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Abstract

The mammalian brain is composed of densely connected and interacting regions, which form structural and functional

networks. An improved understanding of the structure–function relation is crucial to understand the structural under-

pinnings of brain function and brain plasticity after injury. It is currently unclear how functional connectivity strength

relates to structural connectivity strength. We obtained an overview of recent papers that report on correspondences

between quantitative functional and structural connectivity measures in the mammalian brain. We included net-

work studies in which functional connectivity was measured with resting-state fMRI, and structural connectivity with

either diffusion-weighted MRI or neuronal tract tracers. Twenty-seven of the 28 included studies showed a positive

structure–function relationship. Large inter-study variations were found comparing functional connectivity strength with

either quantitative diffusion-based (correlation coefficient (r) ranges: 0.18–0.82) or neuronal tracer-based structural

connectivity measures (r¼ 0.24–0.74). Two functional datasets demonstrated lower structure–function correlations

with neuronal tracer-based (r¼ 0.22 and r¼ 0.30) than with diffusion-based measures (r¼ 0.49 and r¼ 0.65).

The robust positive quantitative structure–function relationship supports the hypothesis that structural connectivity

provides the hardware from which functional connectivity emerges. However, methodological differences between the

included studies complicate the comparison across studies, which emphasize the need for validation and standardization

in brain structure–function studies.
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Introduction

The brain is a complex system composed of connected
and interacting regions at the micro-, meso- and macro-
level. Network science offers unique opportunities to
assess the healthy and diseased brain while taking this
complexity into account. In this field, the brain is
regarded as a structural and functional network in
which single voxels, or multiple voxels combined into
regions, serve as the network nodes, and structural
and functional connectivity represent the edges.1

These edges might be either binary (i.e. present or
absent) or weighted (i.e. indication of connectivity
strength). The structural and functional organization
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of brain networks can be studied in a unique transla-
tional way in animals and humans using non-invasive
magnetic resonance imaging (MRI) techniques.2

Today, the standard non-invasive neuroimaging
techniques to characterize whole-brain functional
and structural networks in vivo are resting-state func-
tional MRI (rs-fMRI) and diffusion-weighted
MRI (DW-MRI)-based tractography, respectively.
Although many studies have characterized features of
functional and structural networks in isolation, there is
limited knowledge on their mutual relationship.

Over the years, rs-fMRI has been increasingly used
to assess functional connectivity of the brain.
Spontaneous low-frequency fluctuations in the blood
oxygenation level-dependent (BOLD) signal, reflective
of neuronal signaling, have been measured in humans
and animals.3 Brain regions with patterns of correlated
fluctuations in the time-domain are considered func-
tionally connected.4 The correlation coefficient between
BOLD signal fluctuations in different brain regions
over time offers a quantitative measure of the
strength of a functional connection. Positive correlation
coefficients reflect synchronization of the underlying
neuronal signals. Based on clusters of functionally
connected network regions, consistent resting-state net-
works have been identified,5,6 such as the default
mode network.7 The default mode network is a well-
characterized and frequently investigated resting-state
network in humans, consisting of regions in the parietal
and prefrontal cortex,8 of which an equivalent network
has been demonstrated in non-human primates9 and
rodents.10,11 Disturbances in this network are linked
to multiple brain disorders, including Alzheimer’s
disease, autism, schizophrenia, depression, chronic
pain and others.12 Interestingly, regions within the
default mode network which are functionally firmly
connected, do not always have strong direct structural
connections.13,14

Functional connectivity reflects neuronal synchron-
ization between brain regions, which presumably
requires some form of structural connectivity.
Structural connectivity can be measured non-invasively
with tractography from post-processing of DW-MRI
data. DW-MRI is sensitized to the random diffusion
of water molecules in tissue.15 Tractography recon-
structs the white matter fiber geometry across the
brain by propagating streamlines based on the water
diffusion preference.16 The generated streamlines
between two areas of interest can be considered as
diffusion-based structural connectivity. Tractography-
based (e.g. number of connecting streamlines) or
integrity-related (e.g. fractional anisotropy (FA) across
connecting streamlines) measures can provide quantita-
tive information on diffusion-based structural connect-
ivity strength. The main assumption of DW-MRI and

subsequent tractography is that the directionality of
water diffusion reflects the underlying organization of
white matter tracts.17 Hence, DW-MRI is an indirect
method to infer white matter tracts of the brain from
tissue water diffusion, often with suboptimal anatom-
ical accuracy.18,19 In animals, structural connectivity
can also be measured invasively with the use of neur-
onal tracers.20 Several anterograde and retrograde tra-
cers are available, which are taken up by neurons
and axonally transported, allowing assessment of the
location, directionality and targets of neuronal projec-
tions.21,22 Structural connections measured with neur-
onal tracers reflect axonal projections between the
injection area and the connected regions. The amount
of tracer detected in the connected regions provides a
quantitative measure of neuronal tracer-based struc-
tural connectivity strength.

Recently, rs-fMRI and DW-MRI have been com-
bined to investigate the relationship between functional
and structural connectivity, to determine if and how the
structural network constrains, maintains and regulates
the functional network.23 It remains unclear how a rela-
tively stable structural network supports fast dynamic
functional connectivity, and how functional plasticity
influences the structural network on a slower
time-scale. An improved understanding of this struc-
ture–function relationship in the healthy brain is crucial
to understand the structural underpinnings of abnor-
mal functional connectivity. Abnormal functional
connectivity is manifested in many neurological and
psychiatric disorders and also plays a critical role in
the brain’s capacity to recover from injury. Abnormal
neuronal functioning may be the result of damage to
specific functional areas, or damage to the structural
connections between functional areas. Combined
assessment of structural and functional connectivity
measures and the structure–function correlation may
thus provide unique insights into the complex neuro-
biology of brain disorders. Indeed, measurement of
the structure–function relationship has already shown
added value, compared to measurement of only struc-
tural or functional connectivity, in relating MRI
findings to disease outcome in idiopathic generalized
epilepsy patients.24 In addition, structure–function
coupling may be a potential novel biomarker in
cerebrovascular disorders, since the structure–function
coupling has been shown to relate to functional motor
outcome in stroke patients.25 Structural connectivity
shapes functional connectivity if the functional data
are characterized within long periods of relative rest
(order of minutes) without a specific activating task
or stimulation.26 The structure–function relationship
in brain networks has mostly been investigated qualita-
tively, e.g. structural connection presence or absence
in comparison to functional connection presence or
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absence.23 These studies have shown that functionally
connected network regions are essentially shaped by
underlying structural connectivity, although functional
connections were also found to be present between
regions without direct structural connections.13,27,28

In addition, removing the corpus callosum in monkeys
reduced interhemispheric functional connectivity, but
not when other smaller interhemispheric structural
connections were still intact.29 This indicates the
importance of indirect structural connections (e.g. via
subcortical structures) for interhemispheric functional
connectivity. Although the presence of a functional
connection may depend on the presence of a direct or
indirect structural connection, the strength of a func-
tional connection does not need to be directly related to
the strength of those structural connections, but may
also depend on mental brain state.30,31 However, quan-
titative structure–function analyses that incorporate
connectivity strengths have received much less atten-
tion, possibly because inferring structural connectivity
strength from diffusion-based tracts is not as straight-
forward as calculating functional connectivity strength.
Nevertheless, these quantitative structure–function
analyses in whole-brain networks enable direct
comparison between the strength of functional and
structural connections and may provide additional
information about the structure–function relationship,
which is the focus of the current review.

A few studies that applied abovementioned quanti-
tative approach, have demonstrated partial positive
correspondence between functional connectivity and
diffusion-based structural measures.28,32 A positive
structure–function relation in such a quantitative
approach means that stronger structural connections
coincide with stronger functional connections. So
there is a high topological correspondence between
the structural and functional network. In comparison,
a negative structure–function relation would indicate
strong structural but weak functional connectivity or
the opposite (i.e. low topological correspondence).
Although strong anatomical and weak functional con-
nectivity between regions almost never co-exist, weak
anatomical combined with strong functional connectiv-
ity is present in the brain.33 Similar positive corres-
pondences have been reported in the comparison of
functional networks with neuronal tracer networks.11,34

However, the described correlation between functional
and structural connectivity strength varies substantially
over studies. Whether this is due to differences in meth-
odology or differences in emphasis on distinct levels of
brain organization (across species), is unknown.
Whereas DW-MRI measures structural connections at
the macroscopic level of larger white matter bundles,
neuronal tracers characterize structural connectivity at
the mesoscopic level.18,35 Therefore, to clarify the

variation in structure–function relationships, it is
important to also understand the correlation between
diffusion-based and neuronal tracer-based structural
connectivity strength.

In this paper, we systematically reviewed the litera-
ture to obtain an overview of publications that report
on quantitative correlations between functional and
structural network connectivity strength in the mam-
malian brain. We included network studies in which
functional connectivity strength was measured with
rs-fMRI, and structural connectivity strength was mea-
sured with either DW-MRI or with neuronal tract tra-
cers. In this systematic review, we addressed the
following questions at the network level: (I) To what
extent is functional connectivity strength correlated to
diffusion-based structural connectivity strength? (II)
To what extent is functional connectivity strength cor-
related to neuronal tracer-based structural connectivity
strength? And (III) to what extent is diffusion-based
connectivity strength correlated with neuronal tracer-
based connectivity strength?

Materials and methods

Information source and searches

We performed our literature search in the database
PubMed (NCBI), using three separate queries for the
three comparisons of interest. First, we searched for
publications on the quantitative relationship between
functional connectivity strength and DW-MRI-based
structural connectivity measures. Second, we identified
all publications on the quantitative relationship
between functional connectivity strength and neuronal
tracer-based structural measures. Third, we mapped
publications on the quantitative relationship between
DW-MRI-based and neuronal tracer-based structural
measures. Our PubMed search queries were as follows:

Search 1: (connectome[tiab] OR (‘‘structural connectiv-

ity’’[tiab] OR ‘‘anatomical connectivity’’[tiab] AND

‘‘functional connectivity’’[tiab])) AND (‘‘Diffusion

Magnetic Resonance Imaging’’[Mesh] OR DTI[tiab]

OR ‘‘Diffusion tensor imaging’’[tiab] OR tractogra-

phy[tiab] OR streamlines[tiab]) AND (‘‘resting-state’’[-

tiab] OR fMRI[tiab] OR ‘‘functional MRI’’[tiab]).

Search 2: (connectome[tiab] OR (‘‘structural connectiv-

ity’’[tiab] OR ‘‘anatomical connectivity’’[tiab] AND

‘‘functional connectivity’’[tiab])) AND (histology[tiab]

OR tracer[tiab] OR ‘‘axonal tract tracing’’[tiab] OR

‘‘anatomical projections’’[tiab] OR ‘‘anatomical con-

nections’’[tiab] OR tracing[tiab] OR ‘‘neuronal tra-

cer’’[tiab]) AND (‘‘resting-state’’[tiab] OR fMRI[tiab]

OR ‘‘functional MRI’’[tiab]).

Straathof et al. 191



Search 3: (connectome[tiab] OR ‘‘brain network’’[tiab]

OR ‘‘whole brain’’[tiab] OR ‘‘anatomical connec-

tions’’[tiab]) AND (‘‘Diffusion Magnetic Resonance

Imaging’’[Mesh] OR DTI[tiab] OR ‘‘Diffusion tensor

imaging’’[tiab] OR tractography[tiab] OR stream-

lines[tiab]) AND (histology[tiab] OR tracer[tiab] OR

‘‘axonal tract tracing’’[tiab] OR ‘‘anatomical projec-

tions’’[tiab] OR tracing[tiab] OR ‘‘neuronal tracer’’[tiab]).

The search date was July 24, 2018. Additional studies
that could be included were identified in reference lists
of the included full-text articles found in the initial
search.

Inclusion criteria

We only included studies that measured a quantitative
relationship between functional and structural connect-
ivity in brain networks, i.e. correlating the strength of
a functional connection to a quantitative structural
connectivity measure, and did not include studies in
which this relationship was measured qualitatively.
In addition, we included studies correlating diffusion-
based and neuronal tracer-based structural connectivity
strengths.

Studies describing connectivity between single brain
region pairs were not included in this systematic review.
We also did not include studies that characterized func-
tional networks with electroencephalography or mag-
neto encephalography. These acquisitions have high
temporal resolution but lack sufficient spatial reso-
lution to accurately compare functional connectivity
strengths with structural connectivity strengths.

Studies meeting the following criteria were included:

– Study population: Mammals, healthy human subjects
or animals, of any age.

– Study design: Functional connectivity measured with
rs-fMRI, and structural connectivity measured with
DW-MRI and/or neuronal tract tracing.

– Brain network resolution: The structure–function
relationship assessed at a regional or voxel level in
the whole brain or in the default mode network
specifically.

– Outcome: Correlations between quantitative func-
tional structural connectivity measures.

Results and discussion

Study selection

The flow diagrams for the study selection for the three
different comparisons are shown in Figure 1. In total, 29
studies met our inclusion criteria. First, for the relation-
ship between resting-state functional connectivity and

diffusion-based structural connectivity, we subdivided
the articles mapping whole-brain networks
(n¼ 16)8,28,32,36–48, and the articles mapping the default
mode network (n¼ 4).49–52 Second, the relationship
between resting-state functional connectivity and neur-
onal tracer-based structural connectivity was investi-
gated in seven studies.11,34,46,53–56 We excluded one
study54 because the same dataset was used in another
included study,34 resulting in six included studies. Third,
the relationship between diffusion-based and neuronal
tracer-based structural connectivity strength was
described in four studies.46,57–59 One of the included
studies investigated all three comparisons.46 Therefore,
the total amount of papers included in this review is 28.

Because of the relative large heterogeneity between
study methodology and outcomes, no meta-analyses
were performed, because aggregated summary results
would consequently be biased due to this heterogeneity.

To what extent is functional connectivity strength
correlated to diffusion-based structural connectivity
strength?

An overview of the extracted data used for the com-
parison between resting-state functional connectivity
and diffusion-based structural connectivity is shown
for the whole brain (Table 1). The data for the default
mode network are separately shown in Table 2. At the
whole-brain level (Figure 2), all studies reported a posi-
tive correlation between functional connectivity
strength and diffusion-based structural connectivity
strength. This supports the hypothesis that structural
network connectivity, at least partially, shapes func-
tional network connectivity.23,60 We found a similar
positive structure–function relationship in the default
mode network (Figure 3). Changes in the structure–
function relationship in the default mode network
have been associated with Alzheimer’s disease42 and
schizophrenia,49 stressing the importance of assessing
this relationship at different levels in the brain to
improve our understanding of the pathogenesis of
brain disorders.

However, as seen in Figures 2 and 3, the reported
correlation coefficient varies substantially between stu-
dies. This large variation may be explained by several
methodological differences between studies.

First, the included studies used different processing
pipelines to quantitatively determine functional and
structural connectivity measures. Studies differed in
the steps performed within the processing pipeline of
resting-state fMRI data, which can influence the calcu-
lated correlation coefficient, such as global signal
regression61 and different nuisance regression schemes
to remove confounds from the BOLD signal.62 All
included studies measured functional connectivity
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strength as the correlation of low-frequency BOLD
fluctuations. Most studies applied a Fisher’s Z trans-
formation to the correlation coefficient that is necessary
for statistical analyses; some studies used the non-trans-
formed correlation coefficient as functional connectiv-
ity strength. Diffusion-based structural connectivity can
be determined by applying tractography algorithms to
reconstruct white matter tracts in the brain. There are
different algorithms to map diffusion-based structural
connectivity as well as multiple parameters that affect
the mapping of structural connections. Examples are
the choice of diffusion model at the voxel level (e.g.
tensor or higher-order), local or global tract modelling,
deterministic or probabilistic tractography and the
decision regarding which quantitative structural con-
nectivity measure to use (e.g. number of streamlines
or fractional anisotropy (FA) over streamlines).
Different tractography algorithms and parameter set-
tings will likely lead to different structural networks.63

This may have influenced the calculated structure–func-
tion relationships. Most included studies used a stream-
line-based measure of structural connectivity strength,
such as the connection density or streamline count. A

minority of studies used measures of structural integrity
(e.g. FA and even mean diffusivity (MD) over stream-
lines) as quantitative measures related to the features
(i.e. axonal density or myelination of tracts) of anatom-
ical substrates underlying functional connectivity.50–52

Inferring quantitative connectivity strength from these
integrity measures, however, remains controversial.64

The FA is highly variable across the brain and may
be low in voxels containing complex fiber orientations
such as crossing and bending fibers. Furthermore, the
FA, and other parameters such as MD, axial diffusivity
and radial diffusivity, has shown to be confounded by
the underlying white matter architecture and partial
volume effects, all independent of the strength of
these connections.65,66

Second, the spatial and angular resolution of the
acquired diffusion-weighted data and temporal reso-
lution of the resting-state fMRI data may influence its
ability to resolve structural and functional connectivity,
respectively. One study included in this review
determined the structure–function relationship with
state-of-the-art, high angular, spatial and temporal
resolution MR data, as well with a lower resolution

Additional
articles by
reference
screening (n=1)

Potentially relevant articles
in PubMed (n=290)

Excluded (n=267)
- No structure-function

relation
- No quantitative results
- No structure-function

relation in controls
- Not whole-brain, not

default mode network
- Review
- No emperical data but 

modeling

Abstract screening (n=290)

Full text screening (n=23)

Included in systematic 
review (n=20)

Excluded (n=4)
- No structure-function

relation
- Structure-function

relationship in single 
connections

Whole-brain (n=16) Default mode network (n=4)

Potentially relevant articles
in PubMed (n=46)

Excluded (n=38)
- No histological

data
- No quantitative

results
- No healthy

population
- Not whole-brain

Abstract screening (n=46)

Full text screening (n=8)

Included in systematic
review (n=6)

Excluded (n=2)
- Replication of 
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level

Potentially relevant articles
in PubMed (n=64)

Excluded (n=60)
- No comparison

between weights
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- Not whole-brain
- Review

Abstract screening (n=64)

Full text screening (n=4)

Included in systematic
review  (n=4)

Functional connectivity vs. Diffusion-
based structural connectivity

Functional connectivity vs. Neuronal
tracer-based structural connectivity

Diffusion-based vs. Neuronal tracer-
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Figure 1. Flow chart showing the inclusion of studies evaluated for the three parts of our systematic review. Separate flow-chats are

given for studies investigating the quantitative correlation between resting-state functional connectivity and diffusion-based structural

connectivity measures, resting-state functional connectivity and neuronal tracer-based structural connectivity measures and diffusion-

based and neuronal tracer-based structural connectivity measures.
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dataset.46 Higher structure–function correspondence
was found with higher resolution data. The authors
attribute this to an increased ability to resolve complex
fiber architectures in diffusion-weighted data due to
higher spatial and angular resolution, and a more tem-
porally precise analysis of functional connectivity
strength due to higher temporal resolution. These results
suggest that different temporal and spatial resolutions
across MR acquisitions in included studies may have
influenced the reported structure–function correlation.

Third, at the analysis level, there were differences in
individual versus group level comparisons and in voxel
versus regional level comparisons. Group and regional

level comparisons resulted in higher structure–function
relationships compared to individual and voxel level
analyses, respectively. Group level analysis in which
time-series and diffusion-weighted tract reconstructions
are averaged across individuals or animals reduces the
influence of inter-subject variability. Furthermore,
averaging voxel data across larger regions boosts the
connectivities’ signal-to-noise ratio. Reduced inter-sub-
ject variability and increased signal-to-noise might
reduce the variation in correlation values. We have
not explicitly tested this as the number of included stu-
dies was too small to determine the effect of covariates
accurately.
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Correlation value
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Figure 2. Reported correlations between quantitative resting-state functional connectivity and diffusion-based structural connect-

ivity measures at the whole-brain level. Network comparisons were done at single voxel level or with regions of interest, where

inclusion of >100 regions was considered as high-resolution and <100 regions as low resolution. The group correlation values were

averaged over groups, whereas the individual correlation values were derived from single subjects. The publication labels are extended

with the corresponding numbers in Table 1. Error bars represent the range of individual subjects,8,32,41,43 standard deviation39,40,43,47

or unknown variation measures.8,28,32,36–48
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Fourth, for the regional analyses, the choice of atlas
parcellation and region inclusion could influence the
structure–function correlation value. Different atlases
with different parcellation schemesa are available to
divide the brain into regions, which can be used to
define inter-regional structural and functional connect-
ivity. The studies included in this review used a variety
of atlases, which resulted in variable numbers of brain
regions. Some studies included both a high and low-
resolution parcellation (resulting in more and less
included regions), and demonstrated higher structure–
function relationships using a low-resolution parcella-
tion.28,37,49 The parcellation scheme chosen may influ-
ence quantitative measures of structural and functional
connectivity67 and possibly also their mutual relation-
ship. A parcellation scheme may include only cortical
structures, or may include both cortical and subcortical
structures. Structure–function correlations have mostly
been determined in cortical regions to exclude indirect
connections via subcortical structures. Despite the sug-
gestion given in a previous review to include subcortical
structures to obtain a more complete and realistic pic-
ture of the brain’s structure–function relationship,23

only a few recent studies did so.38,39,42,44,51 The results
of one study indicate that the structure–function correl-
ation may be slightly lower when including both cortical
and subcortical regions (r¼ 0.19) compared to including
cortical regions only (r¼ 0.25).39 This lower correlation
value might be caused by difficulties measuring signals
from deeper brain structures at standard field strengths
with surface coils68 or by the highly specialized organ-
ization of subcortical structures with multiple parts con-
necting to various cortical regions.69

Lastly, the relatively high variance between studies
may also be related to the dynamic nature of resting-

state functional connectivity. All studies used station-
ary approaches to calculate functional connectivity,
while functional networks can be considered as
dynamic entities that change their topology on both
long and short time-scales. One included study used a
sliding window approach to determine dynamic func-
tional connectivity, but used the median value (i.e. a
stationary measure) to correlate functional connectivity
to diffusion-based structural connectivity.45 Directions
and strengths of functional connections can change
within seconds to minutes during the acquisition of
resting-state fMRI scans.70 There is ample evidence
that these network dynamics cannot be attributed to
noise: they are intrinsic brain properties with a neural
origin.71 Recently, varying correlations between struc-
tural connectivity and dynamic functional connectivity
have been demonstrated in macaques, with higher cor-
relations using longer time windows.54 How the rela-
tively stable structural network would drive dynamics
in functional connectivity remains an unanswered
question.26

To what extent is functional connectivity strength
correlated to neuronal tracer-based structural con-
nectivity strength?

A smaller number of studies investigated the quantita-
tive relationship between functional connectivity and
neuronal tracer-based structural connectivity. An over-
view of all extracted data from the included studies is
given in Table 3. Included studies were performed in
humans,46,53 macaques,34,53,55 mice11 and rats.56 The
two studies on human subjects compared resting-state
functional connectivity strength in humans with neur-
onal tracer-based structural connectivity strength in

Tsang (2017) 4
Tsang (2017) 3
Tsang (2017) 2
Tsang (2017) 1

Hubner (2017)
Khalsa (2014) 2
Khalsa (2014) 1

Sun (2017) 2
Sun (2017) 1

−0.25 0.00 0.25 0.50 0.75 1.00
Correlation value

Resolution High Low

Species Human Mice

Figure 3. Reported correlations between quantitative resting-state functional connectivity and diffusion-based structural connect-

ivity measures in the default mode network. Studies were performed at two resolution levels, in which inclusion of >100 regions was

considered as high-resolution and <100 regions as low resolution. The publication labels are extended with the corresponding

numbers in Table 2. Error bars represent the standard error of the mean.49–52
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macaques.46,53 All studies report a positive correlation
between functional connectivity strength and neuronal
tracer-based structural connectivity strength (Figure 4).
The reported structure–function correlation coefficients
between functional and neuronal tracer-based struc-
tural connectivity strength were highly variable between
studies. The range of reported values is comparable to
the reported correlation values between functional and
diffusion-based structural connectivity strength.

The variation in correlation values between func-
tional connectivity and neuronal tracer-based structural
connectivity may be caused by similar methodological
differences between studies as described above for the
correlation between functional and diffusion-based
structural connectivity strength. Besides the already
described methodological differences, there are some
additional factors that may have influenced the rela-
tionship between functional and neuronal tracer-based
structural connectivity strength.

First, since many of the studies comparing func-
tional connectivity with neuronal tracer-based struc-
tural connectivity are performed in animals, the use
of anesthesia during resting-state fMRI acquisition
may have influenced the reported structure–function
relationship. Functional connectivity varies under dif-
ferent anesthesia protocols.72 The studies included
in this review used different anesthesia protocols
(Table 3), which may have attributed to the variation
in the relationship between functional and neuronal
tracer-based structural connectivity.

Second, the relationship between functional and
neuronal-tracer based structural connectivity is deter-
mined in different species, including macaques, mice
and rats. A relatively low structure–function correl-
ation was found in mice, which may be caused by the
difficulties with performing resting-state fMRI acquisi-
tions in small rodents,73 by smaller voxel sizes which
may introduce more variation, or by differences in
brain organization across species. Although the maca-
que and human brain have comparable structure–func-
tion relationships,53 the comparison between the rodent
and human brain is less clear. Larger sized brains (such
as the human or macaque brain) contain higher per-
centages of white matter compared to smaller rodent
brains,74 which may influence structural network con-
structions. On the other hand, functional networks in
the rodent and human brain are organized in a similar
way.75 Recently, interest has been raised in comparing
organizational and topological aspects of brain net-
works across different species, named comparative con-
nectomics.76 The authors of this review propose
the idea that brains of different species share common
features, but also have subtle variations that enable
species-specific behavior. More structure–function
research across different species is needed to identify

whether inter-species variability in structure–function
correlations is due to species-specific organization of
structural and functional networks or due to methodo-
logical differences.

Lastly, neuronal tracer-based structural connectivity
strength is usually taken from an available database,
like the CoComac database77 or the Allen Mouse
Brain Connectivity Atlas (http://connectivity.brain-
map.org).78 Neuronal tracer-based structural connect-
ivity strength can be determined by quantifying the
fluorescence pattern and intensity in the projection
areas of the region of interest. However, a recent
study showed that the amount of tracer injected in
the region of interest influences the relationship
between functional and neuronal tracer-based struc-
tural connectivity strength.79 This study suggests that
neuronal tracer-based structural connectivity strength
should be corrected for the amount of tracer injected,
a factor that is often neglected.

To what extent is diffusion-based structural connec-
tivity strength correlated to neuronal tracer-based
structural connectivity strength?

The correlation values between functional connectivity
and structural connectivity measured with diffusion-
weighted imaging or neuronal tracers overlap, despite
clear methodological differences between these tech-
niques measuring structural connectivity. Diffusion-
based tractography maps structural connectivity prob-
abilistically at the macro-scale level and does not pro-
vide directional information. Although it has been
suggested that tract reconstructions include polysynap-
tic connections, its macroscopic resolution does not
allow information about these microstructural proper-
ties.35 In comparison, neuronal tracers map structural
connectivity deterministically at both the micro- and
mesoscale level of axonal projections. It provides direc-
tional information through anterograde and retrograde
labelling and can distinguish monosynaptic and poly-
synaptic connections. Therefore, we also investigated
the relationship between diffusion-based and neuronal
tracer-based structural connectivity. The extracted data
from the included studies on this comparison are given
in Table 4. These studies were performed in maca-
ques,58,59 a vervet monkey58 and mice.57 One study
compared diffusion-based structural connectivity
strength in humans with neuronal tracer-based struc-
tural connectivity strength in macaques.46

The included studies report a moderate cor-
respondence between diffusion-based and neuronal
tracer-based structural connectivity strength (Figure
5). Although diffusion-weighted imaging is currently
the only way to determine white matter structural con-
nectivity in vivo, it does so in an indirect way by
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inferring the direction and trajectory of white matter
tracts from the diffusion of water.16,80 Recent research
has demonstrated that these tractography-based struc-
tural networks do not always reflect the axonal projec-
tions between regions measured with neuronal
tracers,18 and are especially limited in reconstructing
long-distance connections.81 In line with this, structural
networks based on diffusion-tractography are affected
by many false positives,19 possibly because of the lim-
ited ability to resolve crossing fibers at sub-voxel level.
In addition, the applied tractography algorithm and
parameter settings affect the reconstructed structural
networks,63 which may also influence the correspond-
ence to neuronal tracer-based structural networks. On
the other hand, the correspondence between diffusion-
based and neuronal tracer-based tracts (and networks)
may be affected by histological procedures as well (e.g.
variations in site of tracer injection, the used tracing
method, processing and registration of images, and
regions of interest). However, neuronal-tracers are
still regarded as the ‘gold standard’ way to map ana-
tomical connections. Several studies have tried to iden-
tify the tractography method that best matches the

‘gold standard’ neuronal tracer-based structural net-
work,82 as well as to improve tractography methods,
e.g. by using machine-learning techniques,83 imposing
anatomical priors and constraints84,85 or applying fil-
tering methods.86–88 Higher resolution diffusion-
weighted data, such as the data acquired in the
Human Connectome project,89 may help to resolve
more complex fiber configurations (e.g. crossing, bend-
ing or fanning) and to determine a more accurate diffu-
sion-based structural network.

New insights and implications

We report a robust positive correlation between func-
tional connectivity and structural connectivity, which
supports the hypothesis that structural network connect-
ivity, at least partially, shapes functional network con-
nectivity,23,60 also on a quantitative level. We also
showed that the reported structure–function correlation
is highly variable across studies, and identified many
methodological differences between studies that may
have contributed to this large variation. This methodo-
logical heterogeneity complicated the comparison

Diáz Parra (2017) 4
Diáz Parra (2017) 3
Diáz Parra (2017) 2
Diáz Parra (2017) 1

Reid (2016) 2
Reid (2016) 1

Grayson (2016) 4
Grayson (2016) 3
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Figure 4. Reported correlations between quantitative resting-state functional connectivity and neuronal tracer-based structural

connectivity measures. Studies were performed at two resolution levels, in which inclusion of >100 regions was considered as

high-resolution and <100 regions as low resolution. Studies involved four different species. The publication labels are extended

with the corresponding numbers in Table 3. Error bars represent the 95% confidence interval.11,34,46,53,55,56
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between studies, and stresses the need for validation and
standardization in this research field. To enable compari-
sons across studies, a consensus should be reached about
the methodological pipeline (e.g. (pre-)processing steps)
as well as on how to determine nodes, edges and strength
of edges in structural and functional networks. We rec-
ommend future studies to use a Fisher’s Z-transformed
correlation coefficient as a measure of functional connect-
ivity strength to enable comparison across studies, and to
include subcortical structures to completely identify the
whole brain structure–function relationship. In addition,
when determining structural networks, future studies
should use a diffusion-based tractography method that
best fits with the acquired data and most accurately
reflects neuronal tracer data.

Nevertheless, despite all improvement made over the
years, diffusion-based tractography remains an indirect
way of inferring white matter structural connectivity in
the brain, which has shown to generate considerable
amounts of false positive and false negative connec-
tions.18,19,57,82,90 Furthermore, diffusion-based tracto-
graphy has limited ability to solve intra-cortical
connections because of the relatively low anisotropy,
thereby biasing results towards white matter connec-
tions. The moderate correlation between diffusion-

based and neuronal tracer-based structural connectivity
shows that the diffusion-based structural network does
not accurately reflect all axonal connections. To evalu-
ate the differences between both techniques in relation
to functional connectivity, we also included recent stu-
dies that correlated functional connectivity strength
with structural connectivity strength measured in a
more direct way with neuronal tract tracers in animals.
These studies showed a comparable positive structure–
function relationship, which overlapped with the range
of correlation values between functional connectivity
and diffusion-based structural connectivity strength.
However, one included study compared two human
functional datasets with human diffusion-based and
macaque neuronal tracer-based structural connectiv-
ity,46 and demonstrated lower correlation values
with neuronal tracer-based structural connectivity
than with diffusion-based structural connectivity.
Although humans and macaques show comparable
structure–function correlations,53 this lower correlation
value of human functional connectivity strength with
macaque neuronal tracer-based connectivity strength
can also be explained by differences between species.
Therefore, whether the structure–function relationship
differs across distinct structural connectivity

Reid (2016) 2

Reid (2016) 1

van den Heuvel (2015) 4

van den Heuvel (2015) 3

van den Heuvel (2015) 2

van den Heuvel (2015) 1
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Figure 5. Reported correlations between diffusion-based and neuronal tracer-based structural connectivity strength. Studies were

performed at two resolution levels, in which inclusion of >100 regions was considered as high-resolution and <100 regions as low

resolution. Studies involved four different species. The publication labels are extended with the corresponding numbers in Table 4.46,57–59

204 Journal of Cerebral Blood Flow & Metabolism 39(2)



reconstruction techniques remains an open question.
Investigating functional, diffusion- and neuronal
tracer-based structural connectivity in the same species
would be of great interest for further exploration of the
structure–function relationship on different hierarchical
levels.

Future prospects

Although our review shows that there is a robust posi-
tive structure–function relationship in the brain, this
relationship is complex in nature. Strong inter-regional
functional connectivity co-exists with weak direct struc-
tural connectivity between the same regions. This sup-
ports the hypothesis that indirect structural connections
also play an important role in the existence of func-
tional connectivity.33 However, these indirect connec-
tions are often not taken into account. Future studies
could consider indirect connections in at least two dif-
ferent ways. First, based on neuronal tracer data that
provide directional information on the underlying
axonal projections. By using this directional informa-
tion, it has been shown that functional connectivity
without direct structural connections is generated by
network-level properties rather than by signals flowing
through a third area.91 The metric source information
provides a quantitative measure for structural connect-
ivity that is corrected for pathways that are branching
off the shortest pathway between two regions and form-
ing indirect connections.48 Second, another way to
tackle the influence of indirect connections is by infer-
ring directionality of functional connections from rest-
ing-state fMRI data itself. This could be done with
network methods based on effective connectivity.92

Calculating effective connectivity typically requires an
a priori specification of network nodes and expected
edges. More liberal methods are the conditional
Granger causality, dynamic causal modelling and the
transfer entropy methods.93–95 For example, with con-
ditional Granger causality, only direct connections are
captured (e.g. region A directly connecting to region C),
and indirect connections (region A connecting to region
B, which connects to region C) are excluded by means
of regression with signals in other network regions (in
this example the signal in region B). Effective connect-
ivity strengths affect the quantification of structure–
function relationship in the brain.96 We have not
included effective connectivity network studies in our
assessment, as between-study comparability would
become even more complicated given the variations in
the a priori model specifications.

Despite the robust positive structure–function rela-
tionship, we found a high variability in the reported
structure–function relationship, which may be caused
by the methodological differences across studies. A

considerable part of the variation may be explained
by the use of different atlases as well as by different
regions of interest and connections included in the ana-
lyses. It might be that different regions, but also differ-
ent types of connections exhibit distinct structure–
function relationships. Identification of brain areas
where structural and functional networks overlap
(and deviate) may guide future research, i.e. whether
applying a combined approach may be more beneficial
than either technique alone. Inter-hemispheric func-
tional connections between homotopic regions are
often stronger than intra-hemispheric connections or
inter-hemispheric connections between non-homotopic
regions.97 Two of the included studies showed a slightly
higher structure–function relationship for intra-hemi-
spheric connections compared to inter-hemispheric
connections,34,47 possibly because of sparse inter-hemi-
spheric structural connectivity. In addition, two studies
investigated the structure–function relationship at the
single region level.43,79 They both showed a large range
of structure–function relationships for connections
between different regions, with correlations between
�0.40 and 0.6643 and between �0.2 and 0.7.79 Future
research should investigate the structure–function rela-
tionship for specific connections or regions, which may
lead to more insights into pathway- and circuit-specific
aspects of structure–function relationships in the brain.

The reported structure–function relationships, based
on diffusion-based tractography or neuronal tracers,
show similar variability and overlapping ranges.
Nevertheless, one study showed that structure–function
relationships differ when measuring structural connect-
ivity strength on distinct hierarchical levels (i.e.
macro-scale diffusion-based or meso-scale neuronal
tracer-based structural connectivity). Future research
on the structure–function relationship should ideally
determine all connectivity measures on different hier-
archical levels within the same species. To that aim,
rodents may be appropriate, since detailed and robust
comparisons are possible given the availability of multi-
level structural connectivity databases, such as
NeuroVIISAS98 and the Allen brain atlas.78 Resting-
state fMRI in small animals is more difficult.73 This is
reflected by the relative low structure–function correl-
ations found in mice.11,51 More sophisticated protocols
and pipelines have been proposed and developed to
obtain reliable and noise-free functional datasets in
small animals.99,100 Despite these methodological chal-
lenges, understanding the structure–function relation-
ship in small animals on different hierarchical levels is
very important, since many disease models are cur-
rently investigated in rodents.101 Rodents provide
unique opportunities to investigate and map struc-
ture–function relationships in specific neuronal sub-cir-
cuits, for example with optogenetics102 or
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chemogenetics.103 Moreover, animal research provides
the opportunity to conduct controlled experiments and
post-mortem investigation in a laboratory setting, both
important to elucidate the underlying properties and
mechanisms of structural and functional connectivity.

Lastly, we suggest researchers to share their structural
and functional datasets. Increased availability of open
source data of both structural and functional networks
across different species enables large-scale inter-species
analysis of structure–function relationships. The large
variation in structure–function relationships reported
in this review may partly be caused by small sample
sizes and consequent low signal-to-noise in individual
studies. This may be solved by combining datasets.
From the included studies, it is clear that structural con-
nectivity partly shapes functional connectivity, but the
strength of the correlation is still unclear. Therefore,
combining datasets and averaging structural and func-
tional connectivity over a large number of individuals
may reveal towhat extent the structural network strength
constrains, maintains and regulates the functional net-
work strength. Excellent platform examples are Open
Science Framework (https://osf.io/) and OpenNeuro
(https://openneuro.org/).

Conclusion

In conclusion, this systematic review shows that func-
tional and structural connectivity strength in the
mammalian brain correlate positively, both at the
macro-scale with diffusion-based structural connectiv-
ity and at the meso-scale with neuronal tracer-based
structural connectivity. We think that methodological
heterogeneity across included studies drives the sub-
stantial variability in reported correlation values. The
exact quantitative relationship between structural and
functional connectivity still needs to be elucidated.
Methodological differences between studies complicate
inter-study comparisons and stress the need for valid-
ation and standardization of structure–function ana-
lyses across studies. In addition, different network
resolutions, brain subsystems and connectivity meas-
ures may expose distinct structure–function relation-
ships, which emphasize the need to assess functional
and structural connectivity at multiple scales.
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Note

a. Multiple examples are available at https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/Atlases.
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