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Abstract

Tuberculosis caused by the pathogen Mycobacterium tuberculosis (MTB), remains a signifi-

cant threat to global health. Elucidating the mechanisms of essential MTB genes provides

an important theoretical basis for drug exploitation. Gene mtsp17 is essential and is con-

served in the Mycobacterium genus. Although Mtsp17 has a structure closely resembling

typical steroidogenic acute regulatory protein-related lipid transfer (START) family proteins,

its biological function is different. This study characterizes the transcriptomes of Mycobacte-

rium smegmatis to explore the consequences of mtsp17 downregulation on gene expres-

sion. Suppression of the mtsp17 gene resulted in significant down-regulation of 3% and

upregulation of 1% of all protein-coding genes. Expression of desA1, an essential gene

involved in mycolic acid synthesis, and the anti-SigF antagonist MSMEG_0586 were down-

regulated in the conditional Mtsp17 knockout mutant and up-regulated in the Mtsp17 over-

expression strain. Trends in the changes of 70 of the 79 differentially expressed genes

(Log2 fold change > 1.5) in the conditional Mtsp17 knockout strain were the same as in the

SigF knockout strain. Our data suggest that Mtsp17 is likely an activator of desA1 and

Mtsp17 regulates the SigF regulon by SigF regulatory pathways through the anti-SigF

antagonist MSMEG_0586. Our findings indicate the role of Mtsp17 may be in transcriptional

regulation, provide new insights into the molecular mechanisms of START family proteins,

and uncover a new node in the regulatory network of mycobacteria.

Introduction

Mtsp17 (Rv0164) is a 17-kDa protein isolated from Mycobacterium tuberculosis (MTB) culture

filtrates that has been shown to be a T-cell and B-cell antigen [1,2]. It is highly conserved across

the Mycobacteria. MTB Mtsp17 shares less than 30% homology with its homologues in other

genera, making it not only an interesting anti-TB drug target but also an immunogen that may
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be worth investigating in vaccine development. Although mtsp17 has been shown to be an

essential gene in both Mycobacterium smegmatis (MSM) and MTB [3,4], its physiological func-

tion is presently unclear. Considering its essentiality in the genus Mycobacterium, further

investigation of Mtsp17 will likely provide new insights into the physiology of Mycobacteria.

Mtsp17 folds in a similar manner to polyketide cyclases/aromatases (CYC/ARO), even

though they share less than 20% sequence identity [3]. CYC/ARO proteins are monofunctional

enzymes in Type II polyketide synthase (PKS) complexes and transform linear poly-β-ketone

intermediates into aromatic polyketides [5]. Twenty-one Type I and three Type III PKSs have

been annotated in Mycobacteria, but Type II PKS proteins have not yet been identified [6].

Structural comparisons and docking studies have suggested that Mtsp17 is likely not an

enzyme that catalyzes polyketide cyclization and aromatization [3]. The essential functions of

Mtsp17 in mycobacteria are therefore likely to operate by mechanisms that are different from

CYC/ARO proteins.

Mtsp17 is a single-domain steroidogenic acute regulatory protein-related lipid transfer

(START) domain protein. START domains are lipid-binding domains that function as

polyketide cyclases/aromatases in lipid metabolism. START domains also bind ligands during

non-vesicular traffic between intracellular compartments and fuse with DNA binding domains

to modulate gene transcription [7–9]. As mycobacteria lack internal organelles such as the

endoplasmic reticulum and Golgi apparatus, the START domain in Mtsp17 may regulate tran-

scription through a DNA contact-independent mechanism. Comprehensive profiling of the

genes and pathways regulated by Mtsp17 should provide insights into its physiological

functions.

In this study, we performed RNA-sequencing (RNA-seq) based transcriptomics analysis to

obtain a global profile of genes regulated by Mtsp17 in MSM. We compared the transcrip-

tomes of wildtype and the mtsp17-complemented strains (mtsp17 induced and not induced),

and discovered that Mtsp17 has transcriptional regulatory properties. This transcriptional reg-

ulatory role was further validated by qPCR and its implications are discussed.

Materials and methods

Bacterial strains and culture conditions

As knockout of mtsp17 was lethal in MSM, a conditional Mtsp17 knockout strain (M0129C)

was created by a specialized transduction procedure described previously [3] in which plas-

mid-encoded Mtsp17 was induced by tetracycline while the genomic mtsp17 gene was deleted

(M0129C was also the mtsp17-complemented strain). Over-expression of Mtsp17 was accom-

plished with a pMV261 plasmid that constitutively over-expressed Mtsp17 using a Hsp60 pro-

moter [10]. Mycobacterium smegmatis strains were cultured in Middlebrook 7H9 medium

(Difco, Baltimore, MD, USA) supplemented with 0.5% glycerol and 0.05% Tween 80 at 37˚C.

25 μg.mL-1 kanamycin and 20 ng.mL-1 tetracycline (Sangon Biotech, Shanghai, China) were

required for culturing the mtsp17-complemented strain in which the genomic mtsp17 gene

was replaced by a sacB-hyg cassette and an extrachromosomal mtsp17 gene was introduced

using a pMind-derived plasmid. After cultures of the complemented strain reached exponen-

tial phase in the presence of tetracycline (OD600 = 0.4), they were transferred into fresh culture

medium and divided into two halves. Tetracycline (20 ng.mL-1) was added to one half of the

culture (M0129C_T20, induced) and incubated for 4 hours, while the other half was incubated

without tetracycline (M0129C_T0, not induced) for 4 more hours. Total RNA was then iso-

lated from these two cultures of the complemented strain for sequencing. An exponential

phase culture of Mycobacterium smegmatis mc2155 was used as a control (Wt).
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RNA isolation and transcriptome analysis

10 ml of exponentially growing cultures was harvested by centrifugation (4˚C, 3000 rpm, 10

min). Total RNA was isolated from three biological replicates of each sample using a FastPrep

Instrument and FastRNA Pro Blue Kits (MP Biomedicals, Solon, OH, USA) according to the

manufacturer’s instructions. After treatment with DNase I, the RNA was precipitated with

ammonium acetate/isopropanol. The quality and quantity of each RNA sample were assessed

using an Agilent 2100 Bioanalyzer (Agilent Technologies, Beijing, China) and a NanoDrop

1000 spectrophotometer (Thermofisher, Shanghai, China). A Ribo-Zero rRNA Removal Kit

(Epicentre, Madison, WI, USA) was used to remove bacterial rRNA from total RNA

preparations.

cDNA libraries were constructed using a NEBNextUltraTM RNA library Prep Kit (New

England Biolabs, Beijing, China) and sequenced on a HiSeq 4000 sequencer (Illumina). The

processed reads were mapped to the Mycobacterium smegmatis MC2 155 genome

(NC_008596) using Bowtie2 v2.2.6 with default parameters. FPKM values for each gene were

compared and differentially expressed genes (DEGs) were determined with HTSeq v0.6.0 and

DESeq v1.22.1. Genes with a multiple hypothesis-adjusted p-value below 0.05 (adjusted p-

value < 0.05) were considered as DEGs. Functional enrichment analysis was carried out using

GOseq v1.22 based on the Gene Ontology database.

Real-time fluorescence quantification PCR (qPCR) analysis

qPCR was used to measure the expression of selected genes in a CFX96 instrument (Bio-Rad).

The GoScript Reverse Transcription System (Promega, Beijing, China) was used for cDNA

preparation, and a 2x SYBR Green mix (Vazyme, Nanjing, China) and gene-specific primers

(S1 Table) were used to amplify the genes (PCR cycle: 95˚C, 10 s; 60˚C, 30 s; 40 cycles). Prim-

ers were optimized to give 90–110% amplification efficiency and had a single melting tempera-

ture. sigA (MSMEG_2758) was used as an internal normalization standard. Relative

quantification was performed using the ΔΔCT method. Fold changes presented are

means ± standard deviations of three technical replicates.

Results

RNA-sequencing results uncover the importance of Mtsp17 in

transcription regulation

To investigate if Mtsp17 functions in transcription regulation, we looked for DEGs in the tran-

scriptomes of the conditional Mtsp17 knockout strain (M0129C) and the wild-type strain

(Wt) (S2 Table). Although mtsp17 was down regulated in the three comparisons (M0129C_T0

versus T20; Wt versus M0129C_T20; Wt versus M0129C_T0), the number of DEGs varied

dramatically in each comparison. Overall, 4% of protein-coding genes were differentially-

expressed (fold change > 2 and adjusted p-value < 0.05) in the M0129C_T0 versus T20 com-

parison compared to 24–25% in other 2 comparisons (Table 1). 50 DEGs (fold change> 2)

were common to the three comparisons (Fig 1A, S3 Table), and of these, 24 genes (including

mtsp17) showed the same trends in fold change. We noted that 7 of the 24 genes had homo-

logues in MTB (Fig 1B, Table 2). Similar trends in the expression of DEGs in the 3 compari-

sons suggest that Mtsp17 plays an important role in regulating gene expression. Fifteen of the

24 genes were up-regulated and 8 were down-regulated, implying that Mtsp17 can act as both

an activator and a repressor.
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Expression patterns in the two complemented strains were moderately

different

Principal component analysis of the global expression patterns of the 3 samples clustered Wt

separately from the two complemented strain samples. M0129C_T0 clustered apart from

M0129C_T20, with the majority of the variance occurring along PC2 (Fig 1C). Hierarchical

clustering of the DEGs (adjusted p-value < 0.05) showed that the gene expression pattern of

the M0129C_T20 sample was similar to M0129C_T0 and was different from Wt (Fig 1D).

These results indicate that the difference in expression patterns between M0129C_T20 and

M0129C_T0 was more moderate than that between the complemented strain and the Wt

strain. Comparing the DEGs from the M0129C_T0 and T20 samples is thus more likely to

reveal the mechanism by which Mtsp17 regulates gene expression.

qPCR analysis is consistent with transcriptome data

Down regulation of Mtsp17 affected the expression of 1645 genes, inducing the expression of

808 genes and repressing that of 837 genes (adjusted p-value < 0.05) (Fig 2A). We randomly

selected 13 DEGs for qPCR analyses to verify the gene expression changes observed in our

transcriptome data. Trends in fold changes of the qPCR data matched our RNA-seq results

(Fig 2B), validating the down-regulated Mtsp17 transcriptome profile generated by RNA

sequencing.

Mtsp17 acts as a transcriptional activator of the desA1 gene

Gene ontology (GO) analysis of DEGs using GOseq v1.22 indicted that 7 GO terms, including

“structural constituent of ribosome” (GO:0003735) and “ribonucleoprotein complex”

(GO:0030529), were significantly enriched (adjusted p-value < 0.05) (Fig 2C). Twenty-seven

of the 58 ribosomal proteins for which quantitative data was obtained by RNA-seq were differ-

entially-expressed (adjusted p-value < 0.05), however the fold changes of all 27 differentially

expressed ribosomal proteins (12 30S ribosomal proteins and 15 50S ribosomal proteins) were

less than 2.

275 genes were significantly differentially expressed (adjusted p-value < 0.05 and fold

change> 2, S4 Table) and 4 of the 275 genes were essential for mycobacterial growth, but only

desA1 (MSMEG_5773) was down-regulated (Log2 fold change = -1.62). DesA1 was also posi-

tively correlated with Mtsp17 in qPCR data from the conditional Mtsp17 knockout and over-

expression strains (Fig 3).

DesA1 is a desaturase involved in mycolic acid biosynthesis in mycobacteria [11]. Changes

in mycolic acids are central to the adaptation of MTB to various environments [12,13]. Tran-

scription of desA1 is known to be regulated by the transcription factor MadR, and is reported

to be not affected by other transcription factors [13,14]. MadR-mediated desA1 repression is

Table 1. Numbers of differentially expressed genes.

M0129C_T0 vs T20 Wt vs M0129C_T20 Wt vs M0129C_T0

mtsp17 ratio (log2 FC) -2.4 -5.4 -3

Differentially expressed genes (Padj < 0.05, log2 FC) Down > 1 3% (207) 11% (797) 12% (861)

Up > 1 1% (68) 13% (896) 13% (916)

< 1 20% (1370) 17% (1150) 18% (1273)

Others 76% 59% 57%

RNA-seq data from 3 replicates of each sample. FC, fold change. Padj, adjusted p-value.

https://doi.org/10.1371/journal.pone.0249379.t001
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evolutionarily conserved and leads to a decrease in mycolic acid biosynthesis and ensuing loss

of mycobacterial viability [12]. By analogy, the decline in bacterial growth in Mtsp17 insuffi-

cient strains may be due to a decrease in desA1 transcription.

More transcriptome data related to Mtsp17-desA1 regulation were searched in the Gene

Expression Omnibus (GEO) database and are summarized in Table 3. Overexpression of

MadR did not significantly alter levels of mtsp17 mRNA in either MTB or MSM [13,14].

When 206 transcription factors were overexpressed, mtsp17 mRNA also showed little change

[14]. These phenomena suggest that Mtsp17 may be an upstream factor of transcription

Fig 1. Differentially expressed genes in pair-wise comparisons. (A) Venn diagram showing the numbers of significantly

differentially expressed genes (fold change> 2, adjusted p-value< 0.05). (B) Differentially-expressed genes that show similar fold

change trends. (C) Principal component analysis of the global expression patterns of the 3 samples. (D) Hierarchical clustering of the

2146 differentially expressed genes (adjusted p-value< 0.05).

https://doi.org/10.1371/journal.pone.0249379.g001
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factors, and support our hypothesis that Mtsp17 may regulate transcription through a DNA

contact-independent mechanism. Under hypoxia, transcriptional change patterns of madR
and desA1 were not in accordance with MadR repressing desA1 and could be explained by

Table 2. DEGs common to all three of the pair-wise comparisons.

MSM MTB Essential [4] Description Functional category

MSMEG_0129 Rv0164 Yes Mtsp17 Unknown

MSMEG_3763 Rv1686c No ABC transporter Cell wall and cell processes

MSMEG_0787 Rv0411c No Extracellular solute-binding protein Cell wall and cell processes

MSMEG_0788 Rv0412c No Hypothetical protein Cell wall and cell processes

MSMEG_2850 Rv3178 No Cell entry related family protein Unknown

MSMEG_1769 Rv3288c No UsfY protein Unknown

MSMEG_4757 Rv2524c Yes Fatty acid synthase Lipid metabolism

https://doi.org/10.1371/journal.pone.0249379.t002

Fig 2. Differentially expressed genes in the M0129C_T0 versus M0129C_T20 comparison. (A) Volcano plot showing differentially

expressed genes. Green, down-regulated genes. Red, up-regulated genes. Blue, genes not differentially expressed. Padj, adjusted p-value. (B)

qPCR analyses of 13 randomly selected DEGs. (C) Significantly enriched gene ontology (GO) terms (adjusted p-value< 0.05).

https://doi.org/10.1371/journal.pone.0249379.g002
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Mtsp17 activating desA1 (Table 3). The above results indicate that Mtsp17 is likely a transcrip-

tional activator of the desA1 gene.

Mtsp17 is involved in regulation of the SigF regulon via an anti-SigF

antagonist

Transcription in MSM is carried out by a multi-subunit RNA polymerase and one of 28 sigma

subunits [15]. The sigma subunit ensures the transcription machinery to initiate transcription

of particular genes [16,17]. Sigma factors are post-translationally regulated by a partner switch-

ing system (PSS) in which anti-sigma factors sequester the sigma factor from the transcription

machinery and anti-sigma factor antagonists lift the repression of sigma factors [18–20].

MSMEG_0586, an anti-SigF antagonist, was one of the top 20 differentially expressed

genes, showing an 8.9-fold decrease (log2 fold change = -3.16, adjusted p-value = 7.3E-40) in

the M0129C_T0 versus M0129C_T20 comparison, while other sigma factors or anti-sigma fac-

tors or anti-anti-sigma factors showed log2 fold changes of no more than 1.5. MSMEG_0586 is

involved in the PSS of the SigF regulatory pathway [20]. In light of significant down-regulation

of the anti-SigF antagonist MSMEG_0586 and no obvious change in other SigF PSS factors in

the conditional Mtsp17 knockout strain, we hypothesized that transcriptomic changes partially

overlapped between the conditional Mtsp17 knockout and the SigF knockout strains. When

DEGs in the M0129C_T0 versus M0129C_T20 comparison were compared with DEGs in the

SigF knockout versus wildtype comparison [21], 70 of 79 DEGs with log2 fold changes > 1.5

and adjusted p-values of< 0.05 showed the same fold change trends (S5 Table). Furthermore,

Fig 3. Fold changes of DesA1 and Mtsp17 mRNA. Mtsp17 KD, a conditional Mtsp17 knockout strain, incubated in

the absence of the inducer tetracycline for 4 additional hours. Mtsp17 OE, the Mtsp17 over-expression strain.

https://doi.org/10.1371/journal.pone.0249379.g003

Table 3. Log2 fold change values of genes in different pair-wise comparisons.

Genes MadR overexpression MadR overexpression Mtsp17 downregulation Hypoxia

madR 1.48 1.82 0.13 -0.16

desA1 -1.46 -1.75 -1.62 -3.25

mtsp17 -0.18 0.06 -2.41 -1.53

Species MSM MTB MSM MTB

GEO� GSE116027 GSE59086 This study GSE116353

�the Gene Expression Omnibus (GEO) series accession number.

https://doi.org/10.1371/journal.pone.0249379.t003
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10 of the 79 DEGs were involved in transcriptional regulatory mechanisms and they all had

the same varying tendency in the SigF knockout versus wildtype comparison and M0129C_T0

versus M0129C_T20 comparison, except for MSMEG_0529 (Fig 4A). The above results show

that the majority of significantly differentially expressed genes regulated by Mtsp17 belong to

the SigF regulon.

To further understand the relationship between Mtsp17 and the SigF regulon, we measured

levels of MSMEG_0586 and MSMEG_5590 mRNA in the Mtsp17 over-expression strain by

qPCR. MSMEG_5590 was chosen as it belongs to the SigF regulon and was significantly corre-

lated with MSMEG_0586 in the SigF knockout strain (Fig 4B SigF KO). Both MSMEG_0586

and MSMEG_5590 were down-regulated in the conditional Mtsp17 knockout mutant and up-

regulated in the Mtsp17 over-expression strain (Fig 4B). The above results indicate that

Mtsp17 regulates transcription of MSMEG_0586 and alterations in MSMEG_0586 mRNA lev-

els lead to transcriptional changes in the SigF regulon.

Fig 4. Comparisons of gene expression in Mtsp17 and SigF mutants. (A) 10 differentially expressed genes with log2

fold change> 1.5 that are involved in transcriptional regulatory mechanisms and showed the same varying tendency

in the SigF knockout (SigF KO) and conditional Mtsp17 knockout (Mtsp17 KD) strains. (B) Fold changes of

MSMEG_0586 (anti-anti-SigF) and MSMEG_5590 mRNA in the conditional Mtsp17 knockout (Mtsp17 KD), Mtsp17

over-expression (Mtsp17 OE) and SigF knockout (SigF KO) strains. Data of the SigF knockout strain are from

GSE19774.

https://doi.org/10.1371/journal.pone.0249379.g004
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Discussion

MTB genes that are essential are good targets for drug discovery [22]. Elucidating the mecha-

nism of essential genes is of benefit to the development of more effective vaccines and better

drugs. Mtsp17 is an essential protein in both MTB and MSM, but understanding of its func-

tion is limited. In the transcriptomic analysis presented here, we have identified genes regu-

lated by Mtsp17 and demonstrated for the first time that a START family protein with a mono

domain can regulate transcription in MSM.

The anti-SigF antagonist MSMEG_0586 was one of the top 20 differentially expressed

genes in the conditional Mtsp17 knockout mutant and showed an 8.9-fold decrease. Since

MSMEG_0586 is as an activator of SigF by post-translational regulation and 70 of 79 DEGs

with log2 fold changes > 1.5 belong to the SigF regulon (S5 Table), transcriptional changes in

these SigF regulon genes can be explained by alterations in MSMEG_0586 expression by

Mtsp17 and lead to post-translational regulation of the SigF regulon by the PSS of the SigF reg-

ulatory pathway. As both SigF and Mtsp17 are conserved in the Mycobacteria and are tran-

scriptionally regulated in response to nutrient depletion and oxidative stress [10,20], we

propose that the regulation of the SigF regulon by Mtsp17 may operate in conjunction with

the SigF regulatory pathway during stress responses.

Expression of PknK (MSMEG_0529) showed different trends in terms of fold changes in

the Mtsp17 and SigF mutants (Fig 4A). As pknK mRNA increases 1.9-fold on SigF over-

expression [14] and SigF knockout has no effect on pknK mRNA levels [21], we propose the

presence of SigF dependent (when SigF is abundant) and SigF independent (when SigF is inad-

equate) PknK regulatory pathways. Here, down-regulation of mtsp17 led to a decrease in the

anti-SigF antagonist MSMEG_0586 (8.9-fold) and upregulation of pknK (2.9-fold). These

results correspond to the presence of SigF independent regulation of PknK when SigF is func-

tionally inadequate due to down regulation of the anti-SigF antagonist.

The START protein PCTP interacts with Pax3, a mammalian transcription factor, to regu-

late gene transcription [23]. In the case of MSM, START protein Mtsp17 interacts with the

global transcription factor CarD [10], and the percentage of down-regulated proteins detected

here for the Mtsp17 mutant was similar to that reported for the CarDR47E mutant (3% versus

3.1% [24]). However, it is reported that there are no obvious transcriptional changes in DesA1

in CarD mutants, and the anti-SigF antagonist increases in both the loss-of-function (with

weakened affinity for RNAP or DNA) and gain-of-function (with increased affinity to RNAP)

mutants of CarD [24]. The discrepancy in the transcriptional changes of DesA1 and the anti-

SigF antagonist between the Mtsp17 and CarD mutants suggests it is unclear whether CarD

plays a key role in this Mtsp17-induced regulatory pathway. Furthermore, we cannot rule out

the possibility that other DNA binding proteins are involved in this pathway. Further investi-

gation of Mtsp17 interacting proteins will be necessary to provide a complete understanding

of the transcriptional regulatory network of Mtsp17.

This work shows the landscape of Mtsp17 transcriptional regulation and has uncovered

important roles of Mtsp17 in the regulatory network of the DesA1 and SigF regulon. As

Mtsp17, DesA1 and the SigF regulon are all associated with stress [10,13,25], transcriptional reg-

ulation by Mtsp17 likely acts together with other regulatory mechanisms to help coordinate sig-

nal transfer under stresses such as nutritional deficiency. Elucidating the detailed mechanism of

the Mtsp17 transcriptional regulatory network identified here will require further study.

Supporting information

S1 Table. Primers used in this study.

(XLSX)
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S2 Table. Gene expression profiles of M. smegmatis mc2155 strain (Wt) and mtsp17-com-

plemented strains.

(XLSX)

S3 Table. 50 DEGs (fold change > 2, adjusted p-value < 0.05) overlapping between the

three comparisons.

(XLSX)

S4 Table. 275 significantly differentially expressed genes (fold change > 2, adjusted p-

value < 0.05) in the M0129C_T0 versus T20 comparison.

(XLSX)

S5 Table. 70 DEGs (log2 fold change > 1.5, adjusted p-value < 0.05) showing the same

change tendency in the M0129C_T0 versus M0129C_T20 comparison and SigF knockout

versus wildtype comparison.

(XLSX)
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