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Abstract

Subgraph matching algorithms are used to find and enumerate specific interconnection structures in networks. By
enumerating these specific structures/subgraphs, the fundamental properties of the network can be derived. More
specifically in biological networks, subgraph matching algorithms are used to discover network motifs, specific patterns
occurring more often than expected by chance. Finding these network motifs yields information on the underlying
biological relations modelled by the network. In this work, we present the Index-based Subgraph Matching Algorithm with
General Symmetries (ISMAGS), an improved version of the Index-based Subgraph Matching Algorithm (ISMA). ISMA quickly
finds all instances of a predefined motif in a network by intelligently exploring the search space and taking into account
easily identifiable symmetric structures. However, more complex symmetries (possibly involving switching multiple nodes)
are not taken into account, resulting in superfluous output. ISMAGS overcomes this problem by using a customised
symmetry analysis phase to detect all symmetric structures in the network motif subgraphs. These structures are then
converted to symmetry-breaking constraints used to prune the search space and speed up calculations. The performance of
the algorithm was tested on several types of networks (biological, social and computer networks) for various subgraphs
with a varying degree of symmetry. For subgraphs with complex (multi-node) symmetric structures, high speed-up factors
are obtained as the search space is pruned by the symmetry-breaking constraints. For subgraphs with no or simple
symmetric structures, ISMAGS still reduces computation times by optimising set operations. Moreover, the calculated list of
subgraph instances is minimal as it contains no instances that differ by only a subgraph symmetry. An implementation of
the algorithm is freely available at https://github.com/mhoubraken/ISMAGS.
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Introduction

In modern society, technology has been applied to create and

study numerous advanced systems in various fields as biology,

sociology, informatics and others. To understand their internal

dynamics, many of these systems can be modelled using graph

theory. By interpreting the systems as graphs of interconnected

components, a vast array of network processing methods enables

detailed analysis of the underlying, fundamental properties.

More specifically in biology, graphs are very well suited to

model interactions between different proteins. A graph can be

constructed by modelling proteins and interactions among them as

nodes and edges respectively. A powerful analysis technique is

described in [1] and consists of finding network motifs in the graph.

These network motifs denote small interactions patterns between

several proteins that are unusually more present in the graph than

expected by chance. They can be modelled as small subgraphs

which can then be searched in the larger network representing all

known interactions between all proteins. By discovering these

network motifs, our understanding of the underlying mechanisms

of the network can be improved.

To find these network motifs, several tools and algorithms have

been developed. Mfinder [2] was one of the early tools to mine

graph data for network motifs. Similarly, the FANMOD [3] tool

was developed which, compared to Mfinder, improves perfor-

mance by using the RAND-ESU algorithm [4]. It uses unbiased

sampling of subgraphs to speed up the calculations and includes

isomorphism tests by using the Nauty [5] isomorphism tools which

offer a description of the internal symmetry of the subgraphs.

More advanced network motif finding techniques, focusing on

graph properties and data structures, are proposed in [6] and [7].

G-Tries [6] are multi-way trees that encode the set of subgraphs/

network motifs to be found in a single data structure. When two

subgraphs that have to be enumerated have a common

substructure, the matching for the substructure can be done

simultaneously, speeding up queries significantly compared to

doing both searches separately. In contrast to speeding up the

network analysis by combining all different tests, Grochow and

Kellis [7] optimise the individual subgraph matches by generating

symmetry-breaking rules to prune the search space. By incorpo-

rating the symmetry of the subgraph in their search, they reduce

the search space exploration and speed up queries.
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The algorithms mentioned above use subgraph enumeration to

find network motifs in the network. However, a different but

related network analysis approach [8] is based on calculating

graphlet degree distributions. A graphlet is a small connected non-

isomorphic induced subgraph in a larger network for which the

instances will be counted. However, contrary to network motifs

which are partial subgraphs, graphlets are induced graphs, which

means that if an edge is absent in the graphlet specification, it

should also be absent in the graphlet instances and thus in the

larger network. While graphlets and motifs are defined differently,

they are both used to analyse networks by enumerating the

graphlet/motif instances in the graph. The network motif analysis

consists of finding unusually frequent subgraphs, whereas the

graphlet-based analysis aims at characterising entire graphs by

counting the occurrences for each graphlet from a predefined set.

Similar to a node degree distribution, the counts form a

distribution that represents the structure of the network in terms

of graphlets. However, contrary to network motif analysis, the

graphlets do not need to be over-represented (compared to

random networks) [1]. As with network motif analysis, the graphlet

analysis heavily relies on the enumeration of the graphlet instances

which should be optimised.

While the discussed algorithms so far were developed to analyse

full networks (by using network motifs and graphlets), the aim of

this paper is to present a general subgraph matching algorithm.

This algorithm can be used on its own to count or enumerate all

specific occurrences of a subgraph in a larger network but can also

be used as a building block for a full network analysis algorithm.

Such an algorithm needs to be carefully designed as the subgraph

isomorphism problem is proven to be NP-complete [9,10]. As

network modelling is used in various applications, the subgraph

isomorphism problem has many variants and several classes of

algorithms exist for solving it. In this paper, we focus on exact

algorithms for which a strict correspondence between the specified

subgraph and the requested instances in the graph is required.

Well-known algorithms in this class are the Ullmann [11], the VF

[12] and the VF2 [13] algorithms. Ullmann uses a matrix-based

representation of the search space and iteratively prunes uninter-

esting branches in the search tree. Pruning is done by applying a

refinement procedure to eliminate candidate nodes (for mapping

to a subgraph node) based on the neighbours of the candidate and

the required connectedness to the neighbours of the subgraph

node. While the Ullmann algorithm is versatile, as it can be used in

a wide range of isomorphism problems, it is matrix-based, which

causes high memory requirements. Less memory is required by VF

and VF2 algorithms which are graph-based. These algorithms

search the network by creating an initial partial mapping between

the source graph ( = the large network) and the subgraph ( = the

network motif) and iteratively generating candidate pairs to be

added to the mapping. Aside from speeding up the search, the

graph modelling in VF2 significantly reduces the memory

requirements as it only requires O(N) memory while Ullmann

requires O(N3). As biological networks tend to be very large

(millions of nodes in some applications), reducing the memory

requirements allows for a greater applicability.

In previous work, the Index-based Subgraph Matching Algo-

rithm (ISMA) [14] was presented and compared against the

above-mentioned subgraph matching algorithms. Like VF2,

ISMA also searches the source graph for subgraph instances by

creating a partial subgraph-to-graph-node mapping and expand-

ing it iteratively. However, ISMA intelligently determines the

order in which the partial mapping is expanded and avoids

unnecessary computations. These optimisations greatly reduce the

search space and speed up query times. In this paper, we introduce

the Index-based Subgraph Matching Algorithm with General

Symmetries (ISMAGS) in which search space size and query times

are further reduced by incorporating the internal symmetry of

subgraphs as constraints into the algorithm. Our constraint-based

pruning is similar to that in [7] in which the breaking of the

symmetry is done by iterating the symmetry analysis during the

search. Based on the partial mapping constructed at that point,

constraints are generated to avoid exploring symmetric parts of the

search tree. However, the symmetry analysis in [7] is repeated

several times and requires generating an exhaustive list of

isomorphisms of the subgraph. In ISMAGS, only one symmetry

analysis is needed to obtain a compact set of generating

permutations and constraints to break the symmetry. Compared

to [7], we also present results for larger networks with multiple

edge types.

In the rest of this paper, we first briefly outline the ISMA

algorithm and its functionality for incorporating simple symmetric

structures. As only basic symmetric relations are incorporated by

ISMA, we then continue by presenting our approach to

incorporating symmetry in the search tree. After explaining how

ISMA deals with symmetry, the symmetry detection in ISMAGS is

presented and validated in a group-theoretical context. Subse-

quently, we show the derivation of the symmetry-breaking

constraints and integrate them into the global algorithm. We then

show the performance gain of ISMAGS over ISMA for multiple

networks with various properties (size, edge types) and various

subgraphs. We also compare against the VF2 algorithm and (parts

of) the G-Trie and the Grochow-Kellis algorithm (as the full

algorithms were developed to find network motifs while ISMAGS

is only concerned with the subgraph enumeration method).

Methods

The following section contains a brief introduction to the core

aspects of ISMA, followed by closer examination of its internal

symmetry handling. Next, the core features of ISMAGS to take

into account all symmetric structures are presented along with a

description of the global algorithm.

ISMA
In previous work [14], ISMA was developed to find matches for

composite network motifs (subgraphs with type-annotated edges)

in large graphs by dynamically optimising the order in which

nodes are investigated during the search process. More formally,

the algorithm searches in a graph G~fV ,Eg with V denoting the

set of nodes and E denoting the set of edges. Each edge e[E can

be represented by a triplet (u,v,t) with u and v the start and end

node respectively and the type t of the edge, defining properties

such as whether it is directed or undirected.

Adopting the terminology of [14], a subgraph SG is defined as a

string of tokens representing the specific subgraph topology. As

(anti-)parallel edges are not allowed, a subgraph of s nodes has a

maximum of K~
s(s{1)

2
edges and can be represented by a string

of K tokens, with each token encoding the type of the edge

(including the direction) at that position. The first token in a

subgraph string denotes the edge going from node 1 to node 2, the

next 2 tokens denote the edges going from node 1 and 2 to node 3

and so on. The string of tokens ‘‘ABCDEF…’’ thus denotes a

subgraph with an edge of type A from node 1 to node 2, an edge of

type B from node 1 to node 3, an edge of type C from node 2 to

node 3, an edge of type D from node 1 to node 4 and so on. A

more elaborate description is given in [14].

ISMAGS
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In ISMA, the main goal is to reduce the search space by

carefully selecting the next node to be matched. At any given stage

in the search process, a partial mapping of graph nodes (in G) to

subgraph nodes (in SG) is maintained. Initially, the mapping is

empty as no nodes have been matched. The algorithm then selects

a subgraph node based on the number of candidate nodes in G
that can be mapped on that node. At the start of the algorithm, the

candidate set for each node is constructed based on the edges

arriving/departing in/from that node. For example, if the first

node sgn1 in the subgraph has an outgoing edge of type A and an

incoming edge of type B, the candidate set C1 is calculated as the

intersection of the set of nodes in G with outgoing edges of type A
and the set of nodes in G with incoming edges of type B. The

subgraph node (sgns) with smallest candidate set is then selected to

investigate next.

Once sgns is found, the (partial) mapping is expanded by

iteratively mapping every graph node n in its candidate set to sgns.

Mapping n to sgns introduces new constraints for the rest of the

subgraph instance: if a subgraph node sgnk is connected to sgns

with an edge of type B, the graph node mapped to sgnk also has to

be connected to n with an edge of type B. To select the next node

to investigate, the constraints are incorporated in the candidate

sets by intersecting the old candidate sets with the neighbour set of

the newly mapped node n. The mapping process can then repeat

for each node in the subgraph. By iteratively mapping and

backtracking, all subgraph instances in the graph are found.

The subgraph node selection method is optimised in ISMA to

avoid unnecessary set operations. As described above, the

candidate set Ci is calculated as the intersection of a number of

other sets. Instead of calculating all Ci sets (sg in total) each

requiring intersecting a few sets to find the smallest candidate set,

ISMA keeps track of the smallest set for each subgraph node. The

size of this set is a heuristic estimate for the size of Ci. The

algorithm is further optimised by using custom data structures for

set operations.

Symmetry in ISMA
While ISMA can find all subgraph instances in a graph for any

subgraph, it was designed to exploit symmetric properties. While a

brief description of the symmetry-handling in ISMA is given here,

the reader is referred to [14] for the full approach. Two nodes

have a reflection symmetry if and only if they can be switched without

changing the subgraph topology. If a subgraph contains two

reflection symmetric nodes sgna and sgnb, the graph nodes a and

b, mapped to sgna and sgnb respectively, can be switched with the

result being a valid subgraph instance. This property can be

exploited and allows to only examine half of the search space.

The symmetry is exploited in ISMA by adding extra constraints

to the candidate set generation. If subgraph node sgna is present in

the partial mapping, the algorithm takes this into account when

mapping sgnb. ISMA will prohibit nodes, that were previously

mapped to sgna, to be considered for mapping onto sgnb.

When the candidate set Ca of subgraph node sgna is

determined, it will consist of all nodes that are valid to be mapped

onto sgna and by symmetry also onto sgnb. As described above,

ISMA will iteratively add every node in Ca to the partial mapping

and continue mapping the rest of the nodes. Every time a new

node from Ca is examined, it is removed from Ca before the

search is continued. When the candidates for sgnb are determined,

ISMA will use Ca as a constraint to force nodes in Cb to be in Ca.

This will avoid generating the symmetric counterparts of the

subgraph instances. If ½X ,a,Y ,b,Z� was previously examined, its

counterpart ½X ,b,Y ,a,Z� will not be examined as, at that time, a
will no longer be in Ca and therefore not in Cb.

The same basic principle is also applied to cyclic rotations. A

subgraph contains a cyclic rotation symmetry if and only if it has a

sequence of nodes that can be shifted without changing the

subgraph configuration. An example can be seen in the

‘‘XX00XX’’ subgraph in Fig. 1.

Symmetry in ISMAGS
While the symmetry handling approach in ISMA performs well

for small subgraphs with small reflection or rotational symmetries,

it cannot efficiently tackle larger subgraphs with more elaborate

symmetric structures. ISMA was only optimized for simple

symmetric structures that can be easily detected like reflection

symmetries between 2 nodes ( = 2 nodes that can be switched) or

ring structures ( = rotation symmetries). It eliminates similar

subgraph instances induced by these symmetries but does not

handle larger symmetric structures (consisting of multiple nodes

being switched) or more complex symmetric structures (in which

nodes can be part of multiple symmetric structures and the

symmetric properties are less easily detected). As the symmetry

analysis in ISMA was limited and did not extract complex multi-

node symmetries, these were not taken into account which means

that multiple similar subgraph instances induced by these

symmetries will be returned. Fig. 2 shows valid subgraph instances

that differ by only a permutation of the subgraph nodes. As the

Figure 1. Subgraph examples. In ‘‘XXXXXX’’, every node is
symmetric to every other node as, in a clique, all nodes can be
swapped. The ‘‘XX00XX’’ graph is symmetric as it has rotation symmetry
(all nodes can be shifted in the ring) and reflection symmetry (top two
nodes can be switched with bottom two nodes for example). The
‘‘XZ00ZY’’ graph is also symmetric as the same configuration is obtained
when node 1 is switched with node 2 and node 3 with node 4. While
the G4 graph has no symmetric properties, the tetrahedron and the
Petersen graph [25] have more complex symmetric structures.
doi:10.1371/journal.pone.0097896.g001

Figure 2. Some permuted instances of the Petersen graph.
doi:10.1371/journal.pone.0097896.g002
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degree of symmetry increases, listing all possible permutations

becomes very time-consuming. A more efficient approach would

be to avoid finding the permuted instances by reducing the search

space.

This section deals with the modified approach in ISMAGS to

successfully handle all symmetric structures in a subgraph. The

main idea of ISMAGS is to detect the symmetric properties in the

subgraphs and convert them to pruning rules for the search space.

Detecting the symmetries is detailed in the next paragraph,

followed by the symmetry-breaking approach and a description of

the data structures used. In general, breaking symmetry means that

the information of the symmetries is used to develop rules or

constraints to simplify the search and speed up calculations. By

fully breaking the symmetry, the set of subgraph instances

returned by ISMAGS is minimal as a single subgraph instance

will only be exported once while similar subgraph instances

induced by the subgraph symmetry are omitted.

Symmetry detection
The first step in ISMAGS is to determine the symmetric

properties of the subgraph under examination. While the

subgraph isomorphism problem is NP-complete, several basic

techniques have been developed to minimise the required work.

These techniques and how they are used in ISMAGS to develop a

custom symmetry-breaking approach are explained next.

Subgraph partitioning. The basis for the symmetry detec-

tion is derived from Nauty [5]. The basic mechanisms are

explained here but the reader is referred to [5,15] for more details.

The analysis starts by grouping the subgraph nodes sgni based on

their incoming and outgoing edges as only nodes with similar

properties could be symmetric to each other. The nodes are first

grouped into an ordered partition p~½W1DW2D:::DWp� with every

node in a cell Wi having the same number of outgoing/incoming

edges to/from each of the other cells.

Fig. 3 illustrates how these partitions are formed. In the initial

partition, all nodes are put in the same cell W1. Every node is then

analysed by determining the source/target cells of its edges. Nodes

1 and 2 both have 1 X -edge to node in W1 and 1 outgoing Z-edge

to another node in W1. However, the top 2 nodes have different

edge properties compared to the bottom 2 nodes. If nodes within

one cell do not have the same properties, the partition needs to be

refined. Cells containing nodes with different properties are split to

ensure partition validity. The top nodes of the subgraph are

separated from the bottom nodes by introducing a new cell. This

leads to the partition in the bottom of Fig. 3. The nodes are then

again analysed by their edges as the introduction of new cells can

require splitting up other cells. This process is repeated until all

nodes in the same cell have the same properties.

Ordered partition pair. The actual subgraph symmetry

analysis uses 2 partitions pt~½T1DT2D:::DTt� and pb~½B1DB2D:::DBb�
to analyse the subgraph. An example of the analysis can be found

in Fig. 4. The 2 partitions together from an ordered partition pair

(OPP). This OPP will be used to investigate symmetric structures

by simultaneously refining both partitions. If a subgraph has

symmetric structures, the refinement will have multiple branching

points which lead to the symmetries in the subgraph. By exploring

all branches during the analysis, all symmetries can be found.

Coupling. The 2 partitions in the initial OPP are identical

and follow from the initial partitioning of the subgraph. Fig. 4

shows the symmetry-breaking algorithm for the ‘‘XX00XX’’

subgraph. The partitioning in the initial OPP at the top of the

search tree consists of a single cell as all nodes have 2 edges to

other nodes. The different branches in the OPP search tree are

then separately investigated by selecting one of the subgraph nodes

in one of the cells of pt and mapping it to all subgraph nodes in the

corresponding cell in pb. In the remainder of this work, each such

mapping is referred to as a coupling. When coupling, the nodes are

selected in the order of increasing node ID. The node with the

smallest ID among all unmapped nodes gets selected first, both in

the top partition (of which only 1 node is chosen) as in the bottom

partition (for which coupling iterates over all nodes in order of

increasing ID).

Recursive refinement. A coupling operation thus maps a

node (sgnt) from a top partition cell to a node (sgnb) in the

corresponding bottom partition cell. This is done in the partitions

by putting sgnt and sgnb in a newly created cell in their respective

partitions. The coupling is followed by a refinement operation on

each of the partitions (top and bottom). As mentioned above, each

partition groups nodes with identical properties. By introducing a

new cell (for sgnt or sgnb), the grouping might no longer be

accurate. Nodes with edges to/from sgnt now have edges to/from

the new cell while previously those edges were to/from the original

cell of sgnt (analogously for the bottom partition with sgnb). This

change in properties needs to be incorporated in the partition,

possibly yielding more cells to ensure that all nodes in one cell have

the same properties. The partition is refined until it is completely

valid again. Note that while the refinements of pt and pb are done

separately, each top partition cell will correspond to a bottom cell.

The coupling and refinement operations are done recursively until

all nodes have their own cell. At that point, there is a one-on-one

correspondence between nodes in the top partition and nodes in

the bottom partition, yielding a valid permutation.

In the example of Fig. 4, subgraph node 1 from T1 is coupled to

the 4 possibilities in B1. This splits up T1 and B1 as node 1 gets its

own cell because of the coupling. It also leads to the further

refinement of the initial OPP as in both partitions for nodes 2 and

Figure 3. Example of subgraph refinement. The top figure shows
the initial partitioning in the ‘‘XZ00ZY’’ graph in which all nodes are in
the same cell. However, nodes 1 and 2 have an outgoing Z edge while
nodes 3 and 4 do not. This indicates the partition needs to be refined.
Nodes 3 and 4 are put in a separate cell as shown in the bottom figure.
doi:10.1371/journal.pone.0097896.g003
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3, one of the incoming edges is coming from the new cell while for

node 4 that is not the case. As shown in Fig. 4, the recursive

refinement leads to the full subgraph analysis.

The key strength of using the OPPs in the analysis is that the

discovered symmetry relations can be used to prune and speed up

the analysis. When the coupling of a node in pt to a node in pb

leads to 2 partitions with a different number of cells, the

configuration can be discarded as no symmetries can be found.

Even more extensive pruning is used in the original Nauty

algorithm and its successors but is simplified here as the analysis in

ISMAGS is combined with symmetry-breaking constraints (see

next section) that modify the search process.

Orbit pruning. Orbit pruning [5] is a group theoretical

optimisation technique to narrow down the search space. During

the analysis of the subgraph, a set of generating permutations is

built for the automorphism group A of the subgraph. In the

example of Fig. 4, the set of generating permutations consists of P1

and P2. The automorphism group A is a permutation group and

will act on the set S of all possible permutations on the subgraph

nodes. The effect of A can now be analysed in 2 ways.

First, the effect of permutations Pk[A on individual subgraph

nodes sgni[V is considered. Starting from an element e[S, the

permutation permutes the individual nodes to different positions.

In general, the element e is transformed in Pk(e) by permuting the

individual subgraph nodes in the element.

e~½sgna,sgnb,::sgns�?Pk(e)

~½sgnx,sgny,:::sgnz�,fa,b,:::,sg~fx,y,:::,zg
ð1Þ

The image Pk(sgni) of sgni under Pk can then be used to define

the orbit partition. This is a partition of V into disjoint cells Cj for

which holds that

V~fC1DC2D:::DCzg ð2Þ

Vsgni[Cj ,VPk[A : Pk(sgni)[Cj ð3Þ

More intuitively, when an automorphism is applied, a node can

only be mapped to itself or another node in its orbit partition cell.

Every time a permutation is found during the symmetry detection,

the orbit partition is updated by merging the orbit partition cells of

nodes that can be mapped to each other. In Fig. 4, P1~(23) is

found as an automorphism. The image P1(2) of node 2 is node 3
(and vice versa) and so they will share the same cell in the orbit

partition.

For the second analysis of the effect of A, consider the relations

between the elements of S. Given an element e of S, its orbit is the

set of all elements of S that can be found by combining all

permutations in A to e. The orbits themselves form a partition of

the set S of all possible permutations on the subgraph nodes.

S~fO1DO2D:::DOzg ð4Þ

Ve[Oi,VPk[A : Pk(e)[Oi ð5Þ

Orbit pruning relies on this partitioning to prune parts of the

search space. As one element suffices for generating the entire

orbit (by applying the generating permutations), the analysis can

omit parts of the search space that would result in redundant

generators. The orbit partition is used to detect these cases and to

abort the search. A more detailed application of orbit pruning can

be found in [16].

Without orbit pruning, the subgraph symmetry analysis

described above continues finding all permutations after the

necessary set of permutations is already exported. As only that set

is needed to generate all permutations, orbit pruning is used to

reduce the search space. In the example of Fig. 4, the orbit

partition gets updated when permutation P1~(23) is found and

again when P2~(12)(34) is exported. For P1, node 2 and node 3
are put in the same cell in the orbit partition while P2 merges the

cell of node 2 with the cell of node 1 and the cell of node 3 with the

cell of node 4. This results in all nodes being in a single cell. When

the subgraph analysis is continued after finding P2, node 2 in the

Figure 4. Subgraph symmetry analysis of ‘‘XX00XX’’. The branches are denoted with the applied coupling. The boxed numbers indicate the
order of tree traversal, with a depth-first exploration, according to the smallest node first coupling. The initial partition has all nodes in the same cells
T1 and B1. The first coupling 1?1 splits up the cells in both partitions in 3 cells (separation of cells denoted by |). When a permutation is found, the
orbit partition is updated as shown. Orbit pruning is used to reduce the required computations as explained in text.
doi:10.1371/journal.pone.0097896.g004
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top partition would be coupled to node 4 in the bottom partition

but as node 2 and 4 share the same cell in the orbit partition, the

coupling can be pruned. Backtracking further in the analysis

would lead to top node 1 being recoupled to bottom nodes 2, 3
and 4 but this can be omitted analogously.

Symmetry breaking
The symmetry detection in ISMAGS results in a set of

permutations of the subgraph nodes and an orbit partition. The

permutations can be applied on any valid subgraph instance to

produce other valid instances. To avoid generating and exporting

instances that can be obtained through permuting previously

found instances, the symmetry needs to be broken. To explain the

symmetry breaking in ISMAGS, some group theoretical concepts

first need to be introduced.

Stabilisers. In general, permutations in a permutation group

G act on sequences of nodes by switching/swapping nodes to

different positions in the sequence. However, some permutations

do not change all nodes and leave some nodes on their original

position. These permutations can be used to define stabilisers. For

every node i, the stabiliser iG is defined as

iG~fPkDPk(i)~i,Pk[Gg ð6Þ

For the example of the ‘‘XX00XX’’ subgraph with generating

permutations f(23),(12)(34)g, the stabiliser 1G of node sgn1 is

f(1)(2)(3)(4),(1)(23)(4),(1)(24)(3),(1)(234),(1)(243),(1)(2)(34)g
as these permutations all map node sgn1 to itself.

Stabiliser chains. Using the concept of stabilisers, a stabiliser

chain of (sub-)groups G0,G1,:::,Gs is defined for a permutation

group G, acting here on the set of subgraph node permutations.

Each group in the chain is a subgroup of the previous (Gi5Gi{1)

starting with G0~G. Formally, the groups are defined as

Vi~1::s : Gi~iGi{1
ð7Þ

More intuitively, the permutations in G1 are those permutations

that do not change node sgn1 while the permutations in G2 are

those permutations in G1 that do not change node sgn2 and thus

leave 2 nodes unchanged.

Coset representatives. The coset representative set Ci of a

subgraph node sgni is defined as the set of subgraph nodes sgnx to

which sgni can be mapped in Gi{1.

Vi~1::s : Ci~fsgnxDP(sgni)~sgnx,P[Gi{1g ð8Þ

Given G1 in subgraph ‘‘XX00XX’’, C2~fsgn2,sgn3,sgn4g as

sgn2 can be mapped to any subgraph node in C2 by the

permutations in G1.

Given the above definitions, the subgroup Gi consists of those

permutations that leave the first i nodes unchanged. As shown in

[17], stabiliser chains can be converted to symmetry-breaking

constraints that fully break the symmetry of the subgraph.

However, contrary to [17], the Gi groups are not fully generated

in ISMAGS. To generate the constraints, only the coset

representatives for each subgraph node are needed. These coset

representatives are generated during the symmetry analysis phase.

Determining coset representatives. Recall that during the

symmetry analysis, nodes are coupled according to increasing ID.

In the search tree, constructed by the couplings, the first leaf node

to be reached is the identity permutation. When backtracking

starts, the couplings are undone by replacing the last coupling, say

sgnk?sgnk, with a new coupling, say sgnk?sgnl . Undoing the

mapping can be interpreted as looking for permutations that leave

the first k{1 nodes in place but permute the remainder of the

subgraph nodes. If such a permutation is found, it belongs to the

Gk{1 group. In Fig. 4, when P1~(23) is found, it is a permutation

leaving the first node unchanged and thus belongs to the G1 group.

As detailed above, when a permutation is found, the orbit partition

is updated. After P1 is found, the orbit partition cell O2 of node

sgn2 will be merged with the cell of node sgn3.

Subsequently, the algorithm continues by backtracking and

uncouples sgn2?sgn3. As all possible couplings for sgn2 are tested,

ISMAGS further backtracks and uncouples sgn1?sgn1. However,

at this point in the analysis, the coset representative set C2 can be

determined. Orbit partition cell O2 only contains subgraph nodes

sgnl that can be mapped to sgn2 without remapping the first node

as the first node has thus far remained mapped to itself due to the

coupling. Cell O2 thus corresponds to the set of coset represen-

tatives of sgn2.

Following the example above, the coset representative set Ci is

found for every node as an intermediate orbit partition cell. Coset

representative set Ci is set equal to its orbit partition cell when all

possible mappings sgni?sgnj are evaluated and sgni{1?sgni{1 is

to be undone next. While the orbit partition is updated every time

a permutation is found, the Ci sets are not.

Note that not all nodes will have coset representatives

generated. During the creation of the initial chain of couplings

that results in the identity permutation, some nodes are mapped to

themselves by the couplings while other nodes are mapped to

themselves by the refinement procedure. For the latter nodes, no

coset representatives will be generated as, with the first nodes

fixed, they can only be mapped to themselves.

For the example in Fig. 4, C2 is set as f2,3g after P1 is found,

right before sgn1?sgn1 is undone. Set C1~f1,2,3,4g is found

similarly at the end of the subgraph symmetry analysis, after

sgn1?sgn4 is investigated. Sets C3 and C4 can be omitted as they

can only be mapped to themselves if sgn1 and sgn2 need to remain

fixed.
Generating symmetry-breaking constraints. To break

the symmetry in the subgraph, the coset representatives are

converted into constraints on the IDs of the graph nodes mapped

to the subgraph nodes, as shown in [17]. For every subgraph node

sgnj in the coset representative set Ci of subgraph node sgni, a

constraint is introduced to force the ID of the graph node mapped

to sgnj to be higher than the ID of the graph node mapped to sgni.

More formally, the following constraints are introduced to be used

during the node mapping in ISMAGS.

Vi,j : sgnj[Ci,i=j : IDivIDj ð9Þ

While the constraint generation is done as in [17], ISMAGS

does not require explicitly generating the stabiliser chains

(introduced by [18]) as only the coset representatives are necessary

and found during subgraph symmetry analysis.

The approach to breaking symmetry in ISMAGS begins with a

subgraph symmetry analysis derived from Nauty [16]. In general,

Nauty generates a set of generating permutations for the

automorphism group of the subgraph. However, the set of

generating permutations generated is not necessarily unique. For

the ‘‘XXXXXX’’ subgraph in Fig. 1, a generating set of

permutations could be Q1~f(12),(123),(1234)g while

Q2~f(12),(23),(34)g, generated by ISMAGS, is equally as valid

for generating the full set of permutations. By tuning the order of

the node coupling, ISMAGS embeds the stabiliser chains into the

search process. The permutations found are generators for as

ISMAGS
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many subgroups Gi as possible while the coset representatives can

readily be found. This eliminates the need for explicitly generating

all possible permutations, the stabiliser chains and coset represen-

tatives as in [17].

Integrating symmetry detection and symmetry breaking
with ISMA

With the symmetry-breaking constraints described in the

equation above, a full description of ISMAGS can now be given.

While ISMAGS reuses the basic principles of ISMA to limit the

search space, it goes much further in the subgraph analysis and

pruning. A pseudocode description of the different steps is given in

Table 1 in Algorithm 1. The actual subgraph instances are found

and exported in the mapNodes function.

The search for all instances starts with the analysis of the

subgraph specification for symmetric properties. This analysis is

detailed in the previous sections and results in a set of constraints

between the IDs of the graph nodes in a mapping. These

constraints are stored for each subgraph node and used for

determining the candidates for a specific subgraph node. After

subgraph analysis, the search for subgraph instances, similar to

ISMA, begins on line 3 of Algorithm 1 in Table 1 by creating the

first candidate node lists based on the subgraph configuration. As

in ISMA, the candidates for a subgraph node are determined by

intersecting collections of nodes. However, the collections in

ISMAGS are lists of ordered nodes based on node ID. Sorting of

the lists of nodes and neighbours only needs to be done once for

every network as the networks can be stored with the lists sorted.

Using ordered lists accommodates quick subset selection (detailed

further below) during node mapping. The candidates for a

subgraph node are determined based on the edges in the subgraph

specification. For each of its edges, the corresponding list of graph

nodes is added to a set of lists. Once all lists are known, their

intersection gives all graph nodes that have edges of the required

types. Note that, as in ISMA, the intersection of the starting sets is

delayed until after the subgraph node is selected to avoid

calculating intersections that are not used.

Once the initial subgraph node is determined, the candidate

node list is generated (see line 11 of Algorithm 1 in Table 1). This

candidate node list is calculated with a linear sweep over the

different (ordered) lists while all other intersections in ISMAGS are

calculated by checking node membership to all lists (as in ISMA).

As node lists are large at this point, a linear sweep is more efficient

than node-by-node set membership tests.

The mapNodes function is very similar to the approach in

ISMA and recursively maps graph nodes to subgraph nodes to find

all subgraph instances. Every time a graph node is mapped to a

subgraph node, the neighbours of the graph nodes are taken into

account as new constraints for the remaining unmapped nodes. If

graph node a is mapped to subgraph node sgni and sgni has an

edge of type e to subgraph node sgnj , the candidate graph node for

sgnj needs to have an edge of type e from a. Note that the

direction of the edges is taken into account in the edge type. Once

the lists of neighbouring nodes are added to the constraint sets, the

next node to investigate is determined.

The next subgraph node to examine is determined on line 13

heuristically as in ISMA. The intersection of lists is delayed to

avoid unnecessary work. Instead, the lists that need to be

intersected are stored separately per subgraph node. The size of

the intersection is estimated by the size of the smallest list of that

subgraph node. This is an upper bound on the actual size and

trades off a slightly larger search space for less list intersections. To

further optimise the calculation of the candidate list, ISMAGS

disregards the lists introduced during initialisation (see Algorithm 2

in Table 2). These lists are generally very large (they list all nodes

with an edge of the correct type) and contain little useful

information, as the lists only indicates the presence of an edge

which is verified each time a node is mapped. Omitting the lists

results in shorter computation times during intersection with only

a limited increase in search space size.

The key difference with ISMA is that when a subgraph node is

selected for examination, the actual intersection is calculated using

the symmetry-breaking constraints. The constraints are combined

with the partial instance constructed so far to determine

boundaries for the node ID of the graph nodes to be mapped

on the subgraph node. If for the selected node sgni a constraint

IDivIDj was generated and node sgnj is already mapped, this

gives an upper bound on the ID of a candidate for sgni. A lower

limit is found analogously by considering the set of subgraph nodes

which should have a smaller ID. The boundaries can then be used

during intersection, allowing to skip the nodes with IDs outside the

allowed range. As the lists to be intersected are sorted, binary

search can be used to quickly find the start and ending point of the

sublist of valid IDs.

While the symmetry breaking is the main source of the

performance gain, additional speed-up could be gained by

maintaining extra state. As explained above, the candidate sets

are stored in memory as ordered lists to allow quick retrieval of

Table 1. Algorithm 1: findSubgraphInstances(Graph g, Subgraph sg).

1: Set,Constraint.constraints / analyseSubgraph(sg);

2: NodeListHandler[] candidates / candidate node lists (to be intersected) for each subgraph node;

3: for SubgraphNode sgn in sg do

4: for Edge e leaving/arriving in sgn do

5: t / type of edge;

6: S / list of graph nodes in g that have an edge of type t;

7: add S to candidates½sgn�;
8: end for

9: end for

10: SubgraphNode sgn / subgraph node with the smallest candidate node sublist;

11: NodeList snl / calculate candidate node list of sgn;

12: mapNodes(sgn, candidates, constraints);

doi:10.1371/journal.pone.0097896.t001
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nodes within a specific ID range. When lists are intersected, the

intersection is determined by iterating over all nodes (in that valid

ID range) and checking for membership of the other lists. In

ISMAGS, this checking is done by using binary search on the

sorted lists. To speed up this operation, a copy of the list could be

maintained in a hash-based set. This would allow to check

membership in overall constant time (O(1)), whereas binary search

requires logarithmic time (O(log(n)), n = number of entries in the

list). Experiments show that an additional 5% speed-up could be

gained by using this optimisation at the cost of almost doubling

memory requirements. As memory is often a bottleneck in

biological networks, the optimisation was not included in the

presented version of ISMAGS.

The basic pseudocode of the subgraph analysis (to generate the

constraints) is given by Algorithm 3 in Table 3. The initial OPP is

constructed based on an initial partitioning of the input subgraph

as detailed in the symmetry detection section above. The OPP is

then recursively refined to find all symmetries (and constraints), as

described in the two previous sections. As mentioned above,

ISMAGS tunes the order in which the nodes are coupled in the

OPPs by always selecting the node with the lowest ID first as

shown in lines 5 and 9 of Algorithm 4 in Table 4. The constraints

are generated on line 17.

Results

To illustrate the performance of ISMAGS, the algorithm is

benchmarked against previously published results and algorithms.

After a description of the algorithms and network data use,

ISMAGS is compared against it predecessor ISMA to show the

effects of the added symmetry breaking and related optimisations.

In addition, ISMAGS is compared against the VF2 algorithm and

the subgraph enumeration algorithms of Grochow-Kellis [7]

(denoted by GK) and the G-Trie algorithm [6].

Algorithms
The ISMA and ISMAGS algorithms were implemented in Java

(version 1.6.0_26) while for the VF2 experiments, the VFLibrary

(http://mivia.unisa.it/datasets/graph-database/vflib/) was used.

To perform the GK experiments, the authors of [7] provided the

original (Java) code for their algorithm from which the code for

subgraph enumeration was extracted. This was necessary as the

GK algorithm is a network motif finding algorithm while we

present a subgraph enumeration algorithm. The experiments for

the G-Trie results were done using the reference implementation

on the homepage of the G-Trie author (http://www.dcc.fc.up.pt/

gtries/). An implementation of the ISMAGS algorithm is freely

available at https://github.com/mhoubraken/ISMAGS.

The experiments were performed on a single core of an Intel

Core 2 Duo P8400 processor clocked at 2.26 GHz with 4 GB of

RAM under a 64-bit Windows installation. To remove the

influence of memory operations, the reported times exclude the

reading of the networks and writing to memory of the subgraph

instances found. The times reported in the results thus only pertain

to the time needed to look for all possible matches in the search

space and, if applicable, the time needed to analyse the subgraph

for symmetries. Most of the results were averaged over 1000 runs.

However, some test instances were limited to fewer runs as the

Table 2. Algorithm 2: mapNodes(SubgraphNode sgn, NodeListHandler[] nodelists, Set,Constraint.constraints).

1: List,Node.snl /getCandidates(sgn, nodelists);

2: for Node n in snl do

3: map n to sgn;

4: if subgraph instance is complete then

5: export instance;

6: else

7: for Edge e arriving/leaving sgn to

8: t / type of e;

9: q / origin/destination of e;

10: neighbours / neighbours of n by type t;

11: addNeighbourList(nodelists½q�, neighbours);

12: end for

13: nextSubgraphNode / determineNextSubgraphNodeToProcess(nodelists, constraints);

14: mapNodes(nextSubgraphNode, nodelists, constraints);

15: end if

16: unmap n to sgn;

17: end for

doi:10.1371/journal.pone.0097896.t002

Table 3. Algorithm 3: analyseSubgraph(Subgraph sg).

1:Set,Permutation.permutations;//create new set to store permutations

2: Set,Constraint.constraints;//create new set to store constraints

3: Set,Set,SubgraphNode..orbits;//create the initial orbit partition

4: for SubgraphNode sgni[sg do

5: add set fsgnig to orbits;

6: end for

7: Partition p / create initial partition of subgraph sg;

8: OPP opp / create initial OPP from p;

9: processOPP(opp, permutations, constraints, orbits);

10: return constraints;

doi:10.1371/journal.pone.0097896.t003
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long calculation times were prohibitive for more elaborate testing.

The number of runs used for averaging is shown along with the

results. When fewer runs were used, this is denoted with an asterisk

or circle, depending on the number of runs.

Network data
The input networks for the experiments are similar to the

networks from [14]. They are denoted as biological, Slashdot and

SNAP (based on the source of the data) and their properties can be

found in Table 5. Note that while only results are shown for these

3 types of networks, ISMAGS can be used for subgraph matching

in any graph with multiple edge types.

The biological networks comprise two networks with multiple

edge types. The first network pertains to physical (P, undirected),

genetic (G, undirected) and signalling (S, directed) interactions

between kinases and phosphatases in yeast [19,20]. The second

network consists of protein-protein interaction in yeast (X,

undirected, obtained from the BioGRID [21] database), protein-

protein interactions in humans (Y, undirected, obtained from the

BioGRID and STRING [22] databases), and orthology relations

between human and yeast proteins (Z, bipartite, from the

InParanoid database [23]). Additionally, both networks were

modified to obtain additional test networks. The reduced PGS-

network is constructed by interpreting all edges in the PGS-

network to be undirected and of the same edge type. The ABZ-

network is derived from the input files of the XYZ-network. The

X- and Y-edges, specified as ‘‘node1 node2’’ on individual lines in

their respective edge file, are interpreted as directed A- and B-

edges going from node1 to node2.

The Slashdot network [24] represents ‘‘friend’’ and ‘‘foe’’

relations between users of the technology-centred Slashdot

community. A group of friends in which everyone is a friend of

each other can be represented as an F-clique subgraph while two

friends with a mutual enemy can be represented by a ‘‘FEE’’

subgraph. Note that the edges are assumed to be undirected.

Finding subgraphs in this social network is an example of how

ISMAGS can be used to mine social data.

The third set of networks consists of some of the networks

available in the SNAP database (found at http://snap.stanford.

edu/data/). The Wiki-Vote network represents votes cast by users

during Wikipedia admin elections, the p2p-Gnutella08 and p2p-

Gnutella30 are 2 snapshot of the Gnutella peer-to-peer network

and the CA-CondMat and CA-HepTh networks are collabora-

tions networks based on co-authorship of papers published in the

arXiv repository in the Condense Matter and the High Energy

Physics - Theory category, respectively. For these networks, the 3-

and 4-node cliques are searched as well as the instances of the

subgraphs ‘‘XxXXXX’’ (tetrahedron) and ‘‘xXxXxx’’ (G4). Note

that, during the search for the instances of the cliques, the edges in

the networks are considered to be undirected while they are

considered to be directed during the search for the instances of the

tetrahedron and the G4 graphs. This difference in interpretation

allows to show the performance of the symmetry handling of the

algorithms on both directed and undirected networks. The

tetrahedron subgraph was selected to be searched for as it

contains a relatively simple symmetric structure that was not taken

into account in ISMA. The G4 graph was selected to show the

effects of the optimisation of the set operations in ISMAGS

(compared to ISMA) as it does not have any symmetric properties.

Note that the number of nodes and edges reported in Table 5

can differ from the counts of the original data source. This is a

result of network preprocessing. Aside from removing unconnect-

ed nodes and (anti-)parallel edges, the preprocessing also ensured

that only 1 edge is present between any pair of nodes. While

Table 4. Algorithm 4: processOPP(OPP opp, Set
,Permutation.permutations, Set,Constraint.constraints,
Set,Set,SubgraphNode..orbits).

1: if all nodes are mapped then

2: add current mapping to permutations;

3: update orbits;

4: else

5: sgni / subgraph node with the lowest ID among the unmapped nodes;

6: T / cell in top partition which contains sgni ;

7: B / cell in bottom partition corresponding to T ;

8: sort B by increasing ID: [l1 ,l2 ,…,lb];

9: for j~1:::b do

10: couple sgni to lj ;

11: oppnew / refine opp;

12: processOPP(oppnew , permutations, constraints, orbits);

13: end for

14: if opp maps sgnk?sgnk , Vkvi then

15: Ci / orbit of sgni ;

16: for sgnt[Ci ,i=t do

17: add IDivIDt to constraints;

18: end for

19: end if

20: end if

doi:10.1371/journal.pone.0097896.t004

Table 5. Network properties.

Network #Nodes #Edges

PGS (reduced) 1255 6454

P 887 1844

G 469 4051

S 404 659

XYZ/ABZ 15078 79794

X/A 4847 36391

Y/B 9602 40630

Z 5208 3132

Slashdot 79120 469768

E 37412 118755

F 69998 351013

Wiki-Vote 7115 100762

p2p-Gnutella08 6301 20777

p2p-Gnutella30 36682 88328

CA-CondMat 23133 93439

CA-HepTh 9877 25973

For each network, the number of nodes and edges is given. If multiple edge
types are present in the network, separate counts are given for each edge type,
denoting the number of edges of the specific type as well the number of nodes
having an edge of that type. The XYZ-network and the ABZ-network have the
same node and edge count as the A- and B-edges are the directed versions of
the X- and Y-edges. Similarly, the reduced PGS-network has the same node and
edge count as the PGS-network.
doi:10.1371/journal.pone.0097896.t005
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ISMAGS correctly deals with these issues, not all of the

benchmark implementations support them. The preprocessed

networks are included in the source code of ISMAGS (available at

https://github.com/mhoubraken/ISMAGS).

ISMA versus ISMAGS
To show the advantages of incorporating the symmetric

information in the search, Table 6 compares the performance of

ISMA to ISMAGS on the biological networks. The search space

reduction factor (SPRF) varies depending on the subgraph.

For the subgraphs with SPRFw1, the reduction can be

attributed to various factors. For the subgraphs with limited

symmetry (‘‘SsS’’, ‘‘SsG’’, ‘‘PGSPGS’’), the reduction is due to a

quicker termination of uninteresting paths. When the mapping of

a node would result in empty candidate lists for an unmapped

node, this is detected in ISMAGS before the node is mapped and

can quickly be terminated. For the subgraphs with large symmetric

structures (Petersen graph of Fig. 1, XYZ subgraphs), the

reduction comes from the symmetry-handling which was not fully

exploited in ISMA, showing the benefits of the improved

symmetry-breaking approach.

For the ‘‘ssG’’ subgraph, a small increase in search space is

present. This is due to the omission of list membership tests of the

large initial lists of candidates. While omitting these tests allows to

map candidates faster, it increases the search space slightly as some

graph nodes get examined while they do not have all required

edges. However, the speed gain of omitting these tests still

outweighs the slight increase.

The SPRFs around 1 indicate that ISMA and ISMAGS follow

the same path through the search space. This is primarily the case

when the symmetry in the subgraphs is incorporated in ISMA (e.g.

‘‘GGG’’, ‘‘SSS’’, cliques). Interestingly, ISMAGS still reduces

query times for these subgraphs due to the list-based implemen-

tation of its symmetry breaking. When calculating candidate sets

for the subgraph nodes involved in the symmetric structures,

ISMA removes nodes from constraints sets before calculating the

intersections of its sets. This ensures that no nodes get mapped in

symmetric configurations. However, to calculate the intersection,

ISMA still needs to intersect the different sets. ISMAGS uses the

ID-based constraints derived during symmetry analysis to avoid

most work during list intersection. Using the constructed partial

mapping and the constraints, ISMA can quickly find the

interesting range of nodes in the to-be-intersected lists and ignore

the remainder. This reduces the time needed for candidate set

generation and improves execution time results. Additionally, as

explained above, ISMAGS omits the large initial lists of candidate

graph nodes when calculating candidate set lists once the initial

node is determined. This reduces calculation time as less list

membership needs to be checked.

The speed-up factor in Table 6 shows the ratio of the

calculation time of ISMA to the calculation time of ISMAGS.

For most investigated subgraphs, the speed-up factor is larger than

3, indicating that ISMAGS only needs a third of the calculation

time of ISMA. While ISMAGS gives a speed-up for the subgraphs

previously published [14] due to the more optimised list-based

implementation, it was designed to handle more complex

symmetries in the subgraphs. This can be seen in the results of

the Petersen graph and the line graphs. The Petersen graph [25] is

inherently very symmetric as one instance can be permuted in 120

other instances. The line graphs (‘‘P0P’’, ‘‘P0P00P’’ and

‘‘P0P00P000P’’) consist of n nodes, connected by n{1 edges,

with node ni connected to niz1 for i~1::n{1. As such, the line

Table 8. Comparison between ISMAGS, VF2, GK and G-Trie on the biological networks.

Calculation time (ms)

#instances VF2 GK G-Trie ISMAGS

#runs 1000 1000 1000 1000

PGS-network

GGG 9008 885.56 319.27 1.03 5.80

SSS 78 24.12 22.90 0.25 0.24

SsS 0 22.50 17.40 0.22 0.06

P0P 24452 268.76 103.81 - 2.87

P0P00P 221290 4252.12 585.77 - 30.67

P0P00P000P 2570154 35303* 5705.64 - 302.55

Petersen 9430 6854418* 53608* - 733.25

Reduced PGS-network

3-clique 10614 1170* 511.33 1.51 8.81

4-clique 11150 7300* 1177.12 3.60 27.60

5-clique 7669 32527* 2160.31 5.55 48.36

6-clique 3616 115409* 2968.93 7.44 64.90

7-clique 1158 329521* 3513.20 14.41 76.63

8-clique 226 754671* 3700.21 71.60 84.97

9-clique 24 1337881* 3813.57 671.08 92.21

10-clique 1 1848315* 4181.80 - 99.08

The top row denotes, for each algorithm, the number of runs averaged to obtain the reported timing results. However, for results denoted with an asterisk, only 1 run
was performed. For the G-Trie algorithm, some results are missing as the size of the subgraph ( = 10 nodes) was not supported by the reference implementation. The
results for the ‘‘P0P’’, ‘‘P0P00P’’ and ‘‘P0P00P000P’’ are also omitted as the algorithm did not support ‘‘don’t care’’ links.
doi:10.1371/journal.pone.0097896.t008
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graphs correspond to chains of nodes. The symmetry in these

graphs is limited to reversing the chains, as every subgraph

instances can be read left-to-right and right-to-left. While this is a

simple symmetry, it involves multiple nodes being remapped,

which was not fully incorporated in ISMA.

An analogous analysis was done on the Slashdot and SNAP

networks and can be found in Table 7. The test instances with

SPRF~1 (cliques) have similar search spaces between the 2

algorithms. For the G4 graph, the SPRF slightly increases,

indicating that ISMAGS mostly traverses the same search space as

ISMA (as no symmetry could be exploited), with the exception of a

few optimised list selections. The results for the tetrahedron show a

SPRFw1, indicating that the symmetric structure in the

tetrahedron is taken into account by ISMAGS but not by ISMA.

The speed-up factors are slightly lower for the Slashdot test

instances than for the biological and SNAP networks. This is

mostly due to the fact that ISMA already incorporates most of the

symmetric information in the subgraphs and thus leaves less room

for improvement for ISMAGS. However, ISMAGS still speeds up

the searches. The speed-up factors for the G4 graph are also

slightly lower than for the other graphs as no symmetry could be

used to speed up the search.

Full comparison
In addition to ISMA, the ISMAGS algorithm was compared to

3 similar algorithms, viz the VF2, the GK and the G-Trie

algorithm. Tables 8 and 9 show the timing results of the VF2

algorithm, the subgraph enumeration algorithm from [7] and the

G-Trie algorithm for some of the subgraphs from the previous

section along with the results of ISMAGS. Note that not all test

instances from the previous table are repeated as the reference

algorithms implementations, in contrast to ISMA and ISMAGS,

were not designed to support multiple edges (of different types)

between a pair of nodes.

Table 8 shows the results for the test instances on the biological

networks. Compared to the VF2 algorithm, the GK algorithm

reduces query times by exploiting the symmetry in the cliques. As

the cliques have more nodes, the symmetry breaking increasingly

prunes the search space (e.g. for the 10-clique, only 1 match out of

10! permutations is retained). ISMAGS however further reduces

computation times by the optimised matching processes and

symmetry breaking described in the previous sections. For most

instances, ISMAGS reduces query times by 1–2 orders of

magnitude compared to VF2 and the GK algorithm.

Of the reference algorithms, the G-Trie algorithm was the only

one able to match the performance of ISMAGS. While G-Trie

Table 9. Comparison between ISMAGS, VF2, GK and G-Trie on the SNAP networks.

Calculation time (ms)

#instances VF2 GK G-Trie ISMAGS

#runs 100 100 1000 1000

Wiki-Vote

3-clique 608389 187191.52 27940.99 90.28 410.19

4-clique 2077903 3410302u 189357.30 613.08 5156.31

tetrahedron 84787 15260.17 106367.64 443.71 320.72

G4 62406 8168.52 128836.22 1006.36 448.54

p2p-Gnutella08

3-clique 2383 816.04 1163.03 6.66 21.23

4-clique 175 1659.69 1359.35 6.81 28.69

tetrahedron 2 114.66 1151.98 6.18 4.92

G4 6 108.73 1766.08 12.32 7.97

p2p-Gnutella30

3-clique 1590 6259.23 5681.83 43.21 113.69

4-clique 13 5867.19 5527.54 43.07 139.06

tetrahedron 2 1991.82 5793.46 34.34 28.03

G4 0 1964.98 6671.50 72.07 38.12

CA-CondMat

3-clique 173361 37742.10 7196.78 41.73 128.96

4-clique 294008 232134.17 15558.19 68.48 357.29

tetrahedron 0 6547.67 11779.51 40.48 35.08

G4 0 4848.04 13660.84 121.68 54.06

CA-HepTh

3-clique 28339 4441.81 1416.95 7.64 30.45

4-clique 65592 21374.00 2361.03 11.19 64.56

tetrahedron 0 539.45 1790.64 6.65 9.16

G4 0 392.03 2449.13 19.03 11.54

Similar to Table 8, the top row denotes, for each algorithm, the number of runs averaged to obtain the reported timing results. However, the result denoted with a circle
was averaged over 10 runs.
doi:10.1371/journal.pone.0097896.t009
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performs very well for the clique graphs, it was not able to process

the large subgraphs as ISMAGS did. Results are also missing for

the line graphs (‘‘P0P’’, ‘‘P0P00P’’ and ‘‘P0P00P000P’’) and the

Petersen graph as G-Trie expects all edges to be defined as present

or absent while in ISMAGS undefined edges are treated as ‘‘don’t

care’’ ( = can be present or absent).

The results for the instances on the SNAP networks are shown

in Table 9. Compared to VF2 and GK, ISMAGS again

significantly reduces query times by 1–2 orders of magnitude.

This allows to process larger networks in reasonable time frames

and opens up possibilities for research. Interestingly, the GK

results for the tetrahedron instance are worse than the VF2

algorithm. This can be explained by the fact that the GK

algorithm focuses on reducing the search space while VF2 focuses

on search space traversal. GK reduces the search space by a factor

of 3 (by exploiting the symmetry of the tetrahedron) but the VF2

more efficiently processes its (larger) search space. For larger

subgraphs, GK becomes better as the symmetry breaking can

prune more search space.

While the G-Trie algorithm performs well for clique graphs,

ISMAGS performs better for the tetrahedron and the G4 graph.

This is due to the dynamic node order in the search space

traversal. While this optimisation is one of the primary features of

ISMA and ISMAGS, the order in which the nodes are mapped in

G-Trie is fixed to accommodate matching multiple subggraphs at

the same time. This gives ISMAGS the advantage when matching

single subgraphs with varying neighbour list sizes.

ISMAGS was implemented in Java, a high level programming

language with the advantages of dynamic memory management,

fast implementation, easily accessible (i.e. readable) code and

portability. However, additional speed-up could be gained by

implementing ISMAGS in C(++), as is the case for G-Trie, but at

the cost of losing the flexibility and portability.

Conclusions

In this paper, we present the Index-Based Subgraph Matching

Algorithm with General Symmetries (ISMAGS), an improved

version of the Index-Based Subgraph Matching Algorithm

(ISMA). The improved version takes into account all symmetric

structures in a subgraph. Whereas ISMA minimises the search

space exploration by optimising the order in which the nodes of

the query subgraph are investigated, it only takes into account the

basic symmetries (e.g. single node symmetry and rotation).

ISMAGS removes this restriction by introducing symmetry-

breaking constraints in the search tree traversal using a customised

symmetry analysis. This analysis yields symmetry-breaking con-

straints which were incorporated in a list-based implementation of

the algorithm. Experiments show that the optimised implementa-

tion of list operations and the symmetry-breaking constraints

significantly reduce calculation times. On average, a speed-up

factor (compared to ISMA) of 3 to 4 was present for the subgraphs

in the experiments. However, depending on the degree and

complexity of symmetry in the subgraph, the speed-up factor

varied between 1.14 (for simple symmetric structures already

incorporated in ISMA) to 451 (for complex symmetries).

Compared to the VF2 and GK algorithms available in literature,

ISMAGS also reduces query times by 1 to 2 orders of magnitude.

ISMAGS’ performance is more closely matched to the G-Trie

algorithm but the latter does not perform well on larger subgraphs

and cannot take advantage of ordering nodes dynamically. While

ISMAGS was initially developed to speed up finding subgraph

instances in biological networks with multiple edge types, the

algorithm can also be used in non-biological networks like social

networks to speed up network analysis (e.g. mining for social

structures).
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