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A B S T R A C T   

Bangladesh’s subtropical climate with an abundance of sunlight throughout the greater portion of 
the year results in increased effectiveness of solar panels. Solar irradiance forecasting is an 
essential aspect of grid-connected photovoltaic systems to efficiently manage solar power’s 
variation and uncertainty and to assist in balancing power supply and demand. This is why it is 
essential to forecast solar irradiation accurately. Many meteorological factors influence solar 
irradiation, which has a high degree of fluctuation and uncertainty. Predicting solar irradiance 
multiple steps ahead makes it difficult for forecasting models to capture long-term sequential 
relationships. Attention-based models are widely used in the field of Natural Language Processing 
for their ability to learn long-term dependencies within sequential data. In this paper, our aim is 
to present an attention-based model framework for multivariate time series forecasting. Using 
data from two different locations in Bangladesh with a resolution of 30 min, the Attention-based 
encoder-decoder, Transformer, and Temporal Fusion Transformer (TFT) models are trained and 
tested to predict over 24 steps ahead and compared with other forecasting models. According to 
our findings, adding the attention mechanism significantly increased prediction accuracy and TFT 
has shown to be more precise than the rest of the algorithms in terms of accuracy and robustness. 
The obtained mean square error (MSE), the mean absolute error (MAE), and the coefficient of 
determination (R2) values for TFT are 0.151, 0.212, and 0.815, respectively. In comparison to the 
benchmark and sequential models (including the Naive, MLP, and Encoder-Decoder models), TFT 
has a reduction in the MSE and MAE of 8.4–47.9% and 6.1–22.3%, respectively, while R2 is raised 
by 2.13–26.16%. The ability to incorporate long-distance dependency increases the predictive 
power of attention models.   

1. Introduction 

The combustion of fossil fuels for conventional electrical systems releases greenhouse gases that significantly contribute to global 
warming. Extensive efforts have been made to understand and promote renewable energy to reduce reliance on nonrenewable sources 
[1,2]. The photovoltaic system has emerged as a viable alternative to conventional electricity, offering green energy and a reduced 
carbon footprint [3]. As awareness grows regarding the financial and ecological benefits of transitioning to renewable energy sources, 
there has been a notable increase in the adoption of photovoltaic systems in households and small businesses [4]. Integrated 
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photovoltaic systems mainly consist of distributed systems, such as small domestic setups, and their primary function is to convert solar 
energy into electrical power. Renewable sources, including solar radiation, are less harmful to the environment and are recognized as 
one of the most promising future energy sources [5,6]. However, the intermittent power supply of solar systems can pose challenges to 
their integration. Various factors, particularly solar radiation, contribute to the variability in energy output [7]. Environmental 
conditions, such as cloudiness, visibility, etc. directly impact solar irradiance. For example, in regions prone to frequent sandstorms 
and high particle levels, developing an irradiation prediction model that incorporates dust phenomena is essential, as dust accumu
lation on PV panels affects the efficiency of solar modules [8,9]. Accurate estimation of these climatic characteristics is essential for 
developing precise models of solar irradiation. Additionally, connecting large-scale renewable power to the grid presents challenges 
[10]. The imbalance between supply and demand can cause instability and blackouts. Load balancing, which involves controlling the 
proportion of energy generated and consumed, is a complex task typically achieved by adjusting output energy and increasing energy 
production [11,12]. That’s why we must ensure the maximum possible production from solar to mitigate the challenge. The variability 
of solar photovoltaic output power across geographic regions and climatic variables introduces volatility and unpredictability, 
underscoring the need for accurate solar PV prediction to ensure the reliability of the entire power grid [13]. Precise predictions can 
assist utility administrations and corporate workers in promptly adjusting and optimizing power generation plans, thereby enhancing 
the use and economic productivity of new energy sources [14,15]. PV forecast algorithms primarily focus on predicting photovoltaic 
generation or solar irradiation [16]. Solar forecasting involves creating prediction models that utilize historical data and adhere to data 
science methodologies [17]. Accurate forecasting of solar resources and photovoltaic power production is of interest to electricity 
network operators and energy generators due to its impact on power grid maintenance, market structure, and cost reduction. As the 
popularity of photovoltaics continues to grow, companies are investing heavily in power management systems to improve data 
collection and enable autonomous resource management [18]. 

Solar irradiance forecasting has progressed with advancements in forecasting theories and machine learning. With an emphasis 
primarily on short-term or day-ahead forecasts, several methodologies, including statistical and machine learning approaches, predict 
solar irradiance at different time horizons [19]. These models can only capture linear relationships and need stationary input data. 
Some of the statistical methods used include persistence forecasting, Autoregressive (AR), Autoregressive Integrated Moving Average 
(ARIMA), and Exponential Smoothing Models [20,21]; however, these techniques do not make use of multivariate data, such as 
relevant meteorological variables. Machine learning-based methods, like Artificial Neural Networks (ANNs) [22], Support Vector 
Machine (SVM) [23], and K-Nearest Neighbor (KNN) are widely used and show superior accuracy in short-term predictions. Without 
the complexity of mathematical and physical relationships, ANNs can learn any nonlinear information and produce accurate 
short-term predictions [24]. In time series forecasting, they do have certain drawbacks. Time series data contain sequential infor
mation and have a time order. When dealing with sequential data, the ANN model does not preserve sequential information effectively. 
Deep Learning techniques like Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural 
Network (CNN) [25] are popular for solar forecasting due to their capacity to characterize high-dimensional nonlinear complex re
lationships between inputs and outputs [26,27]. Sequential models such as RNN, LSTM, and GRU have a recurrent connection that can 
capture the sequential relationship of the data during forecasting [28]. RNN-based methods provide better results in comparison to 
other machine learning models; however, they struggle with multi-step forward prediction. This issue is better served by 
encoder-decoder architecture, which is used in the fields of machine translation and natural language processing [29]. This archi
tecture is also employed in several time series forecasting tasks. In order to accurately forecast the weather and stock prices, Qin 
employs a two-stage encoder-decoder method [30]. Using seq2seq models, Bottieau was able to make probabilistic predictions about 
the cost of various imbalances in the European power markets [31]. 

Because of the wide range of meteorological variables included in the input data, solar irradiance provides a unique forecasting 
problem. This multivariate time series data encapsulates a spectrum of input attributes, making it difficult for the existing forecasting 
models to extract the complex feature correlations and long temporal dependencies of these input features from nonlinear and non- 
stationary data. Additionally, for multi-step forecasting, the output sequence’s temporal dependency coupled with external factors 
like seasonality makes prediction more challenging. The encoder in the encoder-decoder architecture struggles to capture long tem
poral relationships for particularly lengthy input sequences since the encoder converts the input sequence into a fixed-length context 
vector, which could lead to information loss. To address this problem, we present a modeling approach for time series data using the 
attention mechanism and transformer model in our study. The Attention mechanism was first introduced in the machine translation 
problem to solve the long-range dependency problem of the encoder-decoder [32]. The Transformer model has recently revolutionized 
the field of natural language processing by pushing the state-of-the-art and being used for a wide range of tasks, including conver
sational chatbots, vision-language tasks, and machine translation [33]. It is possible to model time series data with complex temporal 
relations using transformer-based models. Temporal Fusion Transformer (TFT) is an attention-based transformer model for time series 
forecasting with a high degree of flexibility and the capacity for multi-step prediction [34]. TFT’s attention mechanisms empower it to 
learn the complex temporal dynamics of time sequences and its capacity to deal with seasonality makes TFT a strategic choice for our 
study’s goals. TFT can take into account a variety of input variables and provide insights on relevant time phases. 

In this work, we present the application of attention-based models in multivariate time series forecasting for 24-step forward 
prediction with a resolution of 30 min with improved accuracy and interpretability. By leveraging attention mechanisms, our approach 
aims to address critical problems faced by conventional forecasting methods by dynamically emphasizing essential spatiotemporal 
elements in solar irradiance time series data. Furthermore, the research intends to contribute to the field by offering insights into the 
interpretability of the attention-based model, resulting in more reliable predictions and therefore increasing the model’s adaptability 
in real-world applications. The key contribution of this paper lies in the application of the Temporal Fusion Transformer (TFT) and 
attention-based models to the task of solar irradiance forecasting within the particular context of our area, Dhaka and Cox’s Bazar, two 
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places in Bangladesh. Our study includes thorough data preprocessing, model construction, and parameter tuning to improve the 
performance of TFT and other models, as well as the practicality of TFT by customizing it to our region’s distinct geographical and 
climatic characteristics. We demonstrate the efficiency and applicability of attention-based models in addressing the complex nature of 
solar forecasting in our region-specific solar data through comprehensive experimentation and comparisons of prediction accuracy 
between the proposed model and other benchmark forecasting models. The following is how the paper is organized. Section 2 discusses 
relevant work on deep learning models. Section 3 discusses methodologies, data preparation, and key terminology. Section 4 provides 
training setups, detailed experimental findings, and further discussions. Section 5 concludes the paper. 

2. Related work 

Recent advances in the fields of artificial intelligence and deep learning have led to the development of a variety of deep learning 
models for time series forecasting problems. For such time-series analyses, conventional statistical analysis approaches were previ
ously employed. Due to the availability of relatively large amounts of energy and meteorological data, the use of deep learning al
gorithms in solar irradiance forecasting over different time horizons, including short, medium, and long-term, is growing increasingly 
appealing. P. Bendiek et al. [35] introduce DCF, a solar irradiation forecasting algorithm with improved accuracy in three cities 
(Seattle, Denver, and Boston). The algorithm uses two components: precise ML algorithms (SVM and FBP) and contextual information. 
SVM performs better for short-term 1-h projections, while FBP is used for longer-term forecasts beyond 3 h due to stability. M. 
Abdel-Nasser et al. [36] suggested HIFA, a solar irradiation forecasting technique that uses LSTM and GRU networks. It was tested in 
three Finnish locales and showed better performance compared to three other ensemble techniques with low site RMSE values. N. 
Yogambal et al. [37] introduce a CSO-GWO optimizer algorithm for multi-timescale solar irradiance predictions using an LSTM-based 
deep recurrent neural network that outperforms other models in single and multi-timescale forecasting with low MSE and MAPE 
values. 

M. Abdel-Nasser [38] performed a solar irradiance forecasting approach based on LSTM models aggregated by the Choquet integral 
which provides accurate forecasts and eliminates the need for costly meteorological equipment. X. Huang et al. [39] presented a 
two-branch input LSTM-MLP structure for solar irradiance forecasting, which includes main output, main input, auxiliary input, and 
auxiliary output, as well as LSTM layers that use irradiance history and meteorological parameters. Model II-BD outperforms other 
models by using historical irradiance and meteorological features as main inputs and next-instant meteorological data as auxiliary 
inputs. G. Guariso et al. [40] validated the accuracy of FF and LSTM networks for predicting environmental variable time series, 
emphasizing the effect of null values and midnight samples on performance metrics. J. Wojtkiewicz et al. [41] employ univariate and 
multivariate GRU and LSTM models to predict Phoenix, Arizona’s solar irradiance based on historical data, weather variables, and 
cloud cover data. 

GRU attention, a hybrid deep learning model built on Keras, was introduced by K. Yan et al. [42] for solar irradiance prediction and 
has shown good prediction accuracy, quick modeling, and high portability. The authors emphasized the advantages of utilizing deep 
learning to estimate power generation stability, dependability, and precision. Y. Yu et al. [17] developed a short-term LSTM model to 
forecast solar irradiance and tested it in Atlanta, New York, and Hawaii 1 h and one day ahead. With low MAPE values in all three 
cities, LSTM outperforms other models, particularly on cloudy and mixed days. M. Husein et al. [43] proposed a deep LSTM RNN for 
solar irradiance forecasting using external features such as dry bulb temperature, dew point temperature, and relative humidity. The 
model showed an average root mean square error of 80.07 W/m2 across six datasets, outperforming traditional feedforward neural 
networks (FFNN). S. Dev et al. [44] proposed a solar irradiance forecasting approach based on clearness index data and triple 
exponential smoothing to accurately reflect seasonality. 

Tong et al. [45] propose an encoder-decoder deep hybrid model combining TCN, LSTM, and MLP, enhanced by dynamic error 
compensation, achieving balanced multi-step forecasting through unique loss functions. Li et al. [46] suggest a two-channel method 
employing LSTM, WGAN, and CEEMDAN, splitting solar output into frequency-based subsequences for prediction, and integrating 
their values for final output. Hou et al. [47] introduce CNN-A-LSTM, employing comparable day analysis and attention processes, 
surpassing various models on the NSRDB dataset for accurate solar irradiance prediction, particularly excelling in unclouded and 
partly cloudy conditions. Munsif et al. [48] explore the CT-NET model, a transformer variation combining CNN and multi-head 
attention for both local and global information utilization, outperforming CNN-RNN, CNN-GRU, and CNN-LSTM across seasons 
using the Alice Springs dataset. Yang et al. [49] developed a model with RACB, DIFM, and TSAM components, demonstrating improved 
accuracy and resilience in multi-step forecasting compared to TCN, LSTM, LSTM-Attention, CNN-LSTM, and Transformer models 
across various locations. Kong et al. [50] utilize EMD, GRU-A with attention, and Kalman filtering for accurate solar radiation fore
casting, proving its effectiveness against RNN, GRU, EMD-GRU, and GRU-A models. 

Previous research has primarily focused on traditional approaches such as statistical models, Artificial Neural Networks (ANN), and 
sequence models such as Long Short-Term Memory (LSTM) networks. While these techniques provided useful insights and advances, 
their difficulties in dealing with multivariate time series data and capturing complex temporal correlations in solar irradiance data still 
need to be addressed. Moreover, the existing literature reveals challenges in achieving optimal forecasting accuracy, particularly when 
dealing with volatility and unpredictability, as well as the inability to demonstrate good generalization across different geographical 
locations, which pose barriers to achieving robust and accurate predictions. Transformer models have recently been integrated into 
time series forecasting problems, even though there is a discussion about whether or not transformers are effective for time series data 
[51]. There are very limited works utilizing the advantages of attention-based models and transformers while some prior studies used 
transformer models to estimate direct PV power using historical power generation data [52]. Considering these limitations, our study 
aims to address them by introducing the Temporal Fusion Transformer (TFT) to the area of solar irradiance forecasting and applying 
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this model directly to a real-world scenario, especially forecasting solar irradiance at two specific sites in Bangladesh: Dhaka and Cox’s 
Bazar. These two locations have different geographical features, such as climate, distance from the sea, and seasonality, that affect the 
availability and variability of solar resources. This study focuses on solar irradiance data as the input and output to our model with 
other meteorological variables to increase the applicability to different regions and enhance our understanding of the dynamic patterns 
and complexity driving energy output. In addition, we examine and compare the effectiveness of the TFT, transformer, and 
attention-based models in comparison to other well-established models, offering enhanced accuracy and adaptability in solar irra
diance predictions, particularly in our specific geographical and climatic setting. 

3. Methodology 

3.1. Seq2seq encoder-decoder 

The Sequence-to-Sequence encoder-decoder architecture was developed [29,53] to encode and produce a sequence of any length 
for machine translation tasks with sequential input and output. The architecture has two RNN networks called encoder and decoder. 
After recursively processing the input sequence (x1, x2,…xτ) of length τ, the encoder RNN computes a fixed-length representation hτ of 
the final hidden state vector which recapitulates the entire input sequence. The decoder is another RNN network that produces a target 
sequence (s1, s2,…, sτ′) of length τ′ that employs the encoder’s hidden state as its initial state. The decoder generates the target iter
atively, and at each step, it utilizes the previous step’s output as well as the previous hidden state as input. It should be noted here that 
the lengths of the input and output sequences may differ. Either a basic RNN, an LSTM [54], or a GRU [55] may be used as the RNN in 
the encoder and decoder. Each hidden state of the encoder in a basic RNN is calculated using equation (1). 

ht = δ(whh ∗ ht− 1 +whx ∗ xt) (1) 

Weight matrices whh and whx link the input and the encoder’s hidden states, respectively, where δ is the activation function and ht 

stands for the encoder’s hidden states. 
Given an input sequence (x1,x2…xτ) whose fixed length hidden state representation is hτ, the conditional probability of the output 

sequence p(s1, s2…, sτ′|x1, x2…xτ) is formulated in equation (2). 

p(s1, s2…, sτ′|x1, x2…xτ) ≈
∏τ′

t=1
p(st|hτ, s1,…st− 1) (2) 

Fig. 1. The RNN encoder-decoder architecture.  
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The encoder-decoder model’s architecture was designed for language modeling, and the input and output sequences are both 
represented as word embeddings, which are learned numerical vector representations for text. The decoder initializes with a start 
token or a dummy input to begin the prediction. However, the preceding value to the target sequence is known to our time series task. 
Additionally, the input and output sequences don’t share the same size of feature representation. The dataset we’re using here has 
multiple features in each sequence hence it is called multivariate time series forecasting, whereas the output sequence only has one 
feature. Therefore, we adapt the model to our problem in that manner. Here, the prior true output value shown in Fig. 1 is not known 
by the decoder; instead, it only has access to the initial target value s(0) during the prediction phase. So, the decoder updates the 
sequence (s(1), s(2),…, s(T′)) using the probability distribution it obtained from the prior state. There are several methods for updating 
decoder predictions during training. Recursive prediction is one way. That is, the previously predicted decoder outputs feed into the 
decoder recurrently until we obtain an output of the desired target length. One disadvantage of this strategy is that if the predictions 
are too poor in the early stages of training, the errors will accrue over the sequence length, making it harder for the model to learn and 
converge rapidly. Another method is using teacher forcing [56,57]. In teacher forcing, the model’s decoder makes predictions based on 
the true previous target value. It forces the sequence model to stay near the true sequence. This approach has one drawback: there is no 
true target value during inference. We need to forecast recursively during inference, resulting in a discrepancy between training and 
inference. So, we adopted a hybrid of the two approaches. Using a ratio, we combined two approaches by giving the decoder the 
projected value in some steps and providing it with the true value at other times. This ratio is designated as TFR. 

3.2. Encoder-decoder with attention mechanism 

In encode-decoder attention model, the time series input sequence is read by the encoder, which then transform into hidden states 
(hen) to create a fixed-size context vector (ci) representation of the data. The context vector is then utilized by the decoder to generate 
an output sequence based on the previously generated output (yt-1) and the previous hidden state (hde,i-1). The attention mechanism is 
used at each decoding step to continuously select information from the hidden states, adjusting the context vector based on the de
coder’s current state. The attention mechanism starts by generating an alignment score using the decoder’s hidden states and each of 
the encoder’s hidden states, which is then transformed into attention weights. Then, the context vector ci is generated by using the 
attention weights and weighted-summarizing of encoder hidden states hen which is displayed in equation (3). 

Fig. 2. Transformer encoder decoder layer.  
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ci =
∑TX

j=1
aijhen,j (3) 

Using equations (4) and (5) each annotation’s value aij is determined. 

eij = a
(
hde,i− 1, hen,j

)
(4)  

aij =
exp

(
eij
)

∑TX

k=1
exp(eik)

(5) 

The GRU and LSTM layers used in the encoder of the attention-based model are bidirectional. Mixed recursive and teacher-forcing 
methods were used for the training phase as mentioned in the preceding section. 

3.3. Transformer for time series 

In 2017, researchers from Google Brain unveiled the first-ever transformer [33]. To adapt the transformer model for time series 
forecasting, Neo et al. [58] created a variant that maintains the original structure of encoder-decoder layers. In the original transformer 
model, which was developed to solve the machine translation issue, the embedding size is utilized as the Dmodel dimensional vector 
value throughout the encoder and the decoder. This ensures that the feature size of the input and output text data is the same. In this 
scenario, input and output time series data may have different characteristics. Fig. 2 depicts the input layer of the encoder, which is a 
fully connected neural network used to map the input data’s attributes onto a Dmodel dimensional vector. The decoder also has a layer 
like an encoder to translate the output data to the Dmodel dimensional vector. 

In multi-headed attention, the time series data is linearly transformed to obtain query vectors (Q), key vectors (K), and value 
vectors (V) and each of these transformed vectors is split into multiple heads. Using the scaled dot-product attention mechanism, each 
attention head separately computes attention scores. To generate attention output, the outputs of all attention heads are concatenated 
and linearly transformed, as presented in equation (6). 

Attention(Q,K,V)= softmax
(
Q.KT

)

√dk
.V (6) 

Positional encoding is used to capture the sequential information of the input data since our model does not include a sequential 
unit like an RNN. In addition, masking is used in the decoder’s output sequence to ensure that only preceding data points in the time 
series are included in the prediction. A normalizing layer is included underneath each sublayer. 

3.4. Temporal Fusion Transformer (TFT) 

Temporal Fusion Transformer (TFT) [34] provides a neural network design that combines the features of other networks, such as 
LSTM layers and Transformers’ attention heads. TFT is able to accommodate three distinct kinds of features. They are temporal data 
with known inputs into the future, temporal data known only up to the present, and external categorical or static variables, which are 
also referred to as time-invariant features. The model has a high degree of adaptability with the capability of multi-step prediction. 
Certain time sequences might be rather complicated or noisy, but others can be easily modeled using seasonal naive predictors and 
require very little effort. In an ideal world, the model would be able to distinguish between these distinct kinds of situations. There is 
also the possibility of success with one-step-ahead prediction models that recursively feed forecasts. 

In order to adapt to a broad variety of datasets and use cases, the architecture may be equipped with gating mechanisms that allow 
data to bypass unused parts of the network, as shown in equations (7)–(11). 

GRNw(a, c)= LN(a+GLUw1(n1)) (7)  

n1 = [TCN1(ṇ2),TCN2(ṇ2)] (8)  

ṇ2 =GLUw2(ṇ3) (9)  

ṇ3 =W1,wṇ4 + b1,w (10)  

ṇ4 =ELU
(
W2,wa+W3,wc+ b2,w

)
(11) 

In these equation, ELU is represented as the Exponential Linear Unit activation function, ṇ1,ṇ2,ṇ3, ṇ4 are represented as inter
mediate layers, LN is represented as standard layer normalization, ṇ1 is the result of concatenating TCN1(ṇ2) and TCN2(ṇ2) and w is 
represented as weight sharing. 

At each time step, variable selection networks choose the right set of input variables. In order to include static characteristics in the 
network, context vectors are encoded and used to condition the temporal dynamics using static covariate encoders. For the purpose of 
local processing, a sequence-to-sequence layer is used, and for the purpose of capturing long-term dependencies, an innovative 
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interpretable multi-head attention block is provided. Quantile forecasting intervals are used to determine the probable range of goal 
values at each time step in the forecasting process. 

3.5. Data Description 

The historical irradiance data utilized for the system modeling and validation for this study came from the National Solar Radiation 
Database (NSRDB) [59] over the period of January to December from two consecutive years 2019 and 2020. To assess the robustness of 
the models, it is necessary to investigate data from several locations. Dhaka (23.8◦ N, 90.41◦ E) and Cox’s Bazar (21.46◦ N, 92.01◦ E) 
are the two locations in Bangladesh that were utilized in this study. Table 1 below shows the statistical characteristics of the data for 
these two locations. 

The dataset contains a total of 70,176 data points from two locations with a temporal resolution of 30 min and has no missing 
values. Global Horizontal Irradiation (GHI), one of the three solar irradiation components included in this database, is chosen as the 
target variable for our experiment. Fig. 3 displays the Global Horizontal Irradiation distribution for Dhaka for different months in 
2019. The figure shows that solar irradiance varies between the hours of each day and that each month has a different peak. 

Due to various weather conditions, the distribution of solar irradiance in different locations varies substantially. In cloudy or rainy 
conditions, the solar irradiation value is highly uncertain and variable. 

Fig. 4(a and b) shows the solar irradiance for two different weather scenarios: a clear sky and cloud cover, during the course of the 
day. Data exhibits a pattern on days with a clear sky. However, when there is cloud cover, GHI readings become extremely irregular 
and exhibit a sharp drop in the curve. 

To enhance the forecasting ability of our model, we incorporate meteorological data, which is also provided by the National Solar 
Radiation Database, along with the solar irradiance data. The properties of the meteorological data are shown in Table 2. 

3.6. Feature selection 

Numerous meteorological factors can be thought of as possible factors that can have an impact on the solar radiation that a surface 
receives from above. In order to choose an optimum feature subset as the model input, it is necessary to differentiate the particular 
features linked to weather conditions into those that are useful to the model and those that are irrelevant. Pearson’s correlation co
efficient is the measure of the statistical relationship between two continuous variables. To decide which factors should be used as 
inputs, the correlation between GHI and other meteorological variables was examined. Table 3 displays the dataset’s solar irradiance 
and weather variables’ Pearson correlation coefficients. 

The correlation between GHI and the various weather variables differs by location, indicating that the climate condition has an 
impact on these parameters. A minimum value of 0.2 for the absolute value of Pearson’s correlation coefficients in either location was 
chosen to determine the inclusion of the features. From the table, it can be seen that Temperature, Humidity, Solar Zenith Angle, and 
Wind Speed were deemed to be critical for the model and that the remaining parameters were excluded since they showed no sig
nificant correlation with the GHI. 

3.7. Feature transform and encoding 

Cloud type is a categorical feature that represents different cloud conditions and weather types. It is an important feature since 
cloud condition is responsible for the abrupt change in radiation received at the surface. One-hot encoding is used since this feature 
doesn’t have any ordinal relationships. DateTime variable is also an important feature as there is a strong correlation between GHI and 
time which can be seen in Fig. 3. One-hot encoding is not suitable for this feature as there are too many categories. Moreover, the 
variables have a cyclical relationship that one-hot encoding can’t address. For instance, although appearing to be separated by 11 
months in categorical value, December and January are only 1 month apart. To resolve this problem, we encoded the cyclic feature 
using sine and cosine transformations, as shown in equations (12) and (13). 

Tsin = sin
(

2. π. T
max(T)

)

(12)  

Tcos = cos
(

2. π. T
max(T)

)

(13)  

Table 1 
Statistical features of the solar irradiance data.  

Location GHI(W/m2) 

Max Mean Std. 

All samples 1017 207.23 287.50 
Dhaka 994 200.24 278.47 
Cox’s Bazar 1017 214.23 296.09  
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Fig. 3. Solar irradiation data in Dhaka during 2019.  

Fig. 4. Global Horizontal Irradiation during (a) clear-sky (b) cloudy day.  

Table 2 
Meteorological parameters.  

Variable Name Unit 

Global Horizontal Irradiance W/m2 

Ozone  
Solar Zenith Angle Degree 
Precipitable Water cm 
Temperature ◦C 
Dew Point ◦C 
Relative Humidity % 
Pressure mbar 
Wind Direction Degree 
Wind Speed m/s  

Table 3 
Pearson’s correlation coefficients between meteorological parameters and GHI.  

Weather Variables Dhaka Cox’s Bazar 

Ozone 0.064 0.047 
Solar Zenith Angle − 0.815 − 0.817 
Precipitable Water − 0.002 − 0.048 
Temperature 0.510 0.271 
Dew Point 0.018 − 0.021 
Relative Humidity − 0.547 − 0.470 
Pressure − 0.007 0.057 
Wind Direction 0.054 0.093 
Wind Speed 0.227 − 0.033  
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3.8. Data scaling and splitting 

Different continuous input variables’ scales may result in slow learning or cause it to become trapped in local optimums. If the scale 
or distribution of the time series data is constant, gradient descent-based algorithms, such as neural networks, would perform better. 
This necessitates that we need to normalize the data such that each feature has the same scale and significance. Standardization (z- 
score), a technique that rescales the distribution of values with a zero mean and a standard deviation of 1, is used in this study to rescale 
the data. The z-score normalization formula is as follows in equation (14): 

xz =
xi − x

σ (14)  

where xi is the input data, x denotes the mean of the feature vector, and σ denotes the feature vector’s standard deviation. 
For training purposes, the complete dataset is split into three sets: train, validation, and test sets. 75% of the data, covering the first 

year (2019) and the first six months of 2020, are in the training set, which is used to fit the models. The remaining six months are split 
between the test (12.5%) and validation (12.5%) sets. The validation set is used to provide an unbiased assessment of a fitted model 
while fine-tuning its hyperparameters whereas the test set is used to evaluate the final model. Since it is necessary to preserve the 
temporal order of time series data, data points are not shuffled while splitting. 

3.9. Performance criterion 

Four performance metrics, including the mean square error (MSE), the mean absolute error (MAE), the mean absolute scaled error 
(MASE), and the coefficient of determination (R2) are used in the forecasting experiments to assess the forecasting accuracy of our 
models. 

MSE stands for Mean Squared Error which is shown in equation (15). It measures the average of the squared differences between 
the actual and estimated values. 

MSE=
1
N
∑N

i=1
(yi − ŷi )

2 (15) 

MAE stands for Mean Absolute Error which is presented in equation (16). It calculates the sum of the absolute differences between 
the actual and predicted values. 

MAE=
1
N
∑N

i=1
|yi − ŷi | (16) 

MASE stands for Mean Absolute Scaled Error which is exhibited in equation (17). It evaluates the accuracy of forecasts by 
comparing the mean absolute error of the forecast values with the mean absolute error of a naive model. A Naive model is a simple 
baseline model that forecasts the future value to be the same as the previous one. 

MASE=
MAE

MAEnaive
(17) 

R2 is a coefficient of determination which is shown in equation (18). It indicates how well the model fits the data by comparing the 
total variance explained by the model and the total variance in the data. 

R2 = 1 −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (18)  

here, yi and ŷi represent the actual and predicted values, respectively, while y indicates the mean of the actual values. 

4. Results and analysis 

From the datasets of two different locations, multi-step solar irradiance is forecasted using different sequence-to-sequence 

Table 4 
Selected parameters for Encoder-Decoder & Attention-Based GRU and LSTM model.  

Parameter GRU-ED LSTM-ED GRU-attn LSTM-attn 

Layers 1 1 1 1 
Encoder hidden size 64 48 32 32 
Decoder hidden size 64 48 32 32 
Learning rate 0.0005 0.0005 0.0005 0.0005 
Input sequence length 48 48 48 48 
TFR 0.6 0.5 0.6 0.5 
Dropout 0 0 0 0 
Batch size 256 256 256 256  
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attention-based models. As a multi-step ahead time series forecasting, the model predicts 12 h ahead of the Global Horizontal Irra
diance(GHI) value using the last 24 h of data as the input sequence. According to the methods described in the preceding section, 
Transformer, GRU and LSTM Encoder-Decoder (GRU-ED, LSTM-ED), GRU and LSTM Encoder-Decoder with attention (GRU-attn, 
LSTM-attn) models were developed and trained in Pytorch. The TFT model was trained using the Pytorch implementation in Pytorch 
Forecasting [60]. As the various hyperparameters, like learning rate and hidden units, significantly impact the model’s performance, 
we tuned the hyperparameters of the models using Optuna [61]. The optimization method used in this experiment is the Adam 
optimizer. The selected hyperparameters for our forecasting models are presented in Tables 4 and 5. 

The performance of the sequence-to-sequence models is also compared with the simple MLP and Naive models. The Naive model 
uses the previous value or period to forecast the next value/period. Because we are forecasting sequences, the naive model will 
anticipate the following day’s irradiance based on the value from the previous day. To compare our sequence models, we also construct 
a simple MLP model that predicts sequence recursively. Sometimes MLP model performs well on several occasions in time series 
forecasting [62,63]. The MLP model used in this experiment has 2 hidden layers, each with 64 hidden units. 

The evaluation metrics of these forecasting models for the two different locations are shown in Table 6. 
As seen in the table, almost all forecasting models can forecast with reasonable accuracy when compared to the naive model. The 

table also shows that TFT outperforms the other models for most of the metrics in both locations. After the Naive model, ANN and 
Transformer perform worse compared to other models overall. 

In time series forecasting, sequential models generally outperform MLP because they contain recurrent structures that can store 
sequential data. Here, at Cox’s Bazar location, GRU-ED and LSTM-ED outperform MLP across all parameters, with GRU-ED doing the 
best. MLP outperforms LSTM-ED in Dhaka in terms of MSE and MASE values, however, LSTM-ED is more effective in terms of MAE and 
R2. In this case, GRU-ED also gives superior results than MLP and LSTM-ED. GRU-ED model has shown better results in Cox’s Bazar 
location than attention models, with MSE and MAE values of 0.152 and 0.219, respectively. In Dhaka, GRU and LSTM attention models 
beat MLP and encoder-decoder models, while the GRU-attn model performs the best and even outperforms TFT in terms of MSE and R2 

score. The effectiveness of the attention mechanism is evident as it facilitates attention-based models in retaining all prior information 
in long sequences. The attention mechanism assesses all hidden states from the encoder sequence and also assigns relative importance 
to the time steps and features that affect output when formulating predictions, thus improving the prediction accuracy. 

The Transformer model performs the worst in both locations, slightly outperforming the Naive model. Although the Transformer 
model does well throughout the training phase, it does poorly in the testing data. Finally, the TFT model beats all other models in Cox’s 
Bazar location with the lowest MSE, MAE, and MASE loss and high R2 value. Only GRU-attn has a better MSE and R2 value than TFT 
with values of 0.153 and 0.809 in Dhaka. TFT has the best MAE and MASE scores in this location. The TFT model can handle a variety 
of input data, including static covariates, future known inputs, and temporal variables known just up to the present. The model can also 
be trained on multiple time series. This algorithm combines a temporal self-attention decoder with a novel Multi-head attention 
mechanism that, when evaluated, gives additional insight into feature importance in order to capture long-term dependencies. 

The actual data and predicted outcomes for the various models in both locations and for the two weather conditions are shown in 
Fig. 5(a and b) and 6(a,b). Our forecasting algorithms predict 24 steps ahead of the data. On days with cloud cover, as shown in Figs. 5 
(b) and 6(b), algorithms can capture the uncertainty and volatility in solar data. Due to the high level of weather unpredictability on 
cloudy days, models work better when the sky is clear than when it is cloudy. 

Better performance in forecasting is achieved in the location of Cox’s Bazar. Almost every forecasting model performs better in this 
location. This might be because the seasonality pattern is more consistent in this location and there is less residual or randomness 
owing to the cloudy and variability in weather conditions. Moreover, the same information can be observed through the Naive model, 
where the error values are smaller in Cox’s Bazar than in Dhaka. We may infer that Cox’s Bazar data follow seasonality with less 
unpredictability since the Naive model predicts the upcoming period using the prior period. The TFT model shows more consistency in 
both locations with MSE values of 0.154 and 0.147 and MAE values of 0.215 and 0.210 respectively. Attention models also perform 
well in both locations although they have better values in the Dhaka location. All of the other models projected inconsistently for the 
two separate locations. TFT’s ability to maintain consistent performance levels across varying contexts implies that it is a robust choice 
for diverse patterns. 

To provide a thorough assessment of our solar prediction models, the test datasets from two locations are combined to compute the 
error metrics of the total test datasets, as shown in Table 7. The combination of results allows for a comparative analysis, which 
provides insights into the models’ overall performance under two distinct environmental settings. Table 7 demonstrates TFT’s superior 

Table 5 
Selected parameters for the Transformer and Temporal Fusion Transformer (TFT) model.  

Transformer Temporal Fusion Transformer 

Parameter Value Parameter Value 
Layers 3 Layers 1 
Dmodel 24 Hidden size 32 
Dff 16 Hidden continuous size 16 
Attention heads 8 Attention heads 4 
Learning rate 0.0005 Learning rate 0.0001 
Input sequence length 48 Input sequence length 48 
Dropout 0.2 Dropout 0.2 
Batch size 256 Batch size 256  
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Table 6 
Forecasting metrics for the different models in two locations.   

Dhaka Cox’s Bazar 

Model MSE MAE MASE R2 MSE MAE MASE R2 

Naive 0.302 0.283  0.622 0.277 0.263  0.668 
MLP 0.180 0.243 0.858 0.775 0.171 0.241 0.916 0.796 
GRU-ED 0.179 0.232 0.819 0.776 0.152 0.219 0.833 0.818 
LSTM-ED 0.183 0.236 0.834 0.770 0.156 0.227 0.863 0.814 
GRU-attn 0.153 0.231 0.816 0.809 0.160 0.242 0.920 0.809 
LSTM-attn 0.160 0.219 0.773 0.799 0.164 0.236 0.897 0.804 
Transformer 0.1945 0.271 0.957 0.757 0.1865 0.296 1.125 0.777 
TFT 0.154 0.215 0.759 0.806 0.147 0.210 0.798 0.824  

Fig. 5. Predicted solar irradiance for different models in Dhaka during (a) clear-sky (b) cloudy days.  

Fig. 6. Predicted solar irradiance for different models in Cox’s Bazar during (a) clear-sky (b) cloudy days.  

Table 7 
Overall Forecasting metrics for the different models in both locations.  

Model MSE MAE MASE R2 

Naive 0.290 0.273  0.646 
MLP 0.176 0.242 0.886 0.785 
GRU-ED 0.165 0.226 0.828 0.798 
LSTM-ED 0.169 0.231 0.846 0.794 
GRU-attn 0.157 0.236 0.864 0.808 
LSTM-attn 0.162 0.227 0.831 0.802 
Transformer 0.190 0.270 0.989 0.767 
TFT 0.151 0.212 0.776 0.815  
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performance in comparison to other forecasting models, with TFT having a better value in all error metrics, with a 0.151 MSE and 
0.212 MAE value while the 0.776 MASE and 0.815 R2 scores further corroborate its superior performance. Overall experimental results 
show that the TFT’s performance is on par with the attention models and outperforms Encoder-Decoder models and a simple estimator 
(Naive model). In contrast to the encoder-decoder architecture, which fails to capture information because of its fixed-length context 
vector representation, attention-based models are able to collect information in long input sequences. Particularly, we illustrate the 
benefits of the attention mechanisms which provide a clear view into the decision-making process, allowing models to gain insights 
into specific meteorological components and temporal patterns influencing solar irradiance forecasts. We also observed that the GRU 
and LSTM architecture in the Encoder-Decoder and Attention models function similarly despite having different architectural designs, 
with GRU marginally outperforming LSTM. Our results demonstrate that the TFT consistently surpasses traditional sequential models 
and other attention-based architectures in both locations, showcasing its robustness and effectiveness in capturing the intricate pat
terns inherent in our region’s solar data. However, since TFT is more computationally expensive due to containing significantly more 
parameters, a careful trade-off between model complexity and training efficiency is required. 

5. Conclusion 

In this paper, we presented an Attention-based deep learning framework to address the multivariate multistep Time Series Fore
casting problem. Attention-based encoder-decoder, transformer, and Temporal Fusion Transformer (TFT) models are evaluated to 
forecast 24 steps forward solar irradiance at two different locations in Bangladesh. The dataset with an interval of 30 min includes 
information on cloud cover, meteorological variables, and historical solar irradiance values. The unpredictable nature of the weather 
makes it challenging to forecast solar irradiance, which leads to imbalances in the interconnected grid. Our primary motivation was to 
assess the attention mechanism’s capabilities to address the complicated and dynamic nature of solar irradiance patterns, therefore 
contributing to the grid and optimizing renewable energy utilization. According to the results, the TFT model had superior outcomes 
than other existing models such as MLP and sequential encoder-decoder models, across all performance measures. Attention-based 
GRU Encoder-Decoder, which has the best MSE and R2 score in the Dhaka location, was the second-best method after TFT. The 
Transformer model for the Time Series performed the worst out of all the models used. In comparison to the other models’ inconsistent 
predictions, the empirical results exhibit a significant decrease in forecasting errors, as well as the consistency and robustness of TFT in 
two separate locations in our specific region, proving its usefulness in real-world applications. As the need for clean and renewable 
energy sources increases, our research contributes to assisting energy management in making informed decisions for sustainable 
energy integration into the grid and more reliable and efficient utilization of solar energy. It is important to recognize several limi
tations of our study. Firstly, our work primarily focuses on a specific time horizon for solar radiation predictions; future studies could 
investigate multiple time horizons to further assess the robustness of forecasting methodologies. Furthermore, the training period for 
TFT and other attention models is relatively high, which could lead to potential practical issues in situations when quick model 
response is necessary. Despite these limitations, our research demonstrates the importance of the application of the TFT model and 
incorporating the attention mechanism to overcome the issues associated with solar irradiation variability. 
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