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The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes,
including proliferation, differentiation, apoptosis, Ca2

+ homeostasis, energy metabolism, inflammation, tissue repair, and
migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable.
The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple
members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary
disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive
research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several
S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the
potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines
potential therapeutic strategies for treatment.

1. Introduction to S100 Proteins

In multiple diseases, numerous exogenous and endogenous
factors trigger inflammatory cascades. A family of endoge-
nous proinflammatory mediators named damage-associated
molecular patterns (DAMPs; also known as alarmins) have
become of special interest in the past few decades. During
stress reactions or cell injury, DAMPs are released and acti-
vate inflammatory pathways [1]. DAMPs function indepen-
dently when they are intracellular and act in a cytokine-like
manner when they are extracellular. Of note, it is suggested
that the term “DAMPs” is too broad of a term to characterize
all endogenous molecules linked to an inflammatory path-
way; thus, there is an ongoing debate on defining DAMPs
and classifying them [2]. One family of DAMPs that have
been identified to play a significant role in the host immune
response in multiple diseases is the S100 protein family.

S100 proteins are involved in both intracellular and
extracellular processes including cell apoptosis, migration,
protein phosphorylation, calcium balance, differentiation,
proliferation, and inflammation [3–6]. The term S100 was
first used by Blake Moore to describe proteins that were sol-
uble in 100% saturated ammonium sulfate in 1965 [7]. There
are now 25 such S100 proteins/complexes described, which
include 16 S100A proteins (S100A1-S100A16) as well as
others (such as S100B, S100G, S100P, and S100Z) [8]. The
S100 protein family is exclusively expressed in vertebrates.
It consists of small (10-14 kDa), acidic, and calcium-
binding proteins (CaBPs) with two distinct EF-hand motifs
(helix-loop-helix) [9]. This subfamily of CaBPs exists mainly
as homodimers but can also exist as monomers (only S100G
is stable in this configuration), heterodimers (S100A1/S100B
and S100A8/S100A9), or multimers intra- and extracellu-
larly. Their expression is tissue and cell-type specific [10].
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Along with Ca2+, S100 proteins also bind many other transi-
tion metal ions (e.g., Fe2+, Cu2+, Mn2+, Zn2+, and Ni2+) that
result in a conformational change allowing interaction with
target proteins [11, 12]. S100 proteins act as DAMP mole-
cules and can work as stimulatory ligands for both immune
and nonimmune cells, such as endothelial cells [13]. They
do so by binding pattern recognition receptors (PRRs) such
as toll-like receptor 4 (TLR4) as well as non-PRR DAMP
receptors such as advanced glycation end products (RAGE)
[14]. By binding to these receptors, S100 proteins trigger
downstream nuclear factor-κB (NF-κB), which results in
upregulation of the proinflammatory gene expression [15,
16]. In this review, we outline the potential role of the S100
protein members in pulmonary diseases and detail potential
molecular mechanisms they may play in disease initiation
and progression. Equally, we outline potential therapeutic
approaches to treat pulmonary diseases by targeting S100
proteins.

2. S100 Proteins: Activation, Expression,
Interacting Proteins, and Targets

S100 proteins interact with a variety of target proteins includ-
ing enzymes, cytoskeletal subunits, receptors, transcription
factors, and nucleic acids. Therefore, through structural
changes, interactions with Ca2+, posttranslational modifica-
tions, receptor-mediated transduction, and direct responses
S100 proteins mediate many processes.

2.1. S100 Protein Structure, Calcium Bind, and
Posttranslation Modifications. Pending on the cellular and
extracellular location of S100 proteins, they can interact with
many proteins and form dimers. There are two critical steps
for S100 protein activation: Ca2+ binding [17] and dimer for-
mation [18]. Typically, the S100 proteins are observed as
symmetric dimers, with each S100 subunit containing four
α-helices [4]. Several heterodimers are reported among fam-
ily members in vitro, but only the S100A8-S100A9 heterodi-
mer is believed to play a significant role in vivo [19]. S100
subunits contain two Ca2+-binding domains, a carboxy-
terminal canonical domain composed of 12 amino acids
and an amino-terminal domain composed of 14 amino acids
[4]. Both are connected by a 10-12 residues region, crucial for
target interactions. Ca2+-binding affinity drastically increases
when a target engages [20–22]. Upon binding Ca2+, S100
proteins undergo conformational rearrangement exposing a
hydrophobic cleft that is required for target binding. There-
fore, S100 target binding is mostly Ca2+-dependent. Individ-
ual S100 family members exhibit differences in surface
geometries, hydrophobic residue distribution, and charge
density [23]. Several S100 proteins undergo posttranslational
modifications, such as oxidative modification, s-nitrosyla-
tion, phosphorylation, covalent modification, transglutami-
nase 2-mediated crosslinking, sumoylation, S-
glutathionylation, cysteinylation, the formation of intra-
and intersulfinamide bonds, or intracellular localization
[24–29]. The activity of S100 proteins is regulated by metal
ions, such as calcium, zinc, and copper, that modulate the
folding and oligomerization of the protein [30]. Regarding

pulmonary disease, few studies focus on the structure or
modification of S100 proteins but merely their presence or
the impact of deficiency or inhibition on disease initiation
or progression.

2.2. S100 Expression Profile. Each S100 family protein is
encoded by a separate gene, mostly but not limited to chro-
mosome 1q21 [9]. When examining the expression of each
S100 gene between different cell types or tissues, despite
structural similarities and clustered genes, each S100 gene
has a very specific expression pattern [31–33]. Therefore,
we must not expect similar expression patterns for each
S100 gene member. Dysregulated expression of multiple
S100 family members occurs in most diseases. Epigenetic
events are reported in various medulloblastoma cell lines
resulting in dysregulated S100 gene expression [34]. DNA
de-methylation and hypomethylation [35] and micro-RNA
regulation are reported in the regulation of the S100 gene
expression. CpG islands are observed in the 5′ regulatory
regions of S100A2, S100A6, S100A10, and S100A11 genes,
within the proximal promoter and the first two introns
[36]. Methylation of these islands is typically associated with
a repressed chromatin state and transcription inhibition. But
not all S100 genes contain these CpG islands, such as S100P
and S100Z genes. Equally, several S100 genes are reported
to be upregulated due to several extracellular factors, such
as oxidative stress, certain cytokines, and growth factors in
many types of cells [37]. Within pulmonary diseases, the
expression of S100 genes is reported to be primarily triggered
by extracellular responses. Importantly, different subsets of
monocytes can have different expression profiles of S100 pro-
teins [38]. Our group demonstrated that the protein tyrosine
phosphatase (PTP1B) could negatively regulate the S100A9
expression and reduced S100A9 stimuli responses via regula-
tion of TLR4 signaling [39]. However, there are several other
means to regulate the S100A9 expression as it is sensitive to
the Src kinase inhibitor PP2 [40] and the STAT3 expression
[41]. Therefore, the S100 gene expression varies depending
on the cell type, tissue, external stimuli, age, and possible sex.

2.3. Secretion of S100 Proteins. Little is known about the
mechanisms that mediate the secretion of S100 proteins.
The S100 proteins lack a leader sequence and are not secreted
via the classical Golgi pathway. The secretion of S100 pro-
teins appears to occur either passively upon cell necrosis or
actively following cell activation. Several S100 proteins
undergo secretion following stimulation by particular cell
activators, such as serotonin-receptor agonists [42], antide-
pressants, glutamate, adenosine, IL-1β [43], lysophosphati-
dic acid, and changes in extracellular Ca2+ and K+ levels
[44]. Some S100 proteins have affinities to lipid structures
that may allow them to translocation across the plasma
membrane following cell stress or activation [45]. Equally,
S100 proteins can interact with phospholipid-binding pro-
teins, such as S100A10 binding to Annexin A2 [46], to induce
exocytosis of intracellular S100 proteins to the extracellular
domain. S100 protein members, S100A8/S100A9, may be
released from necrotic myeloid cells or actively secreted fol-
lowing translocation to the membrane, utilizing an intact
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microtubule network and PKC activation [47]. Oxidative
stress can induce the release of S100 proteins from several
cells. S100A8/S100A9 could be released neutrophil extracel-
lular traps (NETs). Therefore, S100 proteins may be readily
secreted within the lungs. Expression levels and plasma or
BALF levels of several S100 proteins are observed to be
altered in the lungs of several pulmonary diseases, as outlined
in Section 3 and Table 1.

2.4. S100 Protein Receptors and Targets. Once released to the
extracellular space, S100 proteins trigger immune cell activa-
tion through binding to different cell surface receptors. S100
proteins primarily trigger inflammation responses through
their interactions with toll-like receptor (TLR) 4 and receptor
for advanced glycation end products (RAGE) [48]. S100A8
and A9 are known to bind to TLR4 [48], while S100A7,
S100A12, S100A8/A9, and S100B interact with RAGE [16,
49, 50]. By interacting with RAGE and/or TLR4, S100 pro-
teins can activate mitogen-activated protein kinases (MAPK)
responses and transcription factors, such as NF-κB, resulting
in the production of proinflammatory cytokines [50, 51].
S100A6 activates RAGE to promote apoptosis [52]. However,
S100B inactivates RAGE [53]. S100 proteins are also known
to interact with extracellular matrix metalloproteinase
inducer (EMMPRIN) (also known as CD147), G-protein-
coupled receptor (GPCR), CD36 [54], FGFR1 [55], CD166
antigen [56], IL-10 receptor [57], neuroplastin-β [58],
CD68 [59], and ErbB4 [60] (see Figure 1). It is important to
note that S100 protein heterodimers and the presence of cal-
cium may also influence different receptor responses.

3. Linking S100 Proteins to Pulmonary
Disease Outcomes

Multiple sources suggest that S100 protein family members
augment the inflammatory response and disease outcomes
in a variety of different pulmonary diseases.

3.1. S100A1. S100A1 is a small (~10 kDa) protein that pre-
dominantly functions to modulate the Ca2+ milieu, energy
metabolism, and contraction of the cardiac myocytes [61]. It
is also shown to be present in vascular endothelial cells and
smooth muscle cells, and its absence is associated with a
hypertensive phenotype in animal models partly secondary
to endothelial cell dysfunction [62, 63]. Teichert-Kuliszewska
et al. demonstrated that S100A1 is also expressed in the lung
vascular endothelium, and its deficiency in knockout (KO)
mice leads to increased right ventricular (RV) systolic pressure
(RVSP) as well as aberrant endothelial-dependent relaxation
in response to acetylcholine and decreased availability of nitric
oxide (NO) thus predisposing to pulmonary hypertension
[61]. Pigs embolized with Sephadex developed RV hypertro-
phy and, interestingly, showed increased RV S100A1 expres-
sion and mild pulmonary hypertension (pH) [64].

3.2. S100A2. S100A2 is linked to both suppressions of tumor
progression as well as being a promoter of carcinogenesis
[65–69]. Its role in non-small-cell lung cancer (NSCLC)
was elucidated by Feng et al. who suggested that hypermethy-

lation of the promoter region of the S100A2 gene led to its
downregulation in the early stages of NSCLC carcinogenesis
thus contributing to tumor progression [68]. In contrast,
some data suggest that overexpression of S100A2 may indi-
cate a poor prognosis in stage 1 NSCLC [70]. EGF-
stimulated EGFR phosphorylation induces the S100A2
expression, and S100A2 exhibits antitumor activity by reduc-
ing the rate of tumor growth when overexpressed in nude
mice with NCI-H2172 cell tumor xenograft model [71].

3.3. S100A3/S100A13. Mutation of the S100A3 gene leads to
the replacement of arginine with cysteine at the 77th position
of the S100A3 protein along with a mutation of the S100A13
gene leading to decreased expression of both proteins. This is
implicated in an atypical genetic variant of early onset inter-
stitial pulmonary fibrosis [72]. The decreased expression of
these proteins leads to abnormal calcium homeostasis intra-
cellularly, decreased tolerability of oxidative stress, and
altered expression of extracellular matrix proteins. In addi-
tion to its role in idiopathic pulmonary fibrosis (IPF),
S100A3 is also a potential drug target in lung cancers. Gianni
et al. showed that knockdown of S100A3 leads to degradation
of RARα, a transcription factor that plays a role in the anti-
proliferative effects of All-trans retinoic acid (ATRA) [73],
by proteasomes thus inducing resistance to the antiprolifera-
tive and differentiating effects of ATRA on lung cancer cells
[74]. Tumor microvascular density (MVD) is an indicator
of tumor neovascularization which advocates recurrence,
potential for metastases, and survival of cancerous cells.
Overexpression of S100A13 in stage I NSCLC has been asso-
ciated with enhanced intratumoral MVD. This suggests that
S100A13 plays a role in lung cancer progression and metas-
tasis [75]. Similarly, it is associated with a more aggressive
invasive phenotype of lung cancer [76].

3.4. S100A4. S100A4 was originally labeled as a specific
marker of fibroblasts in different tissues and was termed as
FSP-1 (fibroblast-specific-protein-1), but further studies
showed that S100A4 is also involved in the fibrogenic of mes-
enchymal progenitor cells in the lung thus contributing to the
pathogenesis of IPF [77]. S100A4 is released by M2 alveolar
macrophages, which then activates fibroblasts [77]. Inhibi-
tion of the S100A4 expression with niclosamide improved
survival in a bleomycin-induced fibrosis model in mice
[77]. Bleomycin significantly increases the S100A4 expres-
sion in alveolar macrophages [77]. Extracellular S100A4 acti-
vates lung fibroblasts by the upregulation of α-SMA, type I
collagen, and sphingosine-1-phosphate (S1P) [78]. S100A4
is also involved in the pathogenesis of lung cancer through
inhibition of autophagy [79], a process by which defective
proteins and organelles are degraded in lysosomes to main-
tain the cellular milieu [80, 81]. S100A4 inhibits starvation-
induced autophagy, thus promoting the proliferation of
NSCLC cells through activation of the Wnt/β-catenin path-
way in a RAGE-dependent manner [79]. S100A4 regulates
oxygen consumption rates, mitochondrial activity, ATP pro-
duction, and glycolytic activity by regulating mitochondrial
complex I subunit NADH dehydrogenase (ubiquinone) Fe-
S protein 2 (NDUFS2) [82]. Interestingly, S100A4 has some
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Table 1: S100 proteins involved in pulmonary diseases.

Protein
Receptor and interacting

proteins
Major cells expressing Pulmonary disease Study

S100A1 RAGE
Macrophages, dendritic,
epithelial, and endothelial

cells
Reduced in pulmonary hypertension [61]

S100A2 RAGE
Cancer cells, basal, club and

ciliated cells
Reported both induced and reduced in non-

small-cell lung carcinoma
[71]

S100A3
RAGE, retinoid receptor,
RARα, and PML-RARα

Endothelial, epithelial, and
lymphatic cells

Reduced in both pulmonary fibrosis and lung
cancer models

[72]
[74]

S100A4
TLR4, IL-10R, EGFR,
ErbB4, HSPG, GPCR,

and RAGE

Tumor cells, T cells,
neutrophils, and
macrophages

Increased in both lung NSCLC and pulmonary
fibrosis

[77]
[79]

S100A5 RAGE Macrophages and cancer cells Increased in nonsmoking NSCLC [84]

S100A6 RAGE
Most lung cells but

predominantly neutrophils,
macrophages, and NK cells

Increased in lung cancer cells, idiopathic
pulmonary fibrosis, sarcoidosis, and COPD

Reduced in CF

[90]
[95]
[95]
[95]
[94]

S100A7 RAGE
Epithelial cells and

neutrophils

Reduced in rhinosinusitis
Increased in lung NSCLC, squamous cell cancer,
asthma, bacterial-associated exacerbations, and
pulmonary involvement in systemic sclerosis

[100]
[98,
105,
219,
220]
[99]
[102]
[101]

S100A8
TLR4, heparan sulfate
and N-glycans, S100A9,

and RAGE

Many tissues but
predominantly monocytes,
granulocytes, and epithelial

cells

Increased in cystic fibrosis, extracellular levels in
COPD, chronic tuberculosis, asthma, acute lung

injury, restrictive allograft syndrome, and
COVID-19

Reduced intracellular levels in COPD

[93]
[107,
109]
[116]
[118]
[112]
[121]
[136,
137]

S100A9
TLR4, heparan sulfate
and N-glycans, RAGE,
S100A8, and EMMPRIN

Many cell types but
predominantly macrophages,
granulocytes, and epithelial

cells

Increased in COPD with and without AE, cystic
fibrosis, lung cancer, chronic tuberculosis, IPF,
acute, exacerbations, asthma, acute lung injury,
restrictive allograft syndrome, rhinosinusitis,

and COVID-19

[39,
108–
110]
[93]
[122,
221]
[116]
[123,
124]
[118–
120]
[112,
125]
[121]
[125]
[136,
137]

S100A10
GPCRs, serotonin

receptors, CCR10, and
AnxA2

Many cell types but
predominantly macrophages,
granulocytes, and epithelial

cells

Increased in lung adenocarcinoma,
hypertension, and acute lung injury

[129,
130]
[126]
[127]

S100A11 RAGE
Ubiquitous expression in

various tissues and cell types
[131,
222]
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antitumorigenesis properties as 10% of S100a4-/- mice
develop spontaneous tumors that are p54 positive, including
bronchioalveolar carcinomas [83]. This loss of S100a4 in
mice coincided with elevated S100a3 and S100a5 expression
in several tissues [83].

3.5. S100A5/S100G. The prognostic value of high levels of
expression of S100A5 and S100G mRNA is associated with
worse overall survival in the nonsmoking NSCLC patients
[84]. Further studies are warranted to further elucidate the
role of S100A5 as a prognostic marker in lung cancer. How-
ever, differential expression of S100A5 is observed in primary
human bronchial epithelial (HBE) isolated from healthy,
asthmatic, and COPD donors grown at the air-liquid inter-
face when exposed to fine particulate matter [85].

3.6. S100A6. S100A6 plays a role in the proliferation, apopto-
sis, cytoskeleton modulation, and stress-induced responses of
normal adult cell types as well as several tumorous cells [86].
It is overexpressed in lung cancer cells and serum from can-
cer patients [87, 88]. S100A6 plays a role in the proliferation,
invasion, migration, and angiogenesis of lung cancer cells by
degrading p53 acetylation, a process by which p53 gets acti-
vated and performs its role as a tumor suppressor [89]. The
S100A6 expression is downregulated by overexpression of
the microRNA, miRNA-193a, thereby increasing p53 acety-
lation [90]. Hematopoietic stem cells from S100a6-/- mice

have impaired self-renewal and regenerative capacity [91].
Chronic exposure to cigarette smoke increases S100A6 lung
levels in Wistar rats [92]. Mice deficient for the cystic fibrosis
(CF) transmembrane conductance regulator (CFTR) gene
develop multiple complications, including severe pulmonary
disease. Male Cftr-/- mice have elevated lung S100a8 and
S100a9, while demonstrating reduced S100a6 and S100a13
[93]. A recent study suggests that there is an S100A6 profile
in systemic sclerosis and may represent a potential biomarker
[94]. Finally, although the levels of S100A6 along with
S100A11 are different between IPF, sarcoidosis, and COPD
subjects and healthy controls, there was no prognostically
significant [95].

3.7. S100A7. The majority of early work looking at S100A7,
also called psoriasin, focused on psoriasis [96, 97]. However,
several studies suggest that S100A7 may have a role in several
respiratory diseases, including lung cancer [98], asthma [99],
rhinosinusitis [100], pulmonary complications of systemic
sclerosis [101], and bacterial exacerbations [102]. S100A7 is
a chemotactic protein for CD4+ T cells and neutrophils pres-
ent in the skin epidermis [103]. It also functions as a direct
bactericidal protein [104]. Kim et al. demonstrated that levels
of S100A7 and S100A8/A9 were reduced in chronic rhinosi-
nusitis (CRS) patients with a mixed ball of bacteria and fungi
compared to a fungal ball [100]. This implies that the barrier
function of the nasal epithelial cells is reduced in mixed

Increased in lung adenocarcinoma,
hypertension, idiopathic pulmonary fibrosis,

sarcoidosis, and COPD

[223]
[95]
[95]
[95]

S100A12
TLR4, RAGE, N-glycans,
scavenger receptors, and

GPCR
Granulocytes and monocytes

Increased in asthma, COPD, ARDS, restrictive
allograft syndrome, and COVID-19

[134,
135]
[109]
[224]
[121]
[136,
137]

S100A13 RAGE
Ubiquitous expression in

various tissues and cell types
Increased in pulmonary fibrosis and lung cancer

cells

[72]
[75,
225]

S100A14/S100A11P RAGE
Epithelial cells and cancer

cells
Increased in lung adenocarcinoma and NSCLC

[139,
226,
227]

S100A15 GPCR Cancer cells and neutrophils Increased in lung adenocarcinoma [140]

S100A16
Unknown receptor

interaction but binds to
S100A14

Cancer, epithelial, endothelial
cells, and fibroblasts

Increased in lung adenocarcinoma and NSCLC
[141,
142]

S100B RAGE and FGFR1
Cancer cells, dendritic cells,

and lymphocytes
Increased in lung SCL but reduced in NSCLC

[145]
[84]

S100G Annexin A10 Epithelial and cancer cells Increased in lung NSCLC [84]

S100P RAGE and p53 Epithelial and cancer cells
Increased in restrictive allograft syndrome, lung

NSCLS, adenocarcinoma, and pulmonary
arterial hypertension

[121]
[146,
148,
149]
[150]

S100Z
S100A1, S100A3, and

S100B
Monocytes and dendritic cells No known pulmonary link
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fungal and bacterial infections thus putting patients at risk of
developing an invasive fungal infection.

S100A7 also appears to play a role in the pathogenesis of
NSCLC. A study investigating the TGFβ signaling pathway
in the progression of NSCLC demonstrated that the TGFβ-
induced long noncoding RNA (TBILA) binds to S100A7 thus
activating the S100A7/JAB1 pathway leading to NSCLC pro-

liferation and metastasis [98]. The S100A7 expression is
induced by activation of the Hippo pathway and acts as a
facilitator in the adenosquamous transition of lung cancer
cells [105]. S100A7 levels are higher in lung squamous carci-
noma and have the potential to be used as a diagnostic
marker as its levels are elevated in cancerous cells as com-
pared to nonneoplastic cells [106]. Knockdown of S100A7

Multiple genes

MyD88

4

Stressors
inflammation

Granule release:

Large source of S100 proteins

 MyD88

JNK p38 ERK

Cell differentiation
Inflammation
Cell migration
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Tissue repair
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Figure 1: Extracellular functions of S100 proteins. Several factors can trigger S100 proteins to be released or secreted frommultiple cell types,
including granulocytes. The extracellular S100 proteins interact with several pattern recognition receptors, resulting in proinflammatory
signaling pathways that promote cell differentiation, inflammation, migration, apoptosis, proliferation, tissue repair, and a robust type-1
interferon response. Only a portion of the RAGE, HSPG/GPCR, TLR4, and CD147 responses are shown here. RAGE: receptor for
advanced glycosylation end products; EGFR: epidermal growth factor receptor; ErbB: v-erb-b2 avian erythroblastic leukemia viral
oncogene homolog; HSPG: heparan sulfate proteoglycans; GPCR: Gα9-coupled receptor; TLR4: toll-like receptor 4; SR: scavenger
receptor; FGFR1: fibroblast growth factor receptor 1; CD147: cluster of differentiation 147; EMMPRIN: extracellular matrix
metalloproteinase inducer; TIRAP: TIR domain containing adaptor protein; MyD88: myeloid differentiation factor 88; IRAK: interleukin 1
receptor-associated kinase; TAK1: transforming growth factor-β- (TGFβ-) activated kinase 1; TRIF: TIR-domain-containing adaptor
protein inducing IFNβ; TRAM: translocating chain-associated membrane; TRAF: TNF receptor-associated factor; PI3K: phosphoinositide
3-kinases; Akt: protein kinase B; JNK: JUN N-terminal kinase; ERK: extracellular signal-regulated kinase; AP-1: activator protein 1;
CREB1: cAMP-responsive element-binding protein 1; NF-κB: nuclear factor-κB; IRF: interferon regulatory factor; IκBα: nuclear factor of
kappa light polypeptide gene enhancer in B cell inhibitor, alpha; IKK: inhibitor of NF-κB kinase.

6 Pulmonary Medicine



leads to decreased phosphorylation of NF-кB thus inhibit-
ing tumor proliferation. This marks S100A7 as a potential
therapeutic target for the treatment of lung squamous cell
cancers [106].

In asthma, S100A7 plays a role in the interplay between
the proinflammatory cytokine IFN-γ and IL-22. The expres-
sion of S100A7 is induced by IL-22, and these effects are in
turn inhibited by IFN-γ [99]. The expression of S100A7 is
enhanced in cases where S. aureus is found in the respiratory
tract thus stressing the role of this molecule in the epithelial
barrier of the lower respiratory tract [102]. S100A7 levels cor-
relate with lung involvement in systemic sclerosis, and the
increased expression of psoriasin in the whole saliva has a
specificity of 50% and a sensitivity of 85% in detecting lung
involvement in this condition [101].

3.8. S100A8 and S100A9. As mentioned above, S100A8 and
S100A9 proteins are upregulated in Cftr-/- animals, thus sug-
gesting a role of these proteins in the disease process of CF
[93]. The anti-inflammatory role of S100A8 in emphysema
was investigated by Lin et al., and low intracellular S100A8
levels were observed in emphysema that correlated with dis-
ease severity. Furthermore, this protein also has a cytoprotec-
tive role, as it is shown that the knockout of this protein leads
to oxidative stress-induced cell apoptosis while elevated
levels prevent cellular injury [107]. Interestingly, the
S100A8/A9 heterodimer may play a role in acute exacerba-
tions of COPD, as it is negatively associated with FEV1% in
these patients [108]. Similarly, another study observed ele-
vated S100A8 and S100A9 in COPD samples [109]. Our
group has identified S100A9 signaling in smoke and age-
related COPD progression [110]. Levels of S100A9 are ele-
vated in older animals as well as animals exposed to cigarette
smoke [110]. The unique intracellular and extracellular
responses of both of these proteins require further investiga-
tion in the lungs. Similar to COPD, it appears that S100A8,
S100A9, and the S100A8/A9 heterodimer have opposite
effects in acute lung injury (ALI). S100A8 similarly inhibits
ALI to dexamethasone [111] while S100A9 and calprotectin
(the S100A8/A9 complex) promote neutrophil influx by
increasing mast cell degranulation and upregulation of par-
ticular chemokines. S100A8 is IL-10 dependent while
S100A9 and calprotectin do not induce IL-10 in the airways
or tracheal epithelial cells [112].

The S100A8/A9 complex is expressed in tuberculosis
(TB) [113–115], as S100A8/A9-expressing neutrophils are
observed to assemble in granulomas and S100A8/A9 levels
correlated with active disease [113]. This protein also medi-
ates neutrophil accumulation in chronic TB by upregulating
the integrin molecule CD11b [116]. The levels of both of
these proteins in BALF and sera of asthmatic patients corre-
late with elevated levels of serum IgE [117]. In addition, they
inhibit the apoptosis of neutrophils by increasing the levels of
MCP-1, IL-6, and IL-8 through the PI3K/AKT/MAPK/NF-
κB pathway [118]. S100A9 enhances the migration of fibro-
cytes in asthma exacerbations as well as chronic obstructive
asthma [119]. S100A9 and/or S100A8/A9 may also have an
anti-inflammatory function in asthma by downregulating
the function of CD4+ Treg cells [120].

Saito et al. elucidated the role of alarmins in chronic lung
allograft dysfunction (CLAD), a major contributor to mor-
bidity and mortality in long-term survivors of lung trans-
plantation [121]. The two subtypes of CLAD, restrictive
allograft syndrome (RAS) and bronchiolitis obliterans syn-
drome (BOS), exhibited distinct expression patterns of alar-
mins including S100A8, S100A9, S100A8/A9, S100A12,
S100P, HMGB1 (high mobility group box-1), and soluble
RAGE suggesting different biologic profiles of CLAD sub-
types. S100A8/A9 overexpression could be involved in the
interaction of metastatic lung cancer cells and bone marrow
adipocytes leading to bone destruction [122]. S100A8 and
S100A9 are upregulated in the acute exacerbations of idio-
pathic pulmonary fibrosis (IPF) suggesting roles of different
signaling pathways like Clathrin-mediated endocytosis sig-
naling, atherosclerosis signaling, and IL2 signaling in the
pathogenesis of acute exacerbations of IPF [123]. Serum
S100A8/A9 levels are significantly increased in patients
with IPF compared with healthy controls and correlate
with the diffusing capacity for carbon monoxide (DLCO)
and the composite physiologic index [124]. Finally, ele-
vated levels of S100A9 protein are present in the nasal tis-
sues of chronic rhinosinusitis (CRS) subjects. S100A9
mediates the MMP3 expression, resulting in nasal epithe-
lial cell proliferation [125].

3.9. S100A10. S100A10 is believed to be a signature gene
involved in blood pressure regulation and maybe a potential
target for the detection of risk, prevention, and treatment of
hypertension [126]. S100A10 is also one of the cytoskeletal
regulatory proteins. It enhances endothelial cell barrier func-
tion and is recruited to the caveolin-induced microdomains
by high-molecular-weight hyaluronan [127] and potentially
could contribute to syndromes of endothelial dysfunction
like acute lung injury and sepsis. In primary lung cancers,
S100A10 overexpression is associated with higher stage and
invasiveness of lung adenocarcinoma [128] as well as lym-
phatic invasion, cancer stage progression, and poor progno-
sis in lung squamous cell carcinoma [129]. Increased
expression of Kallikrein-related peptidase 6, a serine protease
that is normally expressed in mammary tissue, is linked with
the enhanced metastatic potential of breast cancer to the
lungs and elevated expressions of S100 proteins, like
S100A4 and S100A11 [130]. On the contrary, expression at
physiological levels leads to suppression of some S100 pro-
teins (S100A4, S100A10, S100A13, S100A16) and thus inhi-
bition of lung metastases.

3.10. S100A11. S100A11 also called S100C or calgizzarin,
overexpression is linked with alterations in K-RAS
mutated lung adenocarcinomas as well as poorly differen-
tiated lung adenocarcinomas [131]. It is associated with
shorter disease-free survival in these tumors. S100A11
levels are increased in the plasma of patients with pulmo-
nary arterial hypertension (PAH) [132]. Hypoxia-induced
mitogenic factor, a protein upregulated in animal models
of PAH and asthma, is associated with S100A11-
mediated smooth muscle cell migration, vesicular exocyto-
sis, and nuclear activation [133].
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3.11. S100A12. S100A12 is strongly expressed in the early
stages of ALI and early acute respiratory distress syndrome
(ARDS) [134]. Possible effects of overexpression include acti-
vation of pulmonary endothelium, leukocyte extravasation,
and neutrophil accumulation leading to lung injury. Thus,
this protein has the potential to be used as a marker of
inflammation in ARDS. Contrary to ARDS and ALI, one
study demonstrated that this protein blunts inflammatory
responses in asthma in murine models [135]. It is also
reported to be elevated in COVID-19 patients [136, 137].

3.12. S100A14. The S100A14 expression is associated with a
subset of lung adenocarcinoma and has a strong correlation
with the invasive and migratory nature of lung adenocarci-
noma cells [138]. Its expression is also increased in NSCLC
where it has been demonstrated to act as a target of miR-
335-3p contributing to NSCLC progression through the
pathway involving cancer susceptibility candidate-9, a long
noncoding RNA (lncRNA) [139].

3.13. S100A15 and S100A16. Both S100A15 (S100A7A gene)
and A16 expression are altered in lung cancers. Increased
S100A15 expression and decreased DNA methylation of its
gene promoter region are associated with poor outcomes in
lung adenocarcinoma cases and potentially greater metastasis
[140]. The S100A16 expression is increased in NSCLC [141]
as well as adenocarcinoma [142] and is a potential marker for
prognosis in patients with these varieties of lung cancer.

3.14. S100B. S100B is a nervous system-specific protein and is
expressed in glial and Schwann cells [143]. Its levels can rise
in response to increased blood-brain barrier permeability
[143, 144]. Increased expression of this protein is associated
with brain metastases in patients with small cell lung cancer
(SCLC) and may indicate poor prognosis as higher levels
are linked with shorter survival time [145]. In contrast,
increased S100B mRNA expression is associated with better
survival in smoking NSCLC patients [84].

3.15. S100P. The S100P expression is associated with the
migration, invasiveness, and metastasis of lung cancer [146]
as well as the migration of NSCLC [147]. S100P, as an
immune-associated gene (IAG) signature, can potentially be
used in risk score models to predict the overall survival, stage,
lymph node accumulation, tumor metastasis, B cells, and
dendritic cell infiltration of lung adenocarcinoma [148].
S100P is sequestered by NORAD, an lncRNA, thereby play-
ing a role in the inhibition of metastatic potential of lung
and breast cancers [146]. The transcriptional activation of
S100P can be regulated by Porcupine proteins thus contrib-
uting to the development of NSCLC [149]. S100P may also
play a role in the pathogenesis of pulmonary hypertension
in patients with systemic sclerosis as it is overexpressed in
these patients [150].

4. Role and Mechanisms of S100 Proteins in
Pulmonary Diseases

4.1. S100 Protein-Mediated Signaling in Pulmonary Diseases.
In noncancerous pulmonary diseases, several S100 proteins

(S100A1, A4, A8, A9, A12, and B) are noted to induce multi-
ple pathways associated with pulmonary disease phenotypes.
Here, we will outline the known signaling transduction of
these S100 proteins in noncancerous pulmonary diseases.
The primary pathways investigated are TLR4 and RAGE-
mediated (Figure 1 and Table 1).

Deficiency of S100a1 results in pulmonary hypertension
in mice due to enhanced eNOS activity and nitric oxide
levels, via Akt/ERK1/2 pathways, and reduced endothelial
cell survival [61]. Alternatively, overexpressing S100A4 in
mice results in the development of RAGE-mediated pulmo-
nary arterial hypertension in females [151]. Stimulation with
17β-estradiol increases the S100A4 expression and prolifera-
tion in human pulmonary artery smooth muscle cells, and
this proliferation is prevented by blocking RAGE signaling
[151]. S100A4 also prevents autophagy and induces prolifer-
ation in A549 and Lewis lung carcinoma cells, via the RAGE
and Wnt pathways [79].

Similarly, S100A9 promotes proliferation of lung fibro-
blasts and upregulated expression of proinflammatory cyto-
kines (IL-6, IL-8, IL-1β) and collagen type III, via ERK and
NF-κB signaling [152]. The S100A8/S100A9 dimer induces
the secretion of cytokines, such as MCP-1, IL-6, and IL-8,
from bronchial epithelial cells in a TLR4/Akt mediated path-
way [118]. This process prevented neutrophil apoptosis in
cell coculture experiments [118]. Cigarette smoke is known
to modulate the signaling of TLR4 [153], RAGE [154], and
EMMPRIN [155]. Our group determined that enhanced
S100A9 signaling coincides with lung damage during respira-
tory syncytial virus (RSV) infection in mice [39]. We deter-
mined that S100A9 is enhanced by cigarette smoke
exposure and further enhanced during viral exacerbations
in mice and human primary lung cells [39]. We also recently
demonstrated that cigarette smoke-induced S100A9 contrib-
utes to loss of lung function, airspace enlargements, elastin
degradation, enhanced phosphorylation of ERK and c-RAF,
and altered expression of MMP-3, MMP-9, MCP-1, IL-6,
and KC/IL-8 [110]. Equally, elevated S100A9 levels in the
lungs correlate with aging [110]. This is also reported in the
central nervous system [156] and may occur with other
S100 proteins within the lung as S100B blood levels are age-
related [157, 158]. Interestingly, p-PKAα interacts with
S100A8 in lung tissue obtained from smokers [107]. This
interaction alters the phosphorylation of serine within
S100A8 and subsequent S100A8 protein destabilization and
degradation [107]. Loss of S100A8 increases the percentage
of apoptotic A549 cancer cells [107]. S100A8/S100A9 also
acts as a chemotactic factor by inducing neutrophil adhesion
[159] and can induce ROS-mediated apoptosis, autophagy,
mitochondrial damage, and lysosomal activation in various
cell types, including lymphocytes, macrophages, endothelial
cells, and tumor cells [51]. Expressions of S100a8 and
S100a9 are both elevated in the lungs of CF transmembrane
conductance regulator (Cftr) knockout mice, while S100a6
and S100a13 are reduced [93]. S100A8/A9 also regulates
CD11b expression and neutrophil recruitment during
chronic tuberculosis [116]. Interestingly, the downregulation
of S100A8 and S100A9 is associated with the differentiation
of myeloid cells toward dendritic cells and macrophages
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[160]. Alternatively, S100A9-/- mice displayed significantly
enhanced allergic airway inflammation upon exposure to
Alternaria alternata, including IL-13, CCL11, CCL24, serum
IgE, lung eosinophils, IL-13+IL-5+CD4+ T-helper type 2 cells,
airway resistance, and elastance [120]. Recently, we observed
that S100A9 expression in chronic rhinosinusitis samples
coincides with elevated plasma proteases, and S100A9 pro-
tein enhances MMP-7 and MMP-3 production and prolifer-
ation in the CCL-30 cell line [125].

Finally, S100A12 and S100B signaling is observed in the
lungs. Mice expressing the human S100A12 gene have
reduced peribronchial and perivascular inflammation,
mucus production, eosinophilia, and airway responsiveness
[135]. This was associated with S100A12 induced Fas expres-
sion and activation of caspase 3 in cultured airway smooth
muscle cells, thereby leading to reduced airway smooth mus-
cle [135]. In bronchial epithelial cells, the S100B expression is
upregulated due to MyD88-dependent activation of canoni-
cal NF-κB in the early stages of fungal infection but later
becomes downregulated via TLR-3/9-dependent signaling
[161]. CD8+ T cells and NK cells also express and secrete
S100B following stimulation [162].

4.2. S100 Proteins in Tissue Repair. Despite S100 proteins
being associated with cellular and tissue damage, several
members (including S100A7, S100A8/A9, S100A12, and
S100A15) are reported to also play a critical role in tissue
repair [163]. These S100 proteins are reported to be involved
in tissue repair in atherosclerosis, dermatitis, and arthritis
[14]. Importantly, S100A4 promotes muscle tissue repair to
maintain contractility following heart injury [164]. Within
pulmonary diseases, little is reported on the role of S100 pro-
teins in tissue repair. However, intracellular S100A8 was
recently shown to protect type II pneumonocytes from
smoke-induced cell death [107]. Hiroshima and colleagues
demonstrate that S100A9 and S100A8/A9 can reduce neutro-
phil influx in the LPS model of acute lung injury [112]. Since
S100A8/A9 and LPS target TLR4, S100A8/A9 may compete
for TLR4 binding with LPS. Interestingly, S100a9-/- mice
accumulated a lower frequency of CD4+ T regulatory (Treg)
cells following exposure toAlternaria alternata [120], leading
to more lung damage. Equally, despite S100B responses acti-
vating intracellular TLRs, during a pulmonary Aspergillus
fumigatus infection, S100B can itself resolve inflammation
via transcriptional inhibition of itself [161]. Therefore, sev-
eral members of the S100 family could influence cell fate,
inflammation, and tissue remodeling within the lungs. There
may also be several feedback loops that initially trigger
inflammation and subsequently regulates the resolution of
these responses to minimize damage and facilitate repair.

5. Targeting S100 Proteins to Treat
Pulmonary Diseases

Due to the involvement of S100 proteins in the pathogenesis
of numerous diseases as highlighted in this review and mouse
models suggest that genetic deletion has minimal effects on
normal physiology, there is increasing interest in therapeutic
targeting these proteins. Clinical trials to date have primarily

focused on nonpulmonary diseases such as systemic lupus
erythematosus (SLE), ischemic heart failure, and rheumatoid
arthritis. We will discuss S100 inhibitors and clinical trials
undertaken with these therapeutics to date (summarized in
Table 2).

5.1. Clinical Trials to Date Utilizing the Quinoline-3-
Carboxamide Derivatives S100 Protein Inhibitors. In the past
decade, several small molecules were identified to block the
hydrophobic cleft required for the recognition of S100 targets
and thus block their activity, such as paquinimod (ABR-
215757), tasquinimod (ABR-215050), and laquinimod
(ABR-215062). They are quinoline-3-carboxamide deriva-
tives that primarily block the interaction of S100A8 and
S100A9 with RAGE and TLR4 [165, 166]. Laquinimod, a
derivative of linomide (Roquinimex), interferes with S100
and its receptor RAGE binding and is proposed as a treat-
ment for multiple sclerosis [167]. Here, we will briefly outline
several of the clinical outcomes utilizing these quinoline-3-
carboxamide derivatives S100 protein inhibitors primarily
in prostate cancer, SLE, and multiple sclerosis. However,
few studies in human clinical trials report their findings as
of the time of this paper, and pulmonary outcomes are
limited.

Phase II randomized, double-blind, placebo-controlled
study in men with minimally symptomatic metastatic
castrate-resistant prostate cancer (CRPC), tasquinimod
improves progression-free survival in patients with metasta-
tic castration-resistant, possibly by reducing the recruitment
of MDSCs and inhibiting metastasis [168, 169]. However,
when tasquinimod was studied in a global phase III random-
ized trial in men with bone CRPC and while it significantly
improved radiographic progression-free survival, this did
not result in an overall survival benefit [170]. A recent phase
II study failed to demonstrate the clinical activity of tasquini-
mod in heavily pretreated patients with advanced hepatocel-
lular, ovarian, renal cell, and gastric cancer, and many
experienced adverse events such as fatigue, nausea, decreased
appetite, and vomiting [171].

There are multiple published findings from clinical trials
with laquinimod, most notably in multiple sclerosis popula-
tions. In a large, multicenter phase III clinical trial (ALLE-
GRO), laquinimod was well tolerated [172]. The most
common adverse events were elevated liver enzymes (3.6%
on laquinimod, 0.4% on placebo), abdominal pain, back pain,
and cough. However, another trial with laquinimod (BRAVO
[173]) in patients with relapsing multiple sclerosis showed
conflicting results with the efficacy of laquinimod in reducing
relapses and MRI measures of inflammation of multiple scle-
rosis patients. Recently, laquinimod did not reach the pri-
mary endpoint of reduction in confirmed disability
progression in a phase 3 trial of patients with relapsing mul-
tiple sclerosis [167].

Paquinimod is reported to be beneficial in several animal
models including systemic sclerosis [174], COPD [110], type
1 diabetes [175], and SLE [176]. Recently, our group
observed that treatment of cigarette exposed mice with
paquinimod, an S100A9 inhibitor, could preserve lung func-
tion [110]. In an SLE-prone mouse study where the animals
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developed significant glomerulonephritis resulting in hema-
turia and proteinuria, treatment with paquinimod was com-
parable to prednisolone or mycophenolate treatment [176].
A phase 1b study in humans demonstrates good tolerance
of paquinimod at 3mg/kg, but several adverse events, such
as arthralgia and myalgia, were reported with the highest
dose levels of paquinimod (4.5mg/day and 6.0mg/day)
[176]. However, although a phase 2 study was initiated, no
results have been released as of the time of this paper [177].

5.2. Other Potential Therapeutic Intervention of S100
Proteins. Here, we will briefly outline some alternative
approaches to target S100 proteins that could be applied to
lung diseases. These include gene delivery approaches, inhib-
itory antibodies and peptides, vaccines, and chemical inhibi-
tors (see Table 2). Several new compounds were recently
identified specifically for S100 proteins that inhibit the inter-
actions of S100P [178], S100A4 [179, 180], S100A9 [179],
S100A10 [181], and S100B [182, 183] with their targets.

Table 2: Current drug development targeting S100 proteins.

Therapeutic
approach

Agent Possible S100 protein interaction Current status Study

Small molecule
inhibition of
S100 proteins
Quinoline-3-
carboxamide
derivatives

Tasquinimod
(ABR-215050)

Oral administration that blocks S100A8 and
S100A9 interacting with RAGE and TLR4

Phase II randomized, double-blind, placebo-
controlled studies in men with minimally

symptomatic metastatic CRPC

[168–
170]

Paquinimod
(ABR-215757)

Oral administration that blocks
S100A8/S100A9 interacting with TLR4

Phase I study demonstrated good tolerance in
SLE patients, while a phase II study data never

published

[176,
177]

Laquinimod
(ABR-215062)

Oral administration that blocks S100A8 and
S100A9 interacting with RAGE and TLR4

Conflicting data in several multicenter phase II
and III clinical trials in multiple sclerosis

populations

[167,
172,
173]

Inhibitors of
S100 proteins

Cromolyn
(cromoglicic

acid)

An antihistaminic drug binds to S100A1,
S10012, S100A13, and S100P and disrupts

interactions with RAGE

FDA approved 20 years ago as an antihistaminic
drug, as a nasal spray (NasalCrom)

[178]

Amlexanox
Interacts with S100A1, S100A4, and
S100A13 to prevent their signaling

Used to treat recurrent aphthous ulcers but
discontinued in the USA

In Japan, it is used to treat bronchial asthma,
allergic rhinitis, and conjunctivitis

[184]
[228]

Phenothiazines,
such as

trifluoperazine

Disrupt the interaction of S100A4 with
myosin-IIA

Used to treat psychotic disorders, anxiety,
nausea, and vomiting caused by chemotherapy

[229]

Indirect
inhibitors of
S100 protein
signaling

Pentamidine
Downregulates inflammation mediated

S100B

An antimicrobial agent to treat African
trypanosomiasis, leishmaniasis, Balamuthia
infections, babesiosis, and Pneumocystis

pneumonia

[192]

Arundic acid Reduces S100B levels
A multicenter, dose-escalating, randomized,
double-blind phase I trial was performed in

acute ischemic stroke

[194,
230]

Calcimycin
(A23187)

Inhibit S100A4 expression
A calcium ionophore used against gram-positive
bacteria and fungi. Also, in in vitro fertilization
and to make artificial liposomes for cancer drugs

[185]

Niclosamide
(niclocide)

Inhibit S100A4 expression Oral administered antihelminth drug [231]

Sulindac Inhibit S100A4 expression A nonsteroidal anti-inflammatory drug [186]

Gene delivery
approaches

Adenoviral-
associated vector
S100A1 gene

delivery

Restored S100A1 levels to restore
cardiomyocytes physiologic contractility,
cardiac performance, and left ventricular

remodeling

Only tested in animal models
[201,
202]

S100
neutralizing
antibodies

Anti-S100A4,
anti-S100P, anti-

S100A9

Prevent extracellular signaling of S100
proteins

Only tested in animal models
[39,
195,
196]

S100
neutralizing
peptides

Peptide-Fc fusion
proteins

(peptibody)

Depletes myeloid-derived suppressor cells
getting to tumor and releasing S100 proteins

Only tested in animal models but reduced tumor
growth

[197,
199]

Vaccines
targeting S100
proteins

Anti-S100A9
vaccine

Prevent S100A9/CD36 signaling in a mouse
ischemic stroke model

Only tested in animal models [200]

10 Pulmonary Medicine



The antihistaminic drug, cromolyn, binds to S100A1,
S10012, S100A13, and S100P and disrupts S100P interacting
with RAGE [178]. A cromolyn analog which inhibits S100P
was used in pancreatic cell line and mice models to reduce
tumor growth and metastasis [178]. Another anti-
inflammatory antiallergic immunomodulatory drug, Amlex-
anox, interacts with S100A1, S100A4, and S100A13 and
alters S100 protein signal transduction [184]. Alternatively,
phenothiazines interact with multiple S100 family members,
such as S100A4 [22], and may influence their signaling.

Equally several compounds are known to inhibit the
S100A4 expression, with calcimycin (a calcium ionophore),
niclosamide (an antihelminth drug), and sulindac (a nonste-
roidal anti-inflammatory drug) are all reported as inhibitors
of S100A4 transcription [185, 186]. Interestingly, calcimycin
can augment surfactant secretion in cultured type II airway
epithelial cells (AEC II) [187, 188]. Equally, niclosamide
increases the sensitivity of cancer cells for radiation therapy
in lung cancer [189] and alleviates pulmonary fibrosis
in vitro and in vivo by attenuation of epithelial-to-
mesenchymal transition, matrix proteins, and Wnt/β-
catenin signaling [190]. Sulindac is also linked to lung cancer
therapy and pulmonary fibrosis [191]. Whether these
responses are due to S100A4 are unknown. Pentamidine is
deemed an S100B inhibitor as it reduces several inflamma-
tory markers such as MDA, PGE2, and IL-1, which in turn
downregulated S100B [192]. By blocking S100B activity,
pentamidine rescues expression of the tumor suppressor fac-
tor wtp53 and restores proapoptotic responses in colon can-
cer [193]. Alternatively, other groups have tried to reduce
S100B levels, using arundic acid, and found that treatment
with arundic acid at 24-48 hours after the induction of ische-
mia significantly decreased infarct volumes by approximately
40% [194].

Other approaches to modulate S100 protein activity
include neutralizing antibodies [39, 195, 196] and peptide-
Fc fusion proteins (peptibodies) directed against S100A8
and S100A9 [197]. Antibody-based therapies are an interest-
ing approach for several of the S100 proteins as they possibly
could reduce toxicity and off-target effects but may be limited
to only extracellular S100 proteins. Treatment with an anti-
S100A4 antibody decreased signs of allergy in a mouse model
as well as in allergen-challenged T cells from allergic patients
[198]. Inhibiting extracellular S100 protein signaling may be
beneficial for COPD, as intracellular S100A8 protects against
type II pneumocyte cytotoxicity [107], while extracellular
S100A9 contributes to disease progression [110]. Some
inhibitory peptides can penetrate cells with S100B inhibitory
peptides reported to penetrate tumor cells and reduce growth
in a melanoma xenograft model [199]. Immunization with
an anti-S100A9 vaccine in a mouse ischemic stroke inhibited
long-term thrombus formation, through inhibition of
increased S100A9/CD36 signaling, without risk of bleeding
or adverse autoimmune responses [200]. In rodent [201]
and pig [202] cardiac disease models, adenoviral-associated
vector S100A1 gene delivery to cardiac tissue normalized
low S100A1 levels and restore cardiomyocytes physiologic
contractility, restored cardiac performance, and left ventricu-
lar remodeling. Therefore, many approaches exist to modu-

late S100 protein signaling but most require testing in the
setting of pulmonary diseases.

6. The Influence of Neutrophils in the Release of
S100 Proteins in Pulmonary Diseases

Finally, we want to briefly discuss the importance of S100
proteins and neutrophils in pulmonary diseases. Neutrophils
are the first responders to the site of inflammation and are
essential for microbial containment, eradication, and host
survival. Dysregulated neutrophil responses are central to
the pathophysiology of many inflammatory lung diseases.
Approximately 45% of the cytosolic proteins in neutrophils
are constituted with S100A8, S100A9, and S100A12 and are
released upon injury or infection [203, 204]. Following acti-
vation of neutrophils, the S100 proteins are secreted or
released and function in an autocrine and paracrine manner.
The released S100 proteins induce the production of proin-
flammatory cytokines, neutrophil degranulation and chemo-
taxis, leukocyte adhesion and endothelial transmigration,
and increased effects of lipopolysaccharide on phagocytes
and cells (Figure 1). At the site of inflammation, calprotectin
acts as a chemotactic factor by inducing neutrophils adhesion
[159] and thereby further exaggerates neutrophil responses.

Rammes et al. have suggested that in monocytes, the non-
classical S100A8/A9 secretion constitutes an intact microtu-
bule network and PKC activation [114]. However, in
neutrophils, the process by which S100A8/A9 is secreted is
not fully elucidated and may be different from the pathway
in monocytes since the S100A8/A9 complex is detected in
NETs. Secretion of S100A8/A9 is dependent on the produc-
tion of ROS and required K+ exchanges through the ATP-
sensitive K+ channel [205]. Schenten et al. indicated that
S100A9 is phosphorylated at threonine 113 by the MAPK
p38 in activated neutrophils and released to the extracellular
space by the process of NETosis [27, 206, 207]. Equally,
S100A9 is an activator of the β-2 integrin Mac-1
(CD11b/CD18) on neutrophils [208] and could influence
neutrophil trafficking, phagocytosis, ROS production, and T
cell activation [209]. However, further research is needed to
elucidate the signaling pathway.

With the new human viral disease severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), there is emerg-
ing data identifying the roles of S100 proteins to coronavirus
disease 2019 (COVID-19). In preclinical models of SARS-
CoV-2 infected animals and patients, there are increased
levels of immature neutrophils and dramatically upregulated
S100A8 levels [210]. In addition, multivariable analysis of
patients’ samples demonstrated that elevated S100A9 was
independently associated with mortality [211]. Serum
S100A8/A9 levels in COVID-19 patients are linked to sever-
ity and in-hospital mortality [212] and early indicator of
respiratory failure [210]. This suggests that S100 proteins of
neutrophil origin could significantly contribute to inflamma-
tion and respiratory outcomes in COVID-19 subjects. Higher
blood frequency of NETs and neutrophil activation markers
including S100A8/A9 are observed in COVID-19 cases asso-
ciated with thrombosis [213] and in COVID-19 with severe
pulmonary outcomes [214]. The presence of S100A8/A9 in
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fecal is linked to intestinal inflammation in COVID-19
patients [215, 216]. Equally, monocytes with low expression
of HLA-DR and high expression of S100A8, A9, and 12 are
strongly associated with severe COVID-19 [137]. Serum
S100B COVID-19 patients significantly correlate with dis-
ease severity and are associated with inflammation markers
(ferritin, C-reactive protein, procalcitonin) and organ dam-
age markers (alanine aminotransferase, creatinine) [217].
Recently, paquinimod was shown to resolve SARS-CoV-2
mediated pneumonia by reducing the viral load and a subset
of neutrophils in mice [218]. Therefore, neutrophil-
associated S100 proteins may represent key players in the
pathogenesis of many pulmonary diseases, including
COVID-19.

7. Conclusions

In the past two decades, our knowledge of the roles of S100
proteins in pulmonary diseases has grown, and many novel
approaches were identified to target members of this protein
family as therapeutic options. Despite considerable progress
in S100 protein biology, we still know little about posttrans-
lational modifications or heterodimer formation impact on
S100 signaling, and the COVID-19 pandemic highlights the
potential role of S100 proteins in tissue damage.
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