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Flow-Identified Site of
Collapse During Drug-
Induced Sleep Endoscopy

Feasibility and Preliminary Results
To the Editor:

The sites and patterns of upper airway (UA) collapse are
a major outcome determinant of non-CPAP treatment
in patients with OSA.1,2 Endoscopy-based methods
during sleep (natural and drug induced) are the standard
approach for assessing the site(s) of UA collapse.
However, these methods are invasive and require
specialized equipment and personnel, limiting their
generalizability.

Flow shape analysis is an emerging method to
noninvasively estimate UA collapse sites. Negative
effort dependence (NED), defined as the percent
reduction in inspiratory flow from peak to plateau, is
a cardinal flow limitation feature. It characterizes a
decrease in flow despite an increase in respiratory
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effort. Epiglottic collapse produces a sudden drop
(ie, discontinuity) in inspiratory airflow (associated
with high NED)3,4; palatal and lateral wall collapse
generate a “scooped” inspiratory flow pattern
(associated with moderate NED)4; and tongue base
collapse causes a flattened flow shape (equivalent to
low NED).

Flow shape features have been successfully validated by
using natural sleep endoscopy (NSE).3-5 However, NSE is
labor intensive for clinicians and challenging to undergo
for patients. In contrast, drug-induced sleep endoscopy
(DISE) can be performed in higher volumes during
daytime hours, enabling the ability to accrue larger
samples for flow shape analysis. In clinical practice, DISE
is performed in the operating room without airflow or
other polysomnographic signal assessments.6 The aim of
the current study therefore was to assess the feasibility of
concomitant flow measurements during DISE by using a
pneumotachograph and to preliminarily assess
correlations between NED and UA collapse sites during
DISE.
Patients and Methods
This feasibility study prospectively recruited 20 patients with an
established OSA diagnosis. The study was reviewed and approved by
the local ethics committee at Antwerp University Hospital and
University of Antwerp (18/06/069, B300201835710). All patients
provided written informed consent.

All patients underwent a standard clinical DISE with additional
oximetry, EEG, electrooculography, chin electromyography, and
thoracic and abdominal movement measurements. Flow was
measured by using a calibrated and heated pneumotachometer
(Fleisch No. 2). All signals, synchronized with endoscopic footage,
were captured by using an Alice LDx6 polysomnography system
(Philips Respironics). Each patient was equipped with an oronasal
mask with bronchoscopy elbow connected directly to the
pneumotachograph. The endoscope was inserted through the sealed
elbow membrane (Fig 1).

DISE assessments were performed by an experienced ear, nose, and
throat surgeon. Sedation was induced by a 1.5 mg IV bolus injection
of midazolam and maintained by target-controlled infusion of
propofol (started at 3.0 mg/mL and lowered based on patient
reaction). To avoid excessive saliva production, 0.2 mg of
glycopyrronium bromide was administered. Retropalatal and
retroglossal areas were each examined for at least 7 min to ensure
sufficient data in each patient at each level.

Individual flow-limited breaths were scored by one reviewer based on a
standardized scoring system, specifying the level (soft palate,
oropharynx, tongue base, pharyngeal lateral walls, or epiglottis),
degree (none, partial, or complete), and direction (anteroposterior,
circular, or lateral) of collapse.7 Only breaths associated with
nonapneic complete collapse (ie, $ 90% narrowing during a portion
of but not the entire inspiratory cycle) were considered for further
analysis in this preliminary dataset. Patients with < 10 breaths
associated with complete collapse were excluded from the analysis.
Flow shape analysis on the scored flow-limited breaths was
performed according to Mann et al8 to calculate NED (NED ¼
[maximal flow in the first 30% of inspiration – minimal flow
between 25% and 75% of inspiration]/maximal flow in the first
30% of inspiration).

As a primary analysis, median NED values of patients with and
without a certain collapse type were compared by using the
Wilcoxon rank sum test. In this primary analysis, collapse in each
subject at a particular site was classified if present more than five
times during the investigation, accounting for multilevel collapse.
In a secondary analysis, NED values of individual breaths were
compared by using linear mixed effects modeling corrected for
within-subject correlation. To ascertain the presence or absence of
collapse, this secondary analysis was performed separately for
breaths visualized at the retropalatal and retroglossal area. Because
breaths at the retropalatal level were exclusively associated with
complete palatal collapse, the secondary analysis focused on breaths
at the retroglossal level (oropharynx, tongue base, pharyngeal lateral
walls, or epiglottic collapse). Separate linear mixed effects models
were constructed for each collapse site: NED w site of collapse þ
1jsubject.
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Figure 1 – Overview of the set-up used to simultaneously measure airflow and capture drug-induced sleep endoscopy footage. The endoscope was
inserted transnasally through a sealed membrane on the elbow attached to the oronasal mask. Flow was measured by using a pneumotachograph
(Fleisch No. 2). Video footage, flow signals, and polysomnography signals were collected through the Philips Alice LDx6 system. EMG ¼ electromy-

ography; EOG ¼ electrooculography.
Results
Data from 17 of 20 patients were included for analysis
(apnea-hypopnea index [AHI], 13.0 [11.7-14.3] events/
h; supine AHI, 28.7 [17.3-40.0] events/h; BMI, 28.8
[26.3-31.3] kg/m2; age, 65.1 [60.3-69.9] years; 59%
[10 of 17] male; all, mean [95% CI]). One patient was
excluded due to erroneous coupling of endoscopic
footage and flow signals. Two patients had < 10 breaths
associated with complete collapse. All DISE assessments
were performed in < 40 min.

Primary Outcome

It was feasible to simultaneously capture airflow
measurements and DISE video. In total, 1,371 breaths (81
[56-105] breaths/patient; mean [95% CI]) with complete
collapse and associated flow could be obtained. Median
NED values of patients with epiglottic collapse (0.60
[0.57-0.95], 5 of 17 patients, median [quartile 1-quartile
3]) were significantly higher than median NED values of
patients without epiglottic collapse (0.41 [0.19-0.52], 12 of
17 patients, median [quartile 1-quartile 3]; P ¼ .037).
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Secondary Outcome

Individual breath-by-breath analysis was performed
next, corrected for within-subject correlation. A total of
569 breaths associated with complete collapse were
assessed while visualizing the retroglossal area (15 of 17
patients). Following Bonferroni correction for multiple
comparisons (P ¼ .05/4 ¼ .0125), breaths with epiglottic
collapse showed significantly (P ¼ .0120; b � SE, 0.10 �
0.04) higher NED (0.66 [0.60-0.71], 92 breaths, 7 of 15
patients) than breaths without epiglottic collapse
(0.49 [0.47-0.52], 477 breaths, 15 of 15 patients) (Fig 2).
No significant differences in NED were found for the
oropharynx, tongue base, or pharyngeal lateral walls.

Discussion
This feasibility study was, to the authors’ best knowledge,
the first study to simultaneously measure airflow and
polysomnography parameters during DISE. The protocol
could be fine-tuned to allow reliable pneumotachographic
and polysomnographic measurements synchronized with
DISE in a fast-paced setting with high patient turnover.
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Figure 2 – Negative effort dependence
(NED) and flow traces for all breaths
with complete collapse visualized at the
retroglossal area (oropharyngeal, tongue
base, pharyngeal lateral walls, and
epiglottic collapse). Upper: median (pink
trace) and interquartile ranges (dark
pink) of individual breaths (light pink)
associated with the different collapse sites
visible at the retroglossal area. Lower:
boxplots showing NED for breaths asso-
ciated with the different collapse sites.
Breaths with complete (> 90%) epiglottic
collapse were associated with a signifi-
cantly higher NED compared with
breaths associated with one of the other
three collapse sites visualized at the ret-
roglossal area, as reflected in the higher
flow peak during inspiration.
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Furthermore, it was possible to calculate NED from
unscored polysomnographic data captured by the Alice
LDx6 system.8

The main finding of this preliminary dataset is that
patients with epiglottic collapse had significantly higher
NED values than patients without epiglottic collapse.
Furthermore, on a breath-by-breath level, breaths with
epiglottic collapse produced significantly higher NED
than breaths with complete oropharyngeal, tongue base,
or pharyngeal lateral wall collapse. These findings are
highly relevant because epiglottic collapse during DISE
is associated with negative response to UA surgery,
mandibular advancement device treatment, and CPAP.9

Our findings confirm the results obtained with NSE
showing that inspiratory discontinuity, quantified as
high NED, characterizes epiglottic collapse.4,10

The distinction between tongue base and other collapse
types shown with NSE4 was absent in the current dataset.
It is important to note, however, the difference in tongue
base collapse scoring between the NSE studies and the
current DISE study. Tongue-related obstruction during
NSE is defined as UA crowding due to a fixed posteriorly
located tongue base (thereby omitting any collapse
secondary to upstream palatal collapse), whereas tongue
base collapse during DISE is defined in analogy to other
collapse types (ie, showing a more phasic pattern).

The current study has several potential limitations.
First, the reproducibility of our findings may be limited
because all endoscopic observations were made by one
reviewer. Second, a wide distribution of NED was
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observed for every collapse site, reducing the overall
accuracy to predict epiglottic collapse during DISE.
This variability might be due to the limited sample size.
Third, the DISE procedure, including drug
administration and endoscope insertion, might have
influenced the flow pattern. Previous research showed
no difference in NED or UA collapsibility with and
without a pharyngeal catheter.4,11 Nevertheless, the
endoscope diameter is larger, potentially increasing its
impact. Furthermore, the agents used to induce sleep
and reduce saliva production might have influenced
collapse site and severity.12 However, research has
shown an acceptable concordance between DISE and
NSE findings.13,14 Furthermore, because clinical
decision-making is often based on DISE findings,
prediction of DISE collapse patterns is specifically of
great interest. Fourth, our results might be influenced
by the analytical approach. Because most patients with
OSA experience multilevel collapse,15 overall median
NED values might be biased by different collapse levels.
However, the authors argue that this approach allows
for a clinically more relevant result considering patient
assessment and future therapeutic response prediction.
This potential limitation was partially tackled by the
secondary individual breath-by-breath analysis in
which the primary collapse site was detected and
analyzed for each individual breath. However, due to
the inherent limitation of endoscopy, not all collapse
sites could be visualized simultaneously. To ascertain
presence or absence of collapse, this analysis was only
performed for data captured at the retroglossal level.
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Because this method was not able to assess breaths
captured at the retropalatal level, future research,
including breaths without or with partial palatal
collapse, is needed to allow comparisons between
different types of palatal collapse. Finally, another
limitation is the overall low (mean, 13.0 events/h) AHI.
However, because DISE was uniquely performed in the
supine position, the supine AHI (mean, 28.7 events/h)
is presumably most relevant. Future, large prospective
studies are needed using this set-up to confirm the
current findings. These studies should also focus on
other airflow features previously associated with UA
collapse sites.3,10

Conclusions
This study showed the feasibility and potential of
concomitant flow measurements during DISE. Our
results confirmed the presence of elevated NED in
epiglottic collapse.3 This novel methodology holds
promise for generating large datasets from which to
develop new flow shape features. These preliminary
findings also emphasize the need for comparative
research in flow shape analysis between DISE and
NSE.
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