ethanol, 3�acetonitrile, 4�acetone, 5�2-propanol, 6�dimethylsulfide, 7�isoprene, 8�butanal, 9−2,3-butandione, 10�2-
butanone, 11�dimethyl carbonate, 12�ethylacetate, 13�hexane, 14�1-butanol, 15�benzene, 16�2-pentanone, 17�pentanal, 18�1-
methylthiopropane, 19�dimethyl disulfide, 20�heptane, 21�1-pentanol, 22�toluene, 23�hexanal, 24�N,N-dimethylacetamide, 25�m-
xylene + p-xylene, 26�heptanal, 27�phenol, 28�nonane, 29�dimethyl trisulfide, 30�octanal, 31�decane, 32�limonene, 33�nonanal, 34�
undecane, 35�decanal, and 36�dodecane.
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models were observed. Previously, we have optimized analysis
conditions and proposed a new data analysis approach
applying VOC ratios instead of VOC peak area values. The
efficiency of the approach was demonstrated for different
analytical methods (GC−FID and GC−MS) and cohorts of
participants.29,30 In this work, exhaled breath samples of three
cohorts of participants were analyzed including 110 patients
with lung cancer, 112 young healthy subjects, and 100 healthy
individuals with the same age as lung cancer patients (old
healthy individuals) by GC−MS. The GC−MS chromato-
grams obtained by analysis of the samples from each group are
presented in Figure 1.

In total, 205 VOCs were discovered in the study. The
compounds occurring in more than 50% of cases at least in one
group, that is, lung cancer patients or healthy individuals
(young and old groups), were considered for statistical analysis
(Table 2). The frequency of VOCs occurring in the samples of

patients with lung cancer or healthy subject groups was
calculated as follows

=

frequency of VOC occurrence in the group
the number of samples containing VOC in the group

the total number of samples in the group

A list of exhaled breath VOCs and frequency of their
occurring are presented in Table 2.

Statistical analysis was conducted using peak area ratios of
VOCs instead of VOC peak areas. Considering this approach,
it seems reasonable to apply VOC with a frequency of 100% to
avoid division by zero. The frequency of 100% was observed
only for acetone, isoprene, and dimethylsulfide (Table 2). To
consider a wider list of ratios, it was reasonable to apply the
VOCs occurring the most frequently in the samples of both
groups as a denominator, which was observed for the first 10
VOCs in Table 2. Among them, the lowest frequency was

Table 2. Frequency of VOCs Which Were Observed in Exhaled Breath of Healthy Subjects (Young and Old Groups) and
Patients with Lung Cancer (%)

no VOC lung cancer patients healthy individuals (matched age with LC group) healthy individuals (young group)

1 acetone 100.0 100.0 100.0
2 isoprene 100.0 100.0 100.0
3 dimethylsulfide 100.0 100.0 100.0
4 1-methylthiopropene 100.0 96.0 92.0
5 2-pentanone 97.3 95.0 100.0
6 1-methylthiopropane 98.2 97.0 94.6
7 allyl methyl sulfide 98.2 93.0 96.4
8 dimethyl disulfide 97.3 93.0 94.6
9 2,3-butandione 85.7 83.0 92.9
10 acetonitrile 86.6 88.0 88.4
11 2-butanone 75.9 76.0 86.6
12 heptane 52.7 47.0 73.2
13 pentanal 50.0 51.0 71.4
14 dimethyl trisulfide 71.4 64.0 55.4
15 hexane 50.9 60.0 62.5
16 1-pentanol 56.2 50.0 58.9
17 benzaldehyde 59.8 62.0 59.8
18 nonanal 52.7 38.0 57.1
19 2-heptanone 57.1 40.0 43.8
20 3-heptanone 50.9 48.0 50.0
21 octanal 51.2 50.0 54.5
22 octane 50.9 54.0 47.3
23 toluene 50.9 42.0 29.3
24 1-butanol 24.1 39.0 47.3
25 hexanal 49.1 45.0 48.2
26 decanal 42.0 44.0 46.4
27 undecane 44.6 49.0 48.2
28 dodecane 45.6 47.0 45.5
29 decane 49.1 43.0 44.6
30 butyl acetate 21.4 24.0 47.3
31 butanal 36.7 39.0 49.1
32 heptanal 39.2 42.0 49.1
33 nonane 36.6 24.0 43.8
34 propylbenzene 44.6 14.0 17.8
35 benzene 31.2 32.0 25.0
36 1,3-pentadiene 25.0 11.0 15.1
37 ethylbenzene 25.0 24.0 13.3
38 1,4-pentadiene 22.3 9.0 14.2
39 o-xylene 20.5 22.0 11.6
40 m + p-xylene 19.6 23.0 13.4
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observed in the case of acetonitrile (86.6%). The frequency of
occurring for rest compounds was lower and was different in
the investigated groups. These VOCs were applied only as a
numerator.

The aim of the initial step of the study was to determine the
ratios with the highest difference between the patients with
lung cancer and healthy individuals. For this purpose, we used
Spearmen’s rang correlation test. To study the effect of age, the
correlation coefficients between the group of patients with lung
cancer and each group of healthy individuals were calculated
separately. Correlation coefficients between the ratios and
disease status of patients with lung cancer and young healthy
subjects are reflected in Table 3, patients with lung cancer and
old healthy subjects�in Table 4. The first column represents
the peak areas of VOCs used as a numerator; the first line�as
a denominator; and the row-column-intersection represents

the correlation coefficient between the ratio (numerator to
denominator) and the disease status.

The ratios with the highest correlation coefficients, excluding
duplicative ones, were selected to create diagnostic models. To
eliminate the age effect, only the ratios correlated with the
disease status in both groups, namely, young and old healthy
volunteers, were used for the development of diagnostic
models. Table 5 represents the correlation coefficients of ratios
selected for the development of diagnostic models in both
groups.

As presented in Table 5, correlation coefficients were higher
for most of selected ratios, when the groups of lung cancer
patients and young volunteers were compared. Two kinds of
the models were created: based on patients with lung cancer
and young healthy subjects and patients with lung cancer and
old healthy subjects; their performance was compared.

Table 3. Correlation Coefficients between the Disease Status and all Considered Ratios of Patients with Lung Cancer and
Young Healthy Subjects

VOC acetone allyl methyl sulfide 1-methylthiopropene dimethyl disulfide acetonitrile

hexane −0.265 −0.254 −0.203 −0.242 −0.313
toluene 0.252 0.231 0.245 0.254 0.242
1-pentanol 0.137 0.012 0.070 0.070 −0.047
pentanal 0.192 −0.294 −0.256 −0.221 −0.293
dimethyl trisulfide 0.278 0.208 0.199 0.273 0.130
nonanal 0.008 −0.049 −0.051 −0.069 −0.143
heptane −0.066 −0.147 −0.106 −0.121 −0.092
2-butanone −0.025 −0.142 0.072 −0.036 −0.104
isoprene 0.245 0.970 0.103 0.068 −0.038
1-methylthiopropane 0.224 0.065 0.047 0.008 0.108
dimethylsulfide 0.076 0.104 0.095 0.049 −0.076
2,3-butandione 0.154 −0.020 0.137 0.021 0.087
2-pentanone 0.430 0.179 −0.339 −0.314 0.143
benzaldehyde 0.103 0.039 0.063 0.041 0.002
octanal 0.032 0.890 0.106 0.073 0.093
octane 0.106 0.050 0.069 0.071 0.031
3-heptanone 0.008 −0.031 −0.033 −0.041 −0.069
2-heptanone 0.126 0.086 0.070 0.108 −0.019

Table 4. Correlation Coefficients between the Disease Status and All Considered Ratios of Patients with Lung Cancer and Old
Healthy Subjects

VOC acetone allyl methyl sulfide 1-methylthiopropene dimethyl disulfide acetonitrile

hexane −0.132 −0.098 −0.108 −0.039 −0.260
toluene −0.062 −0.053 −0.070 −0.014 −0.172
1-pentanol 0.255 0.225 0.233 0.261 0.101
pentanal −0.019 −0.070 −0.045 −0.041 −0.159
dimethyl trisulfide 0.150 0.128 0.145 0.356 −0.070
nonanal 0.115 0.111 0.104 0.157 −0.043
heptane 0.115 0.114 0.140 0.164 0.029
2-butanone 0.065 −0.136 0.067 −0.093 −0.081
isoprene 0.138 0.125 0.081 −0.090 0.278
1-methylthiopropane 0.136 0.037 0.101 0.070 0.062
dimethylsulfide 0.081 0.075 0.132 0.096 −0.101
2,3-butandione 0.153 0.116 0.090 0.115 0.225
2-pentanone 0.289 0.087 −0.144 0.079 0.096
benzaldehyde 0.086 0.040 0.057 0.143 −0.175
octanal 0.108 0.115 0.039 0.161 0.048
octane −0.039 −0.019 −0.006 0.051 −0.161
3-heptanone 0.449 0.431 0.447 0.451 0.392
2-heptanone 0.48 0.476 0.489 0.509 0.389
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Several machine learning algorithms were applied to select
the one with the highest performance. Among them, the main
application field of logistic regression and support vector
machine is binary classification which makes these algorithms
attractive to solve the task. Random forest algorithm is more
flexible because it can identify a broader scope of possible
relationships between the model predictors (VOC peak area
ratios) and the disease status. Also, one of the most widely
used algorithms in medical diagnostics, neural networks, was
used. The input values of each model were the same set of nine
ratios (Table 5). The models were built using cross-validation.
Performance of models created using three data sets for the
groups of young and old healthy volunteers is shown in Tables
6 and 7.

Performance of diagnostic models varied significantly
depending on the algorithm of machine learning in both
types of the models. However, the best results on test data
were achieved using neural networks in both types of the
models with 87 ± 2% sensitivity and 83 ± 3% specificity in the
case of young healthy subjects and 81 ± 3% sensitivity and 85
± 1% specificity for old healthy volunteers. As can be seen
from Tables 6 and 7, independently of algorithm of machine
learning, sensitivity on test data was higher in the case of the

young healthy group, but specificity was almost the same for
both groups. The models were created on the same set of
ratios, statistically significantly different for both healthy
subject groups, but the performance of diagnostic models
was slightly higher in the case of the young group. Some
researchers published the classification models, allowing us to
discriminate patients with lung cancer and healthy subjects, but
the age of participants was significantly different.12,23 Our
findings prove the assumption that the best way to eliminate
the age effect is to compare groups of the same age. In this
study, the number of smokers was nearly the same, which
allows us to eliminate the smoking impact. We cannot exclude
smokers from the study because most lung cancer patients are
active smokers, but the smoking factor significantly changes the
VOC profiles of exhaled breath;31 therefore, to avoid obtaining
false-positive results, the number of smokers should be equal in
both groups of participants. The model for the lung cancer
diagnostics using GC−FID analysis of exhaled breath was
created by us previously.29 It is worth noting that hexane/
acetonitrile ratio values from the previous model also
significantly correlated with the disease status in the present
study for both young and old healthy groups (correlation
coefficients of −0.260 and −0.313), which proves their reliance
in terms of disease status indicators. The ratios included in the
present models should also be tested on the larger cohort of
people.

Concentrations of 3-hydroxy-2-butanone and 1-butanol
were found to be significantly lower in the case of squamous
cell carcinoma than in adenocarcinoma.32 However, other
authors noted the lack of any difference in exhaled breath
composition depending on histology.31 Influence of histology
on the exhaled breath profile was studied in the current work.
For this, exhaled breath of patients with small cell carcinoma,
squamous cell carcinoma, and adenocarcinoma was analyzed.
Kruskal−Wallis test was applied to find whether there exists
the difference in VOC profiles of patients with different
histologies. Statistically significant differences between VOC
profiles of patients with different histologies were observed for
dimethyl trisulfide/1-methylthiopropene (p = 0,029), 1-
methylthiopropane/acetonitrile (p = 0,035), 3-heptanone/

Table 5. Ratios Selected for the Creation of Diagnostic
Models

correlation coefficient

ratio

lung cancer
patients/old

healthy volunteers

lung cancer
patients/young

healthy volunteers

1-pentanol/acetone 0.224 0.156
1-methylthiopropane/acetone 0.136 0.224
dimethyl trisulfide/dimethyl
disulfide

0.356 0.273

isoprene/acetone 0.138 0.245
pentanal/acetonitrile −0.159 −0.293
hexane/acetonitrile −0.260 −0.313
2-butanone/allyl methyl sulfide −0.136 −0.142
2.3-butandione/acetone 0.153 0.154
2-pentanone/acetone 0.289 0.430

Table 6. Performance of Diagnostic Models Using Different Machine Learning Algorithms for Patients with Lung Cancer and
Young Healthy Volunteers

training data set test data set

machine learning algorithm data set sensitivity, % specificity, % sensitivity, % specificity, %

logistic regression 1 79 76 75 84
2 81 83 71 72
3 89 76 80 88
mean ± SD 83 ± 5 78 ± 4 75 ± 5 81 ± 8

random forest 1 87 71 77 64
2 94 82 77 62
3 92 80 77 76
mean ± SD 91 ± 4 78 ± 6 77 ± 0 67 ± 8

support vector machine 1 73 82 75 84
2 76 86 71 76
3 85 80 80 87
mean ± SD 78 ± 6 83 ± 3 75 ± 5 82 ± 6

neural networks 1 88 77 93 85
2 85 82 85 79
3 89 77 87 85
mean ± SD 87 ± 2 79 ± 3 88 ± 4 83 ± 3

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06132
ACS Omega 2022, 7, 42613−42628

42618

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


allyl methyl sulfide (p = 0,039), and 3-heptanone/1-
methylthiopropene (p = 0,030) ratios.

If the tumor is in the central part of a lung, it is closer to the
airways than the peripheral tumor; therefore, VOC profiles of
central and peripheral tumor can be different. Statistically
significant differences in VOC peak areas and VOC peak area
ratios in groups of patients with different tumor localizations
were estimated by the Mann−Whitney test. Several parameters
were significantly different in investigated groups: 1-pentanol
(p = 0,020), 1-pentanol/2,3-butandione (p = 0,006), 1-
pentanol/isoprene (p = 0,023), 1-pentanol/acetone (p =
0,039), dimethyl disulfide/acetonitrile (p = 0,032), and 2-
butanone/isoprene (p = 0,040). Other research groups have
never considered differences in VOC profiles depending on
tumor localization; therefore, further research is required to
prove the results obtained. It should be noted that among
VOC ratios included in the creation of diagnostic models
statistically significant difference in groups with central and
peripheral tumor localization was observed only in the case of
the 1-pentanol/acetone (p = 0,039) ratio.
Skin Analysis Using Electronic Nose. Owing to the ease

of use, rapidity and simplicity, electronic nose has a great
potential in a clinical context. Different research groups have
demonstrated the ability of an electronic nose based on a
quartz crystal microbalance sensor system coated with different
metalloporphyrins to classify patients with lung cancer and
healthy subjects by exhaled breath analysis.33,34

Exhaled breath5,7,8 and skin24,25 contain a wide list of
analytes, for example, water, alcohols, ketones, carbon acids,
amines, ethers, esters, aromatic compounds, saturated hydro-
carbons, ammonia, and acetonitrile. Analytical properties of
electronic nose regarding different compounds were evaluated
earlier. “Visual print” areas of a full array of sensors and three
most sensitive sensors were applied to construct calibration
curves.30 The lowest sensitivity was observed for ethyl ester,
hexane, ethyl acetate, and acetone with the quantification limits
up to 50 g/m3. The limitations of electronic nose working
parameters were evaluated. Ambient air of medical institutions
contains different disinfectants (1-propanol and 2-propanol) at
high concentrations, which affects electronic nose measure-
ments. Also, it should be noted that significant alterations of

temperature (6 °C) and humidity (30%) greatly influence the
signal; therefore, experimental conditions should be controlled,
for example, by measurement of ethanol before the analysis
and calculation of correction coefficients for samples. Analysis
of exhaled breath applying the electronic nose was performed
earlier. The electronic nose was unable to differentiate the
samples of exhaled breath in relation of the disease status
because the electrodes are sensitive to various VOCs, but
larger quantities of water in the samples block the response of
sensors toward other volatiles.30

An original approach to monitor health status by the analysis
of volatiles emitted from Zakharyin-Ged zones of skin using
electronic nose has been proposed earlier.35 In this study, an
electronic nose based on the quartz crystal microbalance
sensor system was used to analyze the skin in two Zakharyin-
Ged zones corresponding to heart and lungs. Skin analysis
using the electronic nose was performed by contacting the
device with the skin. The time of contact was the same as in
the case of analysis of VOC standards (80 s).30 Desorption was
performed with an opened cell during 120 s. Equilibration of
electronic nose was achieved using ambient air.

Skin analysis in Zakharyin-Ged zones of 40 patients with
lung cancer and 80 healthy individuals (40 young healthy
volunteers and 40 old healthy individuals) was conducted.
Recovery curves of skin measurements in the lung Zakharyin-
Ged zone of patients with lung cancer and healthy individuals
(young and old groups) obtained under identical conditions
are presented in Figure 2. The difference in recovery curves of
patients with lung cancer and healthy subjects of different age
can be observed.

Alterations in the temperature and humidity significantly
affect the results. To eliminate the influence, the skin was
measured in Zakharyin-Ged and its opposite side zones; then,
the ratios of parameters were used for statistical data analysis.
Additionally, this approach eliminates the impact of individual
skin metabolome and exogenous factors influencing the whole
body but varying from one subject to another. Statistical
analysis was conducted with regard to ΔFmax, area of a “visual
print” of all sensors ΔFmax (Sv.p., Hz). Moreover, we
considered the dynamics of sorption and desorption
parameters by constructing “dynamic visual prints” using the

Table 7. Performance of Diagnostic Models Using Different Machine Learning Algorithms for Patients with Lung Cancer and
Old Healthy Volunteers

training data set test data set

machine learning algorithm data set sensitivity, % specificity, % sensitivity, % specificity, %

logistic regression 1 74 79 75 66
2 78 83 69 67
3 77 74 69 66
mean ± SD 76 ± 2 79 ± 4 71 ± 3 66 ± 1

random forest 1 82 90 75 76
2 93 89 71 78
3 90 87 83 75
mean ± SD 88 ± 6 89 ± 2 76 ± 6 76 ± 2

support vector machine 1 68 80 75 79
2 75 84 66 69
3 74 79 71 81
mean ± SD 72 ± 4 81 ± 3 71 ± 5 76 ± 6

neural networks 1 86 86 83 86
2 93 89 77 86
3 87 78 83 84
mean ± SD 89 ± 4 84 ± 6 81 ± 3 85 ± 1
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Figure 2. Typical recovery curves of skin in lungs Zakharyin-Ged zone and its opposite side of a patient with lung cancer (a,b), a young healthy
volunteer (c,d), and an old healthy volunteer (e,f).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06132
ACS Omega 2022, 7, 42613−42628

42620

https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


value of ΔF in the time of signal registration. We examined all
samples manually: all sensors were considered separately
during all time of analysis with the aim to find the time with
maximal difference of the signal between the Zakharyin-Ged
zone and its opposite side of healthy and patients with lung
cancer groups. In accordance with the results, several
algorithms of “dynamic visual prints” construction were
created (Table 8).

At the initial step of statistical analysis, the data set was
normalized by the transformation log(x + 106). Parameters
with significantly different values in investigated groups were
selected using one-way ANOVA. Statistically significant
differences in parameter values were found only in the case
of the lung Zakharyin-Ged zone (Table 9).

Typical “visual prints” and “dynamic visual prints” of a
patient with lung cancer and young and old healthy subject are
presented in Figure 3.

Classification of the groups was performed using PCA and
DA based on one-way ANOVA analysis results. PCA is a useful
method for the reduction of multidimensional data to its main
components and simplifying data analysis procedure. It allows
us to evaluate the significance of PC and their contribution to a
discrimination by means of scree plots. As shown in Figure
4a,b, the main contribution to the discrimination is made by

the first factor which explains 80.85% of the variation in the
case of young healthy individuals and for old healthy
subjects�59.86%. As illustrated in Figure 4c,d, PCA based
on these eight parameters does not provide clear clustering of
the groups by the first two PCs in both young and old healthy
volunteers, which demonstrates the importance of model
creation for the assessment of the sensitivity and specificity of
the proposed approach.

As illustrated in Figure 4a,b, it is hard to reduce the quantity
of variables by subtracting them to PC. Therefore, diagnostic
models using DA were created using the results of one-way
ANOVA. Sensitivity and specificity of created models were 65
and 65% for the group of young healthy subjects and for the
old healthy group�60 and 65%, respectively. Also, diagnostic
models were created using one of the most effective machine
learning algorithms, that is, neural networks. The input values
of each model represented results of one-way ANOVA (Table
9). The models were built using cross-validation. Performance
of models created using five data sets is shown in Table 10.

In the case of test data set, 69 ± 2% sensitivity and 68 ± 8%
specificity were observed for the young healthy group; 74 ± 7
and 66 ± 6% for the old healthy group, which is higher than
that in the case of DA. The sensitivity of the old healthy group
was higher than the young healthy group, but specificity was
about the same for both groups. The models were created on
the same set of parameters, different for both healthy subject
groups, but the performance of diagnostic models was too low
for diagnostic purposes. To evidence the potency of the
proposed approach, the skin analysis of a larger group of
people is required. The study sheds a light on a new source of
biomarker searching. It can be supposed that biochemical
processes occurring as the result of tumor activity are reflected
in lung Zakharyin-Ged zones. This assumption can be proved,
for example, by monitoring a lung cancer patient before and
after tumor resection to determine whether a tumor affects
alterations in skin excretion profiles.

To the best of our knowledge, alterations in the skin VOC
profile of Zakharyin-Ged zones occurring as a result of tumor
have never been investigated before. However, the skin of
healthy volunteers was analyzed using different analytical
methods. The authors24 determined 3-methyl-2-butenal, 6-
methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octa-
nal, 2-ethylhexanol, nonanal, and decanal in skin headspace
using IMS and GC−MS. Nonanal, decanal, and 6-methylhept-
5-en-2-one were also found in skin emanations in another
work.25 Aldehydes can be present in the skin VOC profile as a
result of metabolic processes in the skin. Alterations in skin
VOCs occurring due to lung cancer have never been
investigated before. In the current paper, an electronic nose
was used to analyze skin. The parameters of the electronic nose
cannot identify a single compound; they respond only to a
group of compounds, which hinders the interpretation of
results in terms of the qualitative composition of a sample. It
would be an interesting issue for further research to explore
qualitative and quantitative composition of Zacharyin-Ged
zones in detail.

■ CONCLUSIONS
Classification of exhaled breath samples of patients with lung
cancer and healthy subjects of different ages by using the VOC
peak area ratios and applying various machine learning
methods can be performed using GC−MS. The difference in
performance of diagnostic models created using healthy

Table 8. Algorithms of Constructing “Dynamic Visual
Prints”

algorithm sensor used

time of sensor
responses
recording, s

initial sorption Zr1,DCH-18C6, GA1, PEGS 24, 26, 27, 28, 30,
32, 34, 36, 38

median sorption Zr2, PEGS 10, 20, 30, 60
final sorption GA2, Zr2 60, 63, 65, 67, 69,

70, 71, 73
sorption Zr1, DCH-18C6, GA1, PEGS 20, 30, 40, 50, 60, 70
common
dynamic visual
print

MWCNT1, Zr1, DCH-18C6,
GA1, Zr2, PEGS, MWCNT2

20, 30, 60, 100, 120,
140

desorption GA1, Zr2, MWCNT2 110, 120, 130, 140,
150

Table 9. Parameters with Statistically Significant Values in
Groups of Patients with Lung Cancer and Healthy Subjects
in the Lung Zakharyin-Ged Zone

parameter

patients with lung cancer
and young healthy
individuals (p-value)

patients with lung cancer
and old healthy

individuals (p-value)

ΔFmax (Zr1) 0.005 0.015
ΔFmax
(DCH-18C6)

0.004 0.007

ΔFmax (GA1) 0.012 0.032
ΔFmax (GA2) 0.024 0.034
ΔFmax
(MWCNT2)

0.032 0.041

area of “visual
print”

0.036 0.005

area of “dynamic
visual print”:
initial sorption

0.004 0.012

area of “dynamic
visual print”:
sorption

0.004 0.009
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subjects with different ages was about the same, but it is
important to select the parameters which are correlated with
disease status independently of the age. Localization of tumor
and histology can affect the exhaled breath VOC profile. A
novel approach for lung cancer diagnostics by analyzing skin in
Zakharyin-Ged zones using QMB electronic nose has a great
potential, but further investigation is required to provide the
reliance of the proposed approach.

■ EXPERIMENTAL SECTION
Materials. Ethyl ether, benzylamine, ethylenediamine, t-

butylamine, methylamine (>95%), and formic acid (98%) were
purchased from Acros Organics (USA). Methanol, ethanol, n-
hexane, acetonitrile, toluene, and benzene (>95%) were
obtained from Sigma-Aldrich (USA). Acetone, n-butanol, 2-
butanol, and isoamyl alcohol (99.9%) were purchased from
Ecos-1 (Russia). Ammonia, acetic acid, and 2-propanol were
obtained from Vecton (Russia). Ethyl acetate and butyl acetate
(99%) were purchased from Component-reaktiv (Russia). A
Milli-Q simplicity system (Milli-Q, Millipore, France) was used
to obtain 18.2 MΩ·cm water.

Human Subjects. The study included three groups of
participants: patients with lung cancer, healthy individuals with
young age (median�21 years old), and healthy individuals
with age comparable with lung cancer patients (median�60
years old). Healthy status of participants was confirmed by a
report of an annual medical examination. Criteria for including
were the lack of inflammation processes and pathologies in
lungs, which was confirmed by fluorography. Diagnosis of
patients with lung cancer was verified by biopsy. The samples
were collected before the beginning of any treatment or during
the treatment with different regimes (Table 11). Demographic
data were collected including sex, age, smoking status, and time
since last smoking. Information on the participants is shown in
Table 11. Each subject provided a declaration of agreement to
take a part in the study. The study was conducted in
conformity with guidelines and regulations of the local ethics
committee of state budgetary healthcare institution “Research
Institute�Regional Clinical Hospital No 1 named after
Professor S.V. Ochapovsky”.
Collection of Exhaled Breath Samples. Tedlar (Supel-

co, Bellefonte, PA, USA) or Mylar (EKAN, Russia) sampling
bags with the volume of 5 L were used to collect the samples of

Figure 3. Typical “visual print” of the skin of a patient with lung cancer (a), a young healthy individual (b), and an old healthy volunteer (c);
typical “dynamic visual prints” of the skin of a patient with lung cancer and young and old healthy volunteers: initial sorption (d,e,f) and sorption
(g,h,i).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06132
ACS Omega 2022, 7, 42613−42628

42622

https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06132?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


exhaled breath. Nitrogen was applied to clean the bags. We
have identified the compounds which polluted the sample from
the sampling bag material previously.29N,N-Dimethylaceta-
mide and phenol are the pollutants from sampling bags. This
finding allows us to use both sampling bags, but we excluded
phenol and N,N-dimethylacetamide from a list of considered
VOCs. Exhaled breath of patients with lung cancer and some
healthy volunteers was sampled in the hospital. The rest
samples of healthy volunteers were collected in a solvent-free
room. Room air samples were collected each day of the
sampling to consider the contribution of exogenous com-
pounds. Sampling was conducted after the participants were

fasted overnight. Active smokers did not smoke for at least 2.5
h before breath sampling. After the participants had rested for
10 min in the room, subjects were asked to breathe deeply,
hold the breath for 10 s, and breathe out calmly into the
sampling bag until the bag was filled. The samples were
processed within 6 h after collection.
GC−MS Analysis of Exhaled Breath. Exhaled breath

samples of patients with lung cancer and healthy individuals
were analyzed by GC−MS. A gas chromatograph (Chromatec
crystal 5000.2, Russia) fitted with a quadrupole mass
spectrometer with a source of electron ionization (Chromatec
MSD, Russia) coupled to a thermal desorber TD2

Figure 4. Scree plot and PCA score plot with parameters selected by one-way ANOVA to classify patients with lung cancer (a,c) and young healthy
volunteers and old healthy volunteers (b,d).

Table 10. Performance of Diagnostic Models

patients with lung cancer and young healthy individuals patients with lung cancer and old healthy individuals

training data set test data set training data set test data set

data set sensitivity, % specificity, % sensitivity, % specificity, % sensitivity, % specificity, % sensitivity, % specificity, %

1 65 74 67 78 75 84 75 75
2 79 66 71 73 77 75 78 63
3 81 59 67 63 81 77 78 60
4 70 61 71 57 84 68 78 67
5 70 59 70 67 69 82 63 67
mean ± SD 73 ± 7 64 ± 6 69 ± 2 68 ± 8 77 ± 6 77 ± 6 74 ± 7 66 ± 6
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Table 11. Clinical Characteristics of Subjects

group parameter total male female

healthy control (young group) number 112 34 78
age, range (median) 21−35 (21) 21−35 (21) 21−33 (23)
number of smokers 17 10 6

healthy control (old group) number 100 45 55
age, range (median) 36−78 (61) 39−78 (63) 36−69 (61)
number of smokers 9 5 4

lung cancer patient number 110 87 23
age, range 37−77 37−77 38−73
age, median 63 60 65
number of smokers 22 21 1
type of lung cancer
small cell carcinoma 12 12 0
adenocarcinoma 50 29 21
squamous cell carcinoma 38 33 5
non-small cell lung cancer 3 3 0
thymoma 2 2 0
neuroendocrine carcinoma 2 2 0
non differentiated 5 4 1
tumor localization
central 58 49 9
peripheral 52 36 16
mediastinum 2 2 0
type of biopsy
endobronchial biopsy 96 75 21
videothoracoscopy 14 11 3
transbronchial biopsy 1 1 0
transtorachal biopsy 1 1 0
TNM (tumor, nodules, metastasis) stage
T1N0M1 1 0 1
T2N0M0 8 5 3
T2N0M1 5 5 0
T2N1M0 8 6 2
T2N1M1 1 1 0
T2N2M0 2 2 0
T2N2M1 6 5 1
T2N3M0 1 0 1
T2N3M1 2 1 1
T3N0M0 6 5 1
T3N0M1 2 1 1
T3N1M0 7 6 1
T3N1M1 1 1 0
T3N2M0 15 10 5
T3N2M1 4 3 1
T3N3M0 1 0 1
T4N0M0 5 3 2
T4N0M1 5 4 1
T4N1M0 8 6 2
T4N1M1 1 0 1
T4N2M0 10 9 1
T4N2M1 10 9 1
T4N3M0 2 2 0
T4N3M1 1 1 0

Chemotherapy Regimen
carboplatin + paclitaxel 25 21 4
carboplatin + pemetrexed 8 7 1
docetaxel 6 5 1
hycamtin + carboplatin 6 3 3
carboplatin + etoposide 5 5 0
docetaxel + carboplatin 3 3 0
cisplatin + vincristine 3 2 1
etoposide + cisplatin 3 3 0
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(Chromatec, Russia) was applied. Data were acquired and
processed with mass spectral library NIST 2017, Version 2.3
(Gatesburg, USA) and Chromatec Analytic (Chromatec,
Russia) software. VOC preconcentration and detection
conditions were optimized previously. VOCs were separated
using a Supelco Supel-Q PLOT (30 m × 0.32 mm × 15 μm)
column because it provides separation of the greatest number
of exhaled breath VOCs in comparison to cyanopropyl-phenyl
methyl-polysiloxane, diphenyl-dimethyl-polysiloxane, and poly-
ethylene glycol-TPA modified columns. Sorbent properties of
the tubes with Porapak N (50/80 mesh), Chromosorb 106
(60/80 mesh), Tenax TA (35/60 mesh), and multibed sorbent
[Tenax GR (35/60 mesh), Carbopack B (60/80 mesh), and
Carbosieve SIII (60/80 mesh)] (Chromatec, Russia) were
studied for the preconcentration of VOCs for GC−MS
analysis. Tenax TA sorbent was the best to preconcentrate
the analytes because the results were the most reliable and
stable using the sorbent.29 The sample VOCs were
preconcentrated using a Tenax TA sorbent tube by passing a
0.5 L sample through it at a rate of 200 mL/min applying a
PV-2 aspirator (Chromatec, Russia). Thermal desorption and
GC−MS analysis conditions are given in Table 12. VOCs were
identified using analytical standards. If the VOC standard was
not available, the identification was conducted using the mass
spectral library. The VOCs with match factor ≥85% were
treated.
Skin Analysis Using Electronic Nose. Electronic nose

“MCWbioG�8” (Multichannel biogas nanobalances, Voro-
nezh, Russia) represents a chamber with the volume of 127 mL
with the pipe to inject a gaseous sample. The laptop is used to
control the device. It provides the ability to conduct exhaled
breath and skin analysis independently from its location. The

bottom of the chamber can be hinged, which allows us to
equilibrate the device by ambient air and take into account its
influence. The chamber was opened during the time between
analysis for the baseline equilibration. The work regimes of the
devise are presented in Figure 5. The analytical signal is
obtained from sensors coated with various films of sorbent:

Table 11. continued

group parameter total male female

Chemotherapy Regimen
cyclophosphamide + docetaxel 3 3 0
cisplatin + pemetrexed 3 2 1
pemetrexed + cisplatin + bevacizumab 3 2 1
carboplatin + paclitaxel + doxorubicin 2 1 1
docetaxel + cyclophosphan 2 2 0
irinotecan 2 2 0
docetaxel + carboplatin + resorba 1 1 0
docetaxel + cisplatin 1 1 0
docetaxel + cisplatin + bevacizumab 1 0 1
carboplatin + mitotax 1 1 0
paclitaxel + carboplatin + lomustine 1 1 0
paclitaxel + vinorelbinum 1 0 1
gemcitabine + docetaxe 1 1 0
gemcitabine + carboplatin 1 1 0
doxorubicin + cisplatin + vincristine + cyclophosphamidum 1 1 0
paclitaxel + maverex 1 1 0
paclitaxel + vinorelbine 1 0 1
carboplatin 1 1 0
pemetrexed + cisplatin + bevacizumab + resorba 1 1 0
docetaxel + cisplatin + bevacizumab 1 0 1
immunotherapy regimen
nivolumab 3 2 1
pembrolizumab, 3 3 0
atezolizumab 2 1 1
target therapy regimen
gefitinib 1 0 1

Table 12. Thermal Desorber and GC−MS Operation Modes

parameter value

thermal desorber carrier gas helium
valve temperature, °C 150
transition line temperature, °C 180
desorption temperature, °C 250
initial trap temperature, °C −10
final trap temperature, °C 250
desorption time, min 5

GC−MS carrier gas helium
injector temperature, °C 250
split ratio 1:10
ion source temperature, °C 200
transfer line temperature, °C 250
scan mode full scan
scan range, amu 29−250
electron impact ionization, eV 70

temperature program

heating rate,
°C/min

temperature,
°C

time,
min

carrier-gas flow rate,
mL/min

0 50 0 1.30
10 150 10
6 220 11.7
4 250 7.5
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multiwalled carbon nanotubes 1, MWCNT1 (4.0 μg);
zirconium oxide nitrate 1, Zr1 (2.0 μg); dicyclohexane-18-
crown-6, DCH-18C6 (19.0 μg); biohydroxyapatite 1, GA1
(3.0 μg); biohydroxyapatite 2, GA2 (4.0 μg); zirconium oxide
nitrate 2, Zr2 (2.3 μg); polyethylene glycol succinate, PEGS
(12.0 μg); and multiwalled carbon nanotubes 2, MWCNT2
(3.0 μg). The resonators coated with MWCNT1, Zr1, DCH-
18C6, GA1, and PEGS have reference frequency of 10.0 MHz
and the rest ones have a reference frequency of 14 MHz.

Analysis of skin using an electronic nose was performed for
40 patients with lung cancer and 80 healthy subjects (40 young
and 40 old healthy volunteers). Volunteers involved in skin
measurements additionally were asked to refrain from using
cosmetics on the day of sampling and to shower not later than
12 h before sampling. According to the diagnostic significance
of the Zakharyin-Ged zones, the left forearm area of the skin
reflects the status of the heart and the right side of III−IV neck
segments area of skin�lungs and bronchus. Analysis of these
heart and lungs Zakharyin-Ged zones and their opposite sides
was performed using an electronic nose by contacting the

device with the skin. The location of Zakharyin-Ged zones,
which have been measured in the study, is shown in Figure 6.

Several analytical parameters were considered for data
treatment:30 analytical signal ΔFmax (Hz) was calculated as
the difference between the initial (i.e., before sample exposure)
and maximal, during analysis, oscillation frequency F0 and Fmax;
ΔFmaxi of all sensors was applied to create a “visual print” and
calculate its area (S v. p., Hz).
Statistical Analysis. The chromatograms were obtained in

the full scan mode. The exhaled breath VOC peak areas were
used as a quantitative parameter in GC−MS. They were
calculated using the extracted ion chromatogram mode. The
ambient air peak area values were subtracted from the exhaled
breath sample ones. Negative results of subtraction were set to
zero. Only the peak areas with values at least 20% higher than
in room air were used for the statistical analysis for enhancing
the reliability of the results. The rest peaks were set to zero too.
The VOCs occurring in more than a half of samples were
considered for statistical analysis. The ratios of the VOC peak
areas to the main ones occurring in more than 86% of the
samples and ratios of the main VOCs were used for statistical
analysis.

The chemometric calculations were performed by StatSoft
STATISTICA (version 10). The distribution normality was
evaluated by applying the Kolmogorov−Smirnov test. The
distribution was not normal. Spearman’s rank correlation test
(p = 0.05) was used for the identification of the relationship
between the parameters and disease status.

The ratios with the highest statistically significant correlation
coefficients, excluding duplicative ones, were entered in the
creation of diagnostic models. Two types of models were
developed: to classify patients with lung cancer and young
healthy volunteers and patients with lung cancer and old
healthy subjects. The data set was randomly split: training
(70%) and test (30%). K-Fold cross-validation method was
applied to increase the reliability of the results. The data were
split into three parts, one part was used as test data, and the
remaining two parts were applied as training data. Different
algorithms of machine learning were investigated (random
forest, logistic regression, support vector machine, and artificial
neural networks) to create a diagnostic model with the highest
sensitivity and specificity. Logistic regression classifier with
Rosenbross and quasi Newton optimization method was used
to train the first model. Support vector machine algorithm can
be used with linear and nonlinear kernel function. Sigmoid,
linear, polynomial, and radial basis functions were investigated.

Figure 5. Regimes of electronic nose working (a�the standby mode
of the device: the closed chamber, b�equilibrating the device by
ambient air, c�sensors of the device, and d�skin sampling).

Figure 6. Location of heart (a) and lung (b) Zakharyin-Ged zones and their opposite sides.
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The highest performance was observed using the radial basis
function. Parameter γ affects the training accuracy: its large
values lead to overfitting but in the case of small values, the
kernel gradually reduces to a constant function. The range of γ
values from 0.008 to 1.8 was investigated. The value of 0.08
was optimal because at lower values, the model accuracy was
decreased, but the use of higher values led to the increase in
model performance on the training data set without improve-
ments of accuracy on test data set. In the case of random forest
algorithm, the influence of different numbers of predictors on
model performance was investigated. The highest accuracy on
both test and training sets was achieved using three predictors.
Multilayer perceptron with one hidden layer neural networks
were applied for the diagnostic model creation. Different
topologies of the neural network (1000) were tested; the best
neural network was chosen. The hidden layer contained five
neurons and the output layer included two neurons for the
determination of the disease status. The Broyden−Fletcher−
Goldfarb−Shanno algorithm was used for the training of the
neural networks. Exponential activation function was used for
the hidden layer; identity�for the output layer.

The performances for both training and test data were
calculated for each model. The diagnostic accuracy of obtained
models was compared.

Mann−Whitney test (p = 0.05) was used to identify the
differences in ratio values between central and peripheral
tumor localization groups. Statistically significant differences in
three main histological tumor type groups (small cell
carcinoma, squamous cell carcinoma, and adenocarcinoma)
were evaluated by means of the Kruskal−Wallis test (p = 0.05).

Results obtained by skin measurements were analyzed in
terms of the Zakharyin-Ged zone and its opposite side ratio.
All parameters were normalized by the transformation log(x +
106). Normalization has led to changing the distribution of all
parameters to normal, which was evidenced by the
Kolmogorov−Smirnov test. One-way analysis of variance
(ANOVA) was used for the selection of parameters with
statistically significant differences in the investigated groups of
participants (young and old healthy and lung cancer).
Discriminant analysis and neural networks were applied to
develop diagnostic models. Their performance was compared.
In the case of neural networks, various topologies of the neural
network were tested; the best neural network was chosen. The
hidden layer contained nine neurons and the output layer
included two neurons for the disease status determination. The
Broyden−Fletcher−Goldfarb−Shanno algorithm was used to
train the neural networks. Hyperbolic tangent was the hidden
layer activation function; softmax−output layer. K-Fold cross-
validation was applied to validate the neural network model.
Considering low number of samples, the data set was split into
five parts, one part was used as test data, and the remaining
four parts were applied as a training data set.
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