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A B S T R A C T   

Objective: This study aims to investigate the predictive performance of machine learning in pre-
dicting the occurrence of systemic inflammatory response syndrome (SIRS) and urosepsis after 
percutaneous nephrolithotomy (PCNL). 
Methods: A retrospective analysis was conducted on patients who underwent PCNL treatment 
between January 2016 and July 2022. Machine learning techniques were employed to establish 
and select the best predictive model for postoperative systemic infection. The feasibility of using 
relevant risk factors as predictive markers was explored through interpretability with Machine 
Learning. 
Results: A total of 1067 PCNL patients were included in this study, with 111 (10.4 %) patients 
developing SIRS and 49 (4.5 %) patients developing urosepsis. In the validation set, the risk 
model based on the GBM protocol demonstrated a predictive power of 0.871 for SIRS and 0.854 
for urosepsis. Preoperative and postoperative platelet changes were identified as the most sig-
nificant predictors. Both thrombocytopenia and thrombocytosis were found to be risk factors for 
SIRS or urosepsis after PCNL. Furthermore, it was observed that when the change in platelet count 
before and after PCNL surgery exceeded 30*109/L (whether an increase or decrease), the risk of 
developing SIRS or urosepsis significantly increased. 
Conclusion: Machine learning can be effectively utilized for predicting the occurrence of SIRS or 
urosepsis after PCNL. The changes in platelet count before and after PCNL surgery serve as 
important predictors.  
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1. Introduction 

With the advancements in medical technology, minimally invasive surgery has become a preferred alternative to traditional open 
surgery in many cases due to its advantages of reduced trauma, minimal bleeding, and faster recovery. Currently, PCNL is recom-
mended as the primary treatment for large or complex kidney stones [1]. However, compared to other minimally invasive procedures 
like ureteroscopy, PCNL is associated with a higher risk of complications, including bleeding, tissue damage, infection, and throm-
boembolism [2,3]. Urinary tract infection is one of the most common complications following PCNL, with reported incidence rates as 
high as 37 % [4]. Even with postoperative antibiotic therapy, some cases may progress to urosepsis [5]. 

Sepsis is a systemic inflammatory response of the body that can lead to high mortality rates. Studies have shown that the mortality 
rate for severe sepsis can reach 50 %, and the mortality rate for urosepsis ranges from 20 % to 40 % [6,7]. Early clinical symptoms of 
sepsis are often subtle, and if corresponding pathophysiological changes occur, the optimal window for early intervention may be 
missed. Even with intensified treatment later on, the outcomes may not be satisfactory [8]. 

Therefore, it is crucial to identify specific predictive markers and enable early diagnosis of sepsis in order to guide the perioperative 
management of PCNL. This study aims to develop and evaluate a clinical risk model for early diagnosis of SIRS and urosepsis after 
PCNL using machine learning techniques. Additionally, the study will assess the accuracy and feasibility of perioperative clinical 
indicators as predictive markers. 

2. Methods and materias 

2.1. Research design and study subjects 

This study collected 1067 patients with kidney stones who underwent PCNL in January 2016 and July 2022. Exclusion criteria 
included: lack of preoperative CT imaging data; combined with other surgical options; congenital malformations such as polycystic 
kidney disease; patients with other serious diseases such as tumors, blood system or immune system diseases. 

2.2. Data collection 

Patient general and clinical information was collected. 
General information includes: gender, age, date of admission, height, weight, body mass index, etc. 
Preoperative data includes: peripheral blood leukocytes, lymphocytes, neutrophils, platelets, hemoglobin, uric acid, urine leu-

kocytes, urine nitrite, preoperative antibiotic use, stone score, etc. 
Intraoperative data includes: operation time, intraoperative blood loss, etc. 
Postoperative information is uniformly measured at 6 o’clock in the morning on the first day after surgery no matter 

before or during initial symptoms of SIRS appear, including: peripheral blood leukocytes, platelets, lymphocytes, neutrophils, 
blood pressure, heart rate, oxygenation, respiration, body temperature, Glasgow score, etc. 

Diagnostic criteria for SIRS: white blood cell count <4000 or >12,000 cells/ul, body temperature >38 or <36 ◦C, heart rate >90 
beats/min, respiratory rate >20 beats/min or PaCO 2 < 32 mmHg. Urosepsis was defined as qSOFA (Quick Sepsis-Associated Organ 
Failure Assessment) score ≥2 criteria: respiratory rate ≥22 breaths/min; altered mental status (GCS score <13); systolic blood pressure 
≤100 mmHg [9,10]. 

2.3. Model development 

We use R language to build the H2O machine learning platform for implementing machine learning [11]. To minimize the adverse 
impact of variable scale differences on model accuracy when using variable weighting and fitting, we performed (0–1) standardization 
on all values. We used the train_test_split function to randomly divide the data into a train set (70 %) and a valid set (30 %). During 
model training, we again split the train set (70 %) into a train set (50 %) and a test set (20 %), selecting the best model based on its fit to 
the test set. We used machine learning model methods based on five algorithms: generalized linear regression (glm), random forest 
(RF), gradient boosting (GBM), deep learning (deep learning), and Xgboost. The glm model used a grid search method for hyper-
parameter tuning, while other models used random search. We used K-fold cross-validation to evaluate each combination of hyper-
parameter values in the train set. In this study, we performed 5-fold cross-validation to help reduce overfitting and selection bias in the 
valid set. K-fold cross-validation is a method that randomly divides a given dataset into K folds, where each fold is used as a validation 
set and the other folds are used to train the model. This process is repeated K times until all folds have been used as validation sets. The 
hyperparameter combination that produces the best performance on the test set is then tested separately on the valid set. 

2.4. Evaluation of model performance 

On each dataset, we presented the AUC values of glm, GBM, Xgboost, RF, and deep learning for urinary sepsis and SIRS to 
demonstrate their performance on each dataset. Select the model with the best performance in both the test and valid sets for sub-
sequent analysis. The model performance in valid set is displayed by the ROC curve. 
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Table 1 
Clinical characteristics in patients with SIRS and sepsis after PCNL.   

non-SIRS SIRS P.value non-Urosepsis Urosepsis P.value  

(N = 956) (N = 111)  (N = 1018) (N = 49)  

Age (years) 
Mean (SD) 52.6 (12.5) 51.8 (12.3) 0.528 52.5 (12.4) 52.4 (14.1) 0.959 
Median [Min, Max] 53.0 [21.0, 86.0] 52.0 [21.0, 86.0]  53.0 [21.0, 86.0] 52.0 [21.0, 86.0]  
Preoperative.WBC (10^9/L) 
Mean (SD) 6.79 (1.77) 7.56 (2.49) 0.002 6.86 (1.86) 7.23 (2.03) 0.218 
Median [Min, Max] 6.58 [2.99, 15.3] 6.89 [3.13, 19.8]  6.62 [2.99, 19.8] 6.87 [3.13, 13.4]  
Preoperative.L(10^9/L) 
Mean (SD) 2.10 (0.713) 2.09 (0.948) 0.981 2.10 (0.737) 1.95 (0.815) 0.21 
Median [Min, Max] 2.03 [0.270, 5.35] 1.97 [0.830, 5.32]  2.03 [0.270, 5.35] 1.79 [0.830, 3.92]  
Preoperative.N(10^9/L) 
Mean (SD) 3.93 (1.39) 4.57 (1.63) < 0.001 3.97 (1.43) 4.48 (1.30) 0.01 
Median [Min, Max] 3.69 [1.23, 12.6] 4.29 [2.01, 12.9]  3.74 [1.23, 12.9] 4.31 [2.01, 8.60]  
Preoperative.NLR(10^9/L) 
Mean (SD) 2.10 (1.25) 2.48 (1.11) 0.001 2.12 (1.24) 2.58 (1.08) 0.006 
Median [Min, Max] 1.81 [0.523, 19.1] 2.27 [0.694, 7.91]  1.82 [0.523, 19.1] 2.27 [1.11, 5.61]  
Preoperative.eosinophils(10^9/L) 
Mean (SD) 0.190 (0.156) 0.201 (0.176) 0.516 0.191 (0.157) 0.188 (0.186) 0.897 
Median [Min, Max] 0.150 [0, 1.39] 0.160 [0, 1.12]  0.150 [0, 1.39] 0.140 [0, 1.12]  
Preoperative.basophil(10^9/L) 
Mean (SD) 0.0471 (0.0505) 0.0524 (0.0520) 0.31 0.0473 (0.0507) 0.0551 (0.0494) 0.287 
Median [Min, Max] 0.0300 [0, 0.600] 0.0300 [0, 0.260]  0.0300 [0, 0.600] 0.0400 [0, 0.170]  
Preoperative.PLT(10^9/L) 
Mean (SD) 274 (74.7) 289 (86.3) 0.07 275 (76.1) 278 (76.2) 0.788 
Median [Min, Max] 269 [55.0, 596] 285 [101, 592]  271 [55.0, 596] 275 [110, 499]  
Preoperative.HB(g/L) 
Mean (SD) 136 (18.7) 133 (17.3) 0.09 135 (18.8) 134 (13.8) 0.424 
Median [Min, Max] 137 [62.0, 394] 133 [66.0, 177]  137 [62.0, 394] 133 [98.0, 158]  
Preoperative.serum.creatinine(umol/L) 
Mean (SD) 109 (85.6) 104 (72.0) 0.542 109 (85.3) 92.6 (57.8) 0.065 
Median [Min, Max] 87.0 [39.0, 1010] 83.0 [36.0, 461]  87.0 [36.0, 1010] 81.0 [50.0, 434]  
Preoperative.uricacid(umol/L) 
Mean (SD) 413 (103) 400 (110) 0.215 413 (103) 397 (112) 0.348 
Median [Min, Max] 411 [147, 828] 382 [166, 749]  409 [147, 828] 375 [182, 749]  
operation time(min) 
Mean (SD) 113 (36.6) 127 (43.2) 0.001 113 (37.3) 125 (43.1) 0.083 
Median [Min, Max] 115 [30.0, 305] 120 [50.0, 300]  115 [30.0, 305] 120 [55.0, 225]  
Platelet.difference.before.and.after.surgery(10^9/L) 
Mean (SD) − 0.964 (29.0) − 14.9 (72.0) 0.045 − 2.68 (33.1) 3.04 (76.0) 0.602 
Median [Min, Max] − 5.00 [-220, 197] − 15.0 [-230, 210]  − 5.00 [-230, 197] − 2.00 [-181, 210]  
height(m) 
Mean (SD) 1.65 (0.0911) 1.60 (0.0758) < 0.001 1.64 (0.0906) 1.59 (0.0798) < 0.001 
Median [Min, Max] 1.66 [0.650, 1.83] 1.58 [1.42, 1.78]  1.65 [0.650, 1.83] 1.58 [1.42, 1.76]  
weight(Kg) 
Mean (SD) 63.5 (12.2) 59.2 (11.0) < 0.001 63.2 (12.2) 59.3 (10.5) 0.014 
Median [Min, Max] 64.0 [31.5, 110] 59.0 [37.0, 86.0]  63.3 [31.5, 110] 60.0 [40.0, 80.0]  
BMI(Kg/m2) 
Mean (SD) 23.4 (5.01) 22.8 (3.20) 0.078 23.4 (4.93) 23.0 (3.16) 0.513 
Median [Min, Max] 23.0 [12.6, 137] 22.8 [15.8, 33.3]  23.0 [12.6, 137] 23.3 [17.5, 33.3]  
Diabetes(n,%) 
no 831 (86.9 %) 86 (77.5 %) 0.01 879 (86.3 %) 38 (77.6 %) 0.129 
yes 125 (13.1 %) 25 (22.5 %)  139 (13.7 %) 11 (22.4 %)  
Previous.DJ.indwelled(n,%) 
no 888 (92.9 %) 107 (96.4 %) 0.232 948 (93.1 %) 47 (95.9 %) 0.638 
yes 68 (7.1 %) 4 (3.6 %)  70 (6.9 %) 2 (4.1 %)  
Previous.nephrostomy(n,%) 
no 884 (92.5 %) 108 (97.3 %) 0.09 945 (92.8 %) 47 (95.9 %) 0.589 
yes 72 (7.5 %) 3 (2.7 %)  73 (7.2 %) 2 (4.1 %)  
Urine.WBC(n,%) 
≥50 cells/ul 673 (70.4 %) 70 (63.1 %) 0.138 714 (70.1 %) 29 (59.2 %) 0.142 
<50 cells/ul 283 (29.6 %) 41 (36.9 %)  304 (29.9 %) 20 (40.8 %)  
Urine.nitrite(n,%) 
negative 844 (88.3 %) 75 (67.6 %) < 0.001 890 (87.4 %) 29 (59.2 %) < 0.001 
positive 112 (11.7 %) 36 (32.4 %)  128 (12.6 %) 20 (40.8 %)  
Urine.culture(n,%) 
negative 775 (81.1 %) 66 (59.5 %) < 0.001 817 (80.3 %) 24 (49.0 %) < 0.001 
positive 181 (18.9 %) 45 (40.5 %)  201 (19.7 %) 25 (51.0 %)  
Antibiotics.before.surgery(n,%) 

(continued on next page) 
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Table 1 (continued )  

non-SIRS SIRS P.value non-Urosepsis Urosepsis P.value  

(N = 956) (N = 111)  (N = 1018) (N = 49)  

no 775 (81.1 %) 83 (74.8 %) 0.26 822 (80.7 %) 36 (73.5 %) 0.436 
yes 181 (18.9 %) 28 (25.2 %)  196 (19.3 %) 13 (26.5 %)  
Number.of.channels(n,%) 
1 881 (92.2 %) 97 (87.4 %) 0.198 935 (91.8 %) 43 (87.8 %) 0.639 
2 69 (7.2 %) 14 (12.6 %)  77 (7.6 %) 6 (12.2 %)  
3 5 (0.5 %) 0 (0 %)  5 (0.5 %) 0 (0 %)  
4 1 (0.1 %) 0 (0 %)  1 (0.1 %) 0 (0 %)  
Gender(n,%) 
male 591 (61.8 %) 47 (42.3 %) < 0.001 620 (60.9 %) 18 (36.7 %) 0.001 
female 365 (38.2 %) 64 (57.7 %)  398 (39.1 %) 31 (63.3 %)  

SIRS, systemic inflammatory response syndrome; PCNL, percutaneous nephrolithotomy; SD, standard deviation; BMI, body mass index; WBC, white 
blood cell; L, lymphocytes; N, neutrophils; NLR, neutrophil to lymphocyte ratio; PLT, platelet; HB, hemoglobin; DJ, double J tube. 

Fig. 1. The predicted AUC for SIRS(A) and Urosepsis(B) in train set, test set and valid set based on five methods. ROC curves for SIRS(C) and 
urosepsis(D) in valid set based on GBM. 
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2.5. Feature selection 

We used the built-in function “feature importance” in H2O and analyzed the top-ranked features. This provides information about 
the relative contribution of the corresponding features to the model, by calculating the contribution of each feature to the model. To 
examine the individual effects of important parameters and their derived features, we used a widely used tool called SHapley Additive 
exPlanations (SHAP) to study the contribution of a feature to model predictions when it interacts with other features. 

2.6. Statistical analysis 

Statistical analysis was performed using R version 4.0.4 and SPSS. The model is visualized by h2o explain. A p < 0.05 was 
considered statistically significant [12]. 

3. Results 

The number of cases with SIRS after PCNL surgery was 111, accounting for 10.4 % of all cases. The number of cases with urosepsis 
after PCNL was 49, accounting for 4.5 % of all cases. 

The clinical characteristics of the patients are summarized and presented in Table 1. The characteristics of patients who developed 
SIRS included higher Preoperative white blood cell (WBC) (p = 0.002), higher Preoperative neutrophils(N)(p < 0.001), higher Pre-
operative neutrophil to lymphocyte ratio (NLR)(p = 0.001), operation time (p = 0.001), Platelet. difference.before.and.after.surgery 
(p = 0.045), height (p < 0.001),weight (p < 0.001), diabetes history (p = 0.01), positive Urine. nitrite (p < 0.001), positive Urine. 
culture (p < 0.001) and female gender (p < 0.001). The characteristics of patients who developed urosepsis included higher Preop-
erative. N (p = 0.01), higher Preoperative. NLR(p = 0.006), height (p < 0.001),weight (p = 0.014), positive Urine. nitrite (p < 0.001), 
positive Urine. culture (p < 0.001) and female gender (p = 0.001). Five methods have been applied to the construction of prediction 
models of SIRS or urosepsis after PCNL，they were deep learning, GBM, Generalized Linear Model (glm), random forest (RF), and 
extreme gradient boosting (Xgboost). We divided 1067 patients into a train set, a test set, and a valid set according to the ratio of 5:2:3. 
Through fitting the test set, we trained and constructed the model in the training set, and finally verified the model in the valid set. The 
predicted AUC for SIRS in train set, test set and valid set is 0.958,0.772,0.607 (deep learning),1,0.899,0.871 (GBM),0.85,0.776,0.669 
(glm),1,0.791,0.784 (RF) and 1,0.807,0.8 (Xgboost) respectively. The predicted AUC for urosepsis in train set, test set and valid set is 
1,0.866,0.782 (deep learning),1,0.937,0.854 (GBM),0.818,0.702,0.684 (glm),1,0.895,0.824 (RF) and 1,0.771,0.759 (Xgboost) 
respectively (Fig. 1 A-B). We selected a risk model based on the GBM protocol for interpretable analysis (Fig. 1 C-D). The analysis of 
variable importance indicated that the top ten risk factors related to SIRS were Platelet. difference.before.and.after.surgery, Preop-
erative platelets (PLT), Preoperative. NLR, Preoperative. serum.creatinine, Operation. time, Age, Preoperative hemoglobin (HB), body 
mass index (BMI), Preoperative lymphocytes(L), Preoperative. uricacid (Fig. 2A). The top ten risk factors related to urosepsis were 
Platelet. difference.before.and.after.surgery, Preoperative. HB, Preoperative. L, Preoperative. N, Preoperative. NLR, Preoperative. 
uricacid, Preoperative. serum.creatinine, Urine. nitrite, Operation. time, Age (Fig. 2B). The sharp diagram suggested that platelet 
changes before and after PCNL were crucial for the prediction of SIRS and urosepsis. Platelet changes were not linearly related to SIRS 

Fig. 2. Variable importance for SIRS(A) and Urosepsis(B) in valid set based on GBM.  
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and Urosepsis, and both thrombocytosis and thrombocytopenia were risk factors for SIRS and urosepsis (Fig. 3A–B). In order to further 
explore the important role of platelet changes, we stratified the changes and conducted relevant analysis. When the absolute value of 
platelet change was greater than 30*109/L, the risk of SIRS was highly increased (28 % vs 6 %, P < 0.001)(Fig. 4A), as was the risk of 
urosepsis (11%vs3%,p < 0.001)(Fig. 4C). The risk of SIRS (21%vs34%vs6%,p < 0.001)(Fig. 4B) or urosepsis (13%vs10%vs3%, p <
0.001)(Fig. 4D) was significantly increased when the platelets were decreased by more than 30*109/L or increased by more than 
30*109/L. 

4. Discussion 

The first report of the minimally invasive stone removal operation of PCNL was published by I Fernström and B Johansson in 1976 
[13]. Over time, PCNL has become the recommended first-line surgical option for the treatment of large and complex kidney stones due 
to its expanding indications. However, urinary tract infection is a common complication of PCNL, which if not detected and treated 
promptly, can progress rapidly to SIRS or sepsis, and in severe cases, even lead to death [14,15]. The incidence of SIRS after PCNL 
ranges from 10 % to 30 %, while the incidence of urosepsis is approximately 2 %–7 % [16,17]. Our findings are consistent with 
previous reports, as we observed an incidence of 10.4 % (111/1067) for SIRS and 4.5 % (49/1067) for urosepsis in our study. 

Early diagnosis and timely intervention play a crucial role in the management and outcome of urosepsis [18]. In recent years, 
interpretable machine learning has gained significant attention in the field of biology, as its powerful learning ability has proven 
effective in predicting disease outcomes and screening markers [19–21]. Various machine learning methods, such as logistic regres-
sion, artificial neural networks, and random forest, have been employed in research studies [22]. In our study, we utilized multiple 
machine learning methods and found that the GBM and Xgboost protocols yielded better diagnostic efficiency compared to the glm 
protocol. This could be attributed to the characteristics of platelet changes, which may not be adequately captured by linear correlation 
regression methods. 

In our interpretable machine model, we heavily emphasize the changes in platelet levels before and after surgery. Numerous studies 
have investigated the role of platelets in sepsis. Thrombocytopenia (platelet count <100,000/μl) has even been used as a diagnostic 
criterion for sepsis and severe sepsis [9]. In sepsis, activated platelets aggregate on endothelial cells and interact with other factors to 
form clots [23]. This process appears to be a significant cause of thrombocytopenia in sepsis. Additionally, some scholars have sug-
gested that myelosuppression caused by sepsis may contribute to thrombocytopenia [24]. Therefore, thrombocytopenia often indicates 
microcirculatory thrombosis, inadequate organ perfusion, and poor prognosis [25–27]. Studies have shown that the prognostic value 
of thrombocytopenia for sepsis is even superior to that of procalcitonin (PCT) [28]. In our study, we found that the difference in platelet 
levels before and after surgery, rather than the specific platelet count, is particularly noteworthy. When the decrease in platelet count 
reaches a certain threshold, the risks of systemic inflammatory response syndrome (SIRS) and urosepsis increase significantly, even if 
the true platelet count is still within the normal range (100–300 * 109/L). Our results also revealed another interesting phenomenon: 
thrombocytosis is also a significant risk factor for sepsis. Similarly, when the increase in platelet count reaches a certain threshold, the 
risks of SIRS and urosepsis increase significantly, even if the true platelet count is still within the normal range. Contrary to our general 

Fig. 3. Sharp diagram for SIRS(A) and Urosepsis(B) in valid set based on GBM.  
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perception, studies have found that increased circulating immature platelets are positively correlated with mortality and severity of 
sepsis, and platelet production is increased in sepsis [29,30]. 

Although there is a lack of high-quality clinical research, some scholars have proposed that thrombocytosis may serve as an early 
indicator of sepsis [31,32]. In this study, we found that when the absolute change in platelet count exceeded 30*10^9/L, the risk of 
SIRS significantly increased (28 % vs 6 %, P < 0.001), as did the risk of urosepsis (11 % vs 3 %, p < 0.001). Furthermore, a decrease or 
increase in platelet count exceeding 30*10^9/L was found to significantly elevate the risk of SIRS (21 % vs 34 % vs 6 %, p < 0.001) or 
urosepsis (13 % vs 10 % vs 3 %, p < 0.001), respectively. 

5. Study limitations 

As a large single-center retrospective study, our data is inevitably subject to internal bias. Therefore, it is important to note that 
these results may not be applicable to other specific environments or populations, as the data primarily spanned from 2016 to 2022, 
potentially limiting the generalizability of our findings. Additionally, we did not conduct subgroup analysis, which prevents us from 
verifying the universality of these results among specific patient subgroups. Although our predictive model demonstrates high ac-
curacy and discrimination, large-scale randomized controlled trials are still necessary to further validate our findings. While our 
machine learning approach has provided explainability through built-in functions, the specific mechanism remains somewhat unclear, 
and the full exploration of feature selection and its importance cannot be achieved through machine explainability alone. Moreover, 

Fig. 4. Chi-square test analysis of four-panel table based on platelet change stratification. A: Difference in incidence of SIRS based on absolute value 
of platelet change. B: Difference in incidence of SIRS based on true value of platelet change. C: Difference in incidence of Urosepsis based on absolute 
value of platelet change. D: Difference in incidence of Urosepsis based on true value of platelet change. 
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our analysis of platelets as a marker is somewhat preliminary, and further clinical trials should be designed to explore platelet changes 
at different time points after PCNL. Additionally, in vivo and in vitro experiments should be conducted to investigate the role of 
platelets in the mechanism of sepsis. 

6. Conclusion 

In conclusion, we have confirmed the powerful predictive ability of machine learning and have developed a risk model to aid in the 
identification of high-risk individuals, which is beneficial for early recognition and diagnosis of SIRS and urosepsis. Furthermore, we 
consider postoperative changes in platelet count to be a potential predictive marker, either increased or decreased. 
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