
RESEARCH Open Access

High resolution imaging reveals
heterogeneity in chromatin states between
cells that is not inherited through cell
division
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Abstract

Background: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can
influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells.
In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins
which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was
then tracked in three dimensions over time using fluorescence microscopy.

Results: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene
loci with a mean measurement error of 63 nm. In general, physical separation was observed to increase with
increasing genomic separations. However, the extent to which chromatin is compressed varies for different
genomic regions. No correlation was observed between compaction and the distribution of chromatin markers
from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation
was also observed within cells over time and between cells. Differences in the conformation of individual loci can
persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated
daughter cell pairs.

Conclusions: The directly observed physical separation of reporter loci in live cells is highly dynamic both over
time and from cell to cell. However, consistent differences in separation are observed over some chromosomal
regions that do not correlate with factors known to influence chromatin states. We conclude that as yet
unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin
states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to
cell-to-cell transcriptional heterogeneity.
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Background
Chromatin is a DNA-protein complex which provides
cells with a framework for important packaging and
regulatory functions. Biochemical reconstitution has
provided profound insight into the structure of the nu-
cleosome [1], the basic unit of chromatin organisation.
Biophysical studies have also revealed that arrays of nu-
cleosomes spontaneously reorganise to form chromatin
fibres with a diameter of approximately 30 nm under the
appropriate ionic conditions [2–4]. Proposed nucleosome
arrangements for such fibres include the 1-start solenoidal
and 2-start supercoiled models, as well as combinations of
the two and less ordered structures [5–7]. However, stud-
ies of native chromatin provide evidence for well orga-
nised 30 nm fibres in only a few specialised cases [2, 8, 9].
Growing evidence from close-to-native-state methodolo-
gies favours the existence of relatively disordered arrays of
nucleosomes in both mitotic [10–13] and interphase chro-
mosomes [8, 12–15].
On a larger scale, studies in a variety of organisms

have indicated that chromosomes are arranged into
chromosomal territories [16–19]. These territories have
been characterised as associations of megabase-scale
topologically associated domains (TADs), which are
thought to result from complex physical interactions be-
tween various regions of genomes [20–26] and this con-
cept has been supported by Chromosome Conformation
Capture strategies such as Hi-C and 5C [27]. Hi-C based
approaches provide important insights into chromosome
organisation, but many are subject to complications aris-
ing from a reliance on cross-linking as well as the diffi-
culty in generating temporal information regarding the
chromosomal interactions.
Chromatin organisation and mobility has also been

studied in vivo using fluorescent tagging of genomic loci
and analysing the cells via microscopy [14, 28–36].
These approaches make feasible the measurement of na-
tive chromatin characteristics such as compaction ratio,
flexibility, and diffusive behaviour. Previously, compari-
son of genomic and physical separation in fixed cells has
shown that squared inter-probe distances are related to
genomic separation [37, 38]. The extent of folding has
been observed to vary in different regions of metazoan
chromosomes and between cell types [39]. Changes in
compaction have also been observed to occur during dif-
ferentiation at some loci [40] but not at others [41].
A great deal of effort has gone into the development

of polymer models to describe chromatin structure. Ran-
dom Walk, or a Self-avoiding Walk models were initially
used to describe non-looping chromatin fibres [42].
Most recently, the diffusive properties of fluorescently
tagged loci have been observed to be consistent with a
rouse-like polymer [14]. Fractal models explain some of
the observed properties of chromatin with organisation

that is self-similar at different scales [24, 43] however,
this is not fully supported by Hi-C data [44]. More re-
cently, models including looping and polymer melt
geometries have gained prevalence [42, 45, 46]. Looping
models account for data from sources including 3C
technologies and fluorescence in situ hybridisation,
which indicate a non-linear relationship between spatial
and genomic distance [46–48]. Looping interactions
have the potential to juxtapose important regulatory
regions as appropriate over time. Polymer Melt models
currently hold widespread support given that they chro-
matin is modelled as relatively disordered arrays of nu-
cleosomes rather than folded fibres consistent with cryo-
EM and small angle X-ray scattering of native chromatin
[11, 49]. The Strings and Binders Switch model, which is
largely based on 3C data is also attractive in that it
accounts for looping while simultaneously predicting
nucleosomal DNA to be the predominant fibre [50].
Improvements in optics, image acquisition electron-

ics, and live imaging techniques, together with the
ability to label specific loci using fluorescent fusion
proteins [51] enable the study of the dynamic nature
of chromatin organization in cells in three dimensions
over time with greater precision than has been pos-
sible previously. In this study we introduce distinct
fluorescent tags flanking a range of genomic regions
and track the motion of the labelled reporters using
an OMX Blaze microscope. We describe a work flow
that enables 3D live cell tracking with a mean meas-
urement error of 63 nm. We find that within individ-
ual yeast cells the separation of operator sequences
exhibits substantial variation over time. Genomic loci
are able to reorganize extensively below a threshold
of approximately 70 kb. However above this, there is
a transition to independent motion constrained by the
nuclear environment. Within a clonal population of cells
the mean conformations of reporter loci vary significantly
and can persist over time frames of 1–10 min. By compar-
ing chromatin states in related mother-daughter cell pairs
we observe no evidence for inheritance of chromatin
conformation.

Results
A system to measure chromatin compaction in live cells
In order to assay chromatin organization in vivo, we
generated seven strains with fluorescently tagged
chromosomal loci flanking various lengths of genomic
DNA (Fig. 1a). The fluorescent repressor operator sys-
tem (FROS) we adopted involves flanking different sides
of reporter loci with arrays of 224 tet operators and 256
lac operators. These were then visualised though their
interaction with mCherry TetR and GFP LacI (Fig. 1b).
In order to mitigate the potential for arrays of repressor-
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bound operators to generate heterochromatin low con-
centrations of tetracycline were included in media to re-
duce tetR binding and a lacI point mutant was used [52].

As the fluorescent intensity of foci is likely to be
centred at the midpoint of the lac or tet operator arrays,
we adopted the naming convention of describing the
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Fig. 1 Establishment of a work-flow for live cell 4D imaging. a Seven sample strains were generated which introduced lac ×256 and tet ×224
operator arrays flanking regions on Chrs XIV, IV and V. b Operator arrays were detected using fluorescent tagged repressor proteins as indicated.
A naming convention was adopted that includes the endogenous genomic distance (a) as well as half the distance of each operator
array (0.5xp, 0.5xq). Not shown: An additional strain was generated with a single tetO ×224 array on Chr XIV which expressed both tetR-
GFP and tetR-mCherry to produce colocalising green and red spots. This strain was used for channel alignment and mean measurement
error estimation purposes. c Summary of the work flow for image processing. d Two stage channel alignment was found to improve
standard error from 154 nm to 63 nm
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genomic separation (z) present in these strains as z = a +
0.5xp + 0.5xq where a is the length of intragenic spacer
and xp and xq are the lengths of the two flanking opera-
tors (Fig. 1b). Therefore, the strain with 60.6 kb of yeast
genomic DNA flanked by lac and tet operator arrays was
referred to as having 71 kb separation (60.6 kb genomic
DNA + 10.4 kb of flanking operator array DNA), and so
on. An additional strain was generated with colocalising
green and red spots on Chr. XIV, for use as a control for
channel alignment and measurement error.
Live cell 3-dimensional videos of these 8 strains were

generated using the OMX microscope. The workflow
used is summarised in Fig. 1c. Briefly, video acquisition
was performed with CMOS cameras. To remove noise a
dark field subtraction step was included as described in
Materials and Methods. Subsequently, a second level of
denoising was performed using ND-SAFIR using settings
described by the Sedat Lab [53]. Deconvolution was per-
formed using Softworx software. Quality control was
performed as described in the Materials and Methods
section. As the green and red channels are directed to
different cameras on this system, channel alignment is
critical to minimize translational, rotational, and scale
errors. Initially we followed an established method which
utilizes the imaging of multi-wavelength fluorescent
beads to perform a coarse channel alignment. To im-
prove the resolution that could be obtained in vivo we
adopted a two-step channel alignment procedure. Firstly,
coarse alignment was performed using beads or an
etched slide and the Softworx alignment software. This
was then refined using a strain in which tet operators
are bound by both tetR-GFP and tetR-mCherry. The
mean deviations of the centres of the red and green foci
in three planes were used to generate a vector which
was then applied to all red-channel frames. This reduced
the mean measurement error from 110 nm to 63 nm
(Fig. 1d). This reduction is likely due to the fact that the
vector generated in the colocalising strain factors in dif-
ferences in refractive indices between the objective lens
and the subject being viewed (media and cells). A histo-
gram of measurements from the coarse- and fine-tune-
aligned colocalising strain is presented in Additional file
1: Figure S1. As the signal to noise ratios (SNRs) of the
fluorescent foci of all two colour operator strains were
similar to those of the colocalising strain, and as all sat-
isfied identical quality control criteria, we consider it
reasonable to assume that the mean measurement error
(63 nm) is applicable to all the measurements described
below.

Non-linear relationship between physical distance and
genomic separation
Using the workflow described above it was possible to
measure the distance between two fluorescently tagged

loci over time in several strains. Spot distance behav-
iours from all videos are presented in Additional file
1: Figure S2. Distance measurements for strains with
varying genomic separations in G1 of the cell cycle
are presented as histograms in Fig. 2a. When the dis-
tributions obtained from all strains are plotted in
boxplot format, it is apparent that for the longer gen-
omic separations there is a progressive but non-linear
increase in the physical distance (Fig. 2b), similar to
that previously reported [54].
The physical separation distance can be normalised for

the genomic separation and expressed as compaction
(Fig. 2c). This shows that the 42, 64 and 100 kb strains
are more compact than the other strains (Fig. 2c). This
suggests that locus specific effects may influence chro-
matin compaction in addition to the genomic separation.
One potential explanation for the increased compaction
of the 64 kb locus is that it participates in a more exten-
sive network of looping interactions. Chromatin capture
analysis has been used extensively to monitor looping in-
teractions. As 4C and Micro-C data have been collected
for the whole yeast genome under growth conditions
comparable to those we have used, it is possible to inves-
tigate the frequency of interactions observed across the
chromosomal regions we studied. 4C [55] and micro-C
[56] interactions are plotted across a region of chromo-
some XIV (Fig. 3a–c, e). The highest density of 4C inter-
actions falls within the 71 kb strain (Fig. 3c), which is
not anomalously compact (Fig. 2b). The more compact
64 kb locus is not shown to have an increased density of
interacting loci. Similarly, total contacts and boundaries
detected by micro-C do not correlate with the compac-
tion observed by imaging (Fig. 3b, e).
With rich data describing the distributions of many

different chromatin features being available for budding
yeast, we sought to determine whether any other factors
correlate with the compaction observed at the loci we
have studied. Chromatin immunoprecipitation (ChIP)
enrichments for 18 different chromatin features includ-
ing histone modifications, histone H3 occupancy, gen-
eral transcription factors and RNA polymerase, were
plotted across chromosomes XIV and IV (Additional file
1: Figure S3; S5). None of these factors correlate well
with the higher compaction observed in the 42, 64 and
100 kb strains. The distributions of RNA pol II, Sir2,
Histone H3 ChIP, and Histone H3K4 monomethylation
are shown as examples (Fig. 3d–g).

Anisotropy is increased for large separation distances
During imaging, it was noticeable that the relative orien-
tations of the tagged loci in a subset of cells were mark-
edly constrained. To analyse this quantitatively we
developed a test which assigns a statistic, D (see Mate-
rials and Methods), which quantifies the anisotropy of
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the spatial orientation of the two-spot system. The
higher D, the greater the degree of anisotropy. Lower D
values were generally observed for genomic separations
below 70 kb (Fig. 4b) and anisotropy is correlated with
the mean distance (Fig. 4c). This could be an indication
that for small physical distances that relative motion of
foci is less constrained. As physical distance increases,
the nuclear environment acts as a constraint restricting
the extent of relative motion.

Analysis of independence of motion
If two loci are rigidly coupled, then their motion is antic-
ipated to correlate over time. In contrast, if two loci are

distant and elastically connected, their motion is ex-
pected to be independent. We estimate the spatial cor-
relation of the two dots by the RV coefficient, a
multivariate extension of the Pearson’s correlation coeffi-
cient [57]. There is a weak trend for independence of
motion to increase with increasing genomic distance
(Fig. 4d). The exceptions to this trend are the relatively
compact 64 and 42 kb genomic separations which adopt
a more compact state (Fig. 2c). The increased spatial
correlation at short separations could arise from a more
rigid coupling across shorter intervening genomic sepa-
rations, or as a result of concerted motion of chromatin
within local territories within the nucleus.
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(See figure on previous page.)
Fig. 3 Capture contacts and chromatin composition do not correlate with compaction. a Distribution of Hi-C contacts [95] across a region of
chromosome XIV. The different genomic separations are colour coded along with the contacts measured across each region. The total number of
contacts identified within each region is indicated to the right. b Strengths and locations of boundaries as determined by Micro-C [56]. The same
colour coding is used to identify boundaries of a given strain. The number of region-specific 4C interactions per Kb (c) [95], number of genes per
kb (d), compaction measured by micro-C (multiplied by −1) (e) [56], mean enrichment for PolII (f), mean enrichment for Sir2 (g) [96], mean enrich-
ment for histone H3 (h) [96] and mean enrichment for histone H3 monomethylated at lysine 4 (i) [91] are plotted for each strain with the gen-
omic separation between operators indicated. No factors were identified that correlate well with compaction. The distribution of additional
factors across this region is plotted in Additional file 1: Figure S3)
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Heterogeneity in chromatin configuration between single
cells persists for minutes
As many videos, each of which consisting of up to 100
time points, were acquired during the characterisation of
each strain, it was possible to compare fluctuations in the
distance between operator sequences observed within and
between individual cells within a given strain. In all cases
cell-to-cell variation was observed, and the scale with

which the means varied ranged from below 2-fold to over
4-fold for the longer genomic separations (Fig. 5a–f ).
From visual inspection of individual distance versus time
traces it is clear that in some cases the separation distance
remains relatively constant but distinct between cells
(Additional file 1: Figure S2.2 fff ). In other cases, a single
transition is observed during the course of a movie
(Additional file 1: Figure S2.2 uu), while in other cells a
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series of rapid fluctuations in distance is observed over
short time intervals (Additional file 1: Figure S2.2 ii).
Differences in mean distance were observed over both
1 min. and 10 min. (Fig. 5a–f ). To assess the time scale
over which distance varies, the mean square change in dis-
tance (MSCD) was plotted for different time intervals.
This can be interpreted as one-dimensional mean square
displacement, where changes in distance between the
spots is squared rather than simply changes in position
squared are plotted (Fig. 5g–l). These curves indicate that
MSCD typically increases over time intervals up to 30 s.
However, beyond 150 s, a plateau is reached at which little
additional change in separation distance is observed. The
magnitude of this plateau for MSCD varies considerably
between strains with the value in the 64 kb strain being
3–4 fold less than observed in the 70 and 100 kb strains.
If the observed changes in distance occur as a result of

vibrational motion that reaches a maximum by 150 s,
then we would expect the distance after long time inter-
vals within one cell to be comparable with the variation
observed between cells. To test this, time independent
distance changes between randomly selected time points
in different cells were calculated by bootstrapping.
This time-independent and cell-independent MSCD is

plotted as a red line in Fig. 5g–l. For the 64 and 70 kb
strains the MSCD measured between cells is similar to
the maximum MSCD observed within cells after time in-
tervals of greater than 150 s. However, this is not the
case for the 100 kb strain, as the between-cell MSCD is
greater than that measured within cells (Fig. 5l). This is
likely due to the unusually large spot distance in two
cells in this strain (marked with asterisks in Fig. 5f ).
When the time-independent measurement between cells
is recalculated omitting these two cells, the mean is a
better fit to the value observed at time intervals of
greater than 150 s within cells (green line; Fig. 5g). Large
differences in mean distance were also observed in the
70 kb strain, even in videos acquired over 10 min
(Fig. 5e). However, in this case these differences in separ-
ation are evenly distributed around the mean. The ob-
servation that the mean separation distance between the
same loci can be distinct in specific cells for several mi-
nutes raises the possibility that there may be mecha-
nisms acting to maintain different conformations in a
subset of cells.

Differences in chromatin conformation are not inherited
through cell divisions
Within cultures of Saccharomyces cerevisiae, following cell
division, mother and daughter cells remain associated and
can readily be identified as larger mother cells associated
with a smaller daughter cell (Fig. 6a). The ease with which
related siblings can be identified cytologically provides an

opportunity to investigate whether chromatin state is
inherited through cell divisions.
Representative histograms of paired mother and

daughter cells are shown for the 70.6 kb strain in Fig. 6b.
From this it is clear that chromosome conformation var-
ies in several mother daughter pairs indicating that in
these cases separation distance was not conserved
through cell division. The mean spot distances observed
in mother and daughter cells are similar for each strain
(Fig. 5c). When changes in compaction are measured for
paired mother daughter cells and compared to that in
randomly selected unrelated mother daughter pairs
across all strains, the means and standard distributions
are similar (Fig. 6d). In addition the mean distance
changes observed in comparisons between unrelated
mother and daughter cells are similar (Fig. 6d), indicat-
ing that the reduced volume of the nuclei of daughter
cells does not affect the variation in distance.

Discussion
Recent developments in fluorescent microscopy provide
new opportunities to study the organisation of native
chromatin in live cells. Here we describe a workflow that
enables live cell 3-D two-channel measurements to be
made with a mean measurement accuracy of 63 nm. A
key step in this workflow was the adoption of a channel
alignment control that takes into consideration the op-
tical properties of the experimental sample. Although
our application of this approach was based in yeast cells,
similar two colour alignment using two versions of a
fluorescent reporter is applicable to many cell based sys-
tems. It is likely that improvements in several aspects of
the work flow will further reduce measurement error. As
the greatest error component is along the axial dimen-
sion, approaches such as confocal microscopy, multipho-
ton microscopy, or optical astigmatism would all likely
decrease mean measurement error.
We use this system to study the configuration of chro-

matin across a series of chromosomal loci with distinct
genomic separations. In all cases the physical distance
between the fluorescent reporters is observed to fluctu-
ate over time. In addition, a trend is observed for dis-
tance to increase at larger genomic intervals. The scale
of the measurements is comparable to data obtained
previously using FISH, 2D [54] and more recently 3D
data [34]. Information of this type can be used to test
different physical models describing chromatin fibres.
At longer distances above roughly 300 nm (corre-

sponding to a genomic separation of approximately
70 kb), we observe that the two reporter loci have a
higher tendency to remain in the same relative orienta-
tion with respect to one another. Structure within the
nucleus may restrict diffusive motion on this scale. At
the same time there is greater correlation of motion of
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loci at closer proximity than ~300 nm. This could arise
as a result a physical coupling between the two opera-
tors. It is also possible that the local chromatin environ-
ment extending to 300 nm, a form of sub chromosomal
territory or domain, undergoes some localised flow-like
motion that accounts for the correlated motion. On
scales greater than 300 nm the density of intervening
chromatin may act to exclude free diffusion and restrict
isotropy. At these larger distances, the motion of the
two operators becomes independent as indicated by the
reduced RV coefficient. The differences in motion ob-
served over different ranges may relate to previously re-
ported effects of nuclear exclusion on chromosome
organisation [58].
The measured separation distance did not vary con-

sistently with genomic separation across all the strains

studied. The 42, 64 and 100 kb strains show higher
levels of compaction than the other strains (Fig. 2c).
When the diffusive motion of the lac and tet operators
flanking these loci is studied independently, the mean
square displacement curves are similar (Additional file 1:
Figure S4). This suggests that the differences in compac-
tion do not result from constraints to the motion of ei-
ther of the reporter sequences. Another potential
explanation for the reduced separation distances ob-
served in the 42, 64 and 100 kb strains could be that
chromatin is arranged in a more compact state over
these genomic loci. To investigate this we took advan-
tage of the large number of previously published gen-
omic datasets available in budding yeast and searched
for factors that correlated with chromatin compaction
across the different loci we have studied. Amongst the
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Fig. 6 Chromatin conformation is not inherited. Mother and daughter cells can readily be identified in Saccharomyces cerevisiae cultures as physically
attached pairs (a). Each mother-daughter pair shares the same parent providing an opportunity to assess whether chromatin configuration
is conserved through cell division. Movies obtained in individual cells from the 70 kb strain are plotted with mother-daughter pairs in the
same colour in (b), in each case with data from the mother to the left. Unpaired cells are in grey. In some cases it is clear that mothers
and daughters have differing spot distances. The distance box plots for all mothers and daughters of each strain are plotted in (c). In
order to compare changes in distance between a large sample of related and unrelated mother and daughter cell pairs, changes in compaction were
calculated using movies from each genomic separation (d). Compaction is calculated by dividing genomic separation by the measured
distance between operators. The change in compaction between different populations was then calculated as a ratio indicated on the
y-axis as ‘Log2 of compaction ratio’. This comparison could be made between related m/d pairs and unrelated m/d pairs selected at random. In both
cases, the distributions of the differences in compaction are similar and not statistically significant (Mann-Whitney p-value = 0.181). This indicates that
the separation of the reporter loci studied here is not inherited. Little change in separation is observed when the comparison is made
between unrelated mother/mother and daughter/daughter pairs. This suggests that the difference in the volume of mother and daughter
cell nuclei has little effect on the separation of these operator tagged loci
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18 factors selected (including histone occupancy, post-
translational modifications and measures of transcrip-
tional activity) none show a strong correlation with
compaction (Fig. 3; Additional file 1: Figure S3). In
addition, the loci within these strains are not adjacent
to loci such as centromeres, telomeres or the rDNA
locus that have previously been observed to influence
subnuclear motion [38].
Looping interactions that affect the separation of re-

porter loci provide an attractive explanation for the vari-
ations in the observed separation distance both between
strains and over time. Hi-C approaches are widely used
to detect looping interactions. Like microscopy-based
approaches they detect heterogeneity in chromatin con-
formation between cells [59] and can be used to model
chromosome architecture [55]. However, the distribu-
tions of cross-links obtained by Hi-C, and high reso-
lution micro-C, do not correlate with the higher
compaction observed in the 42, 64 and 100 kb strains
(Fig. 3). This is perhaps not surprising as although these
loci are relatively compact, the distance between opera-
tors is typically 200 nm which is beyond the range likely
to enhance DNA ligation, the readout for capture based
approaches. Chromosomal loci can potentially be con-
strained through interactions with any relatively immo-
bile object within the nucleus. Such interactions may
bring heterologous DNA sequences into closer proximity
but still out with the range required to enhance ligation.
Factors such as these are likely to contribute to the pre-
viously noted discord between Hi-C and imaging based
chromatin measurements [60]. Where chromatin is es-
pecially well ordered there is a greater chance that im-
aging and Hi-C approaches converge. An example of
this is provided by the mating type loci on budding yeast
chromosome III [61].
Changes in the association of loci with relatively im-

mobile bodies within the nucleus that affect the distance
between reporter loci provide an attractive means of ac-
counting for some of the heterogeneity we have ob-
served. Such interactions could be stable over differing
time scales. Transient interactions could account for the
rapid variation in distance observed at some loci
(Additional file 1: Figure S2). Where interactions are
more stable they could contribute to variation in the
mean distance observed in different cells. A diverse
range of factors could act to influence the localisation of
a given chromosomal locus and this could explain why
no obvious correlation between genomic features and
separation distance was identified.
The use of Saccharomyces cerevisiae makes it relatively

easy to identify pairs of cells that share a common mother.
Comparing the conformation of chromatin between re-
lated and unrelated mother daughter pairs, chromatin
conformation was not observed to be conserved in related

cells. However, it is possible that this will not be the case
for all loci. In budding yeast it is well established that ex-
pression of genes at the mating type loci [62] and within
subtelomeric regions [63] can be inherited. Furthermore
the nuclear localisation of these regions is distinct [61, 64].
The chromosomal regions we studied do not include these
regions which may be exceptions within the context of
Saccharomyces cerevisiae genes. Higher eukaryotes pos-
sess additional chromatin features such as HP1 proteins
and polycomb that are more likely to influence both in-
heritance and nuclear localisation [65, 66]. Consistent with
this, inducible decompaction of reporter loci in mouse
embryonic stem cells has been observed to be sufficient to
cause a change in subnuclear localisation that persists
through cell divisions [67].
Although we do not observe any evidence for the in-

heritance of chromatin configuration through cell div-
ision, we do observe individual cells that have distinct
chromatin configurations that persist for times periods
of up to 10 min. This suggests that alternate chromatin
configurations can be maintained in individual cells. It’s
possible that this heterogeneity may affect the ability of
cells to respond to environmental stimuli. There is good
evidence indicating that the subnuclear localisation of
genes can play an important role in their regulation.
Tethering genes to the nuclear periphery is known to
favour establishment of silent heterochromatin [68, 69],
many genes have been observed to transiently associate
with the nuclear pore during activation [70]. In mam-
malian cells changes in the localisation of genes has
been observed to correlate with changes in transcrip-
tion [71–73]. If the conformation of loci has a similar
influence on gene regulation, then it could contribute
to the heterogeneity in transcriptional responses that
have been observed in single yeast cells [74–76]. This
heterogeneity potentially provides an advantage for in-
dividual cells in being able to respond rapidly to an
environmental change. However, unlike the changes
occurring during the development of multicellular or-
ganisms there is not a need for such changes to be
inherited. Instead, if a cell is well placed to adapt to
a new environment it may be best to restore hetero-
geneity in subsequent generations providing capability
to respond rapidly to a diverse range of future chal-
lenges. As we do not observe evidence for the inherit-
ance of chromatin configuration at this level, it is
possible that the processes of DNA replication and
cell division provide an opportunity to reset the con-
figuration to the spectrum of states observed within
the population. In this way non inherited heterogen-
eity may serve an important biological function. In
multicellular organisms there is a need both for the
flexibility to respond to environmental change and
the precision required for tissue development. This
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may involve a different balance between inherited and
non-inherited states.

Conclusions
A workflow has been established to study the separation
of fluorescently tagged reporter loci in live cells. The
mean separation of reporter loci was observed to in-
crease with increasing intervening genomic sequence.
However, this increase is non-linear indicating that dif-
ferent regions of the genome are in different configura-
tions. No genomic features were identified that correlate
with the observed separation of loci suggesting that as
yet uncharacterised factors influence chromosome or-
ganisation. Separation is observed to vary within cells
over time and between cells. This heterogeneity may
contribute to heterogeneity in the transcriptional re-
sponse at the level of single cells. Distinct chromatin
configurations were however, not observed to be inher-
ited through cell division.

Methods
Plasmids and strains
The plasmids used in this study are summarized in
Additional file 2: Table S1. Plasmids pT1196 [77], pFA6a-
mCherry-natMX6 [78], pAT253corrected [52], pLAU43
and pLAU44 [79], pRS416 [80], pAFS59 [32], pAFS135
[81], pRS306tetO224 [82], pYiplac204-Gal1Pro-MDN1
[83], pGVH30 [54], pFA6KanMX6 [84] and pAG25 and
pAG32 [85] have been described previously. pDD2244
(tetR-GFP-tetR-mCherry::ADE2) was generated in 4 clon-
ing steps from pAT253corrected (Taddei), pT1196, and
pKS391. pDD2245 (GFP-lacI**-TetR-mCherry::ADE2) was
generated in 4 cloning steps from pKS391, pGVH30,
pAG32, and pAT253corrected. pDD2246 (tetO-
UBP10::TRP1) was generated from pLAU44, an NdeI-
UPB10 integration site-HindIII PCR product, and an
AatII-TRP1-NdeI PCR product fragment in 2 cloning
steps. pDD202 was generated in 5 cloning steps from
pRS306tetO224, pRS416 and 3 PCR products. pDD206
was generated in 4 cloning steps from pYCG_YLR106c,
pRS416, and pFA6KanMX6. pDD207 was generated in 4
cloning steps from pYiplac204-Gal1Pro-MDN1, pRS416,
and pAFS59. The lac operator array plasmids pDD249,
pDD251, pDD253, and pDD254 used to generate yeast
strains DD1471-1475 were constructed by cloning the ap-
propriate genomic integration target sequence from Chr
XIV adjacent to the lac operator array in a pLAU43
lacOx240 clone which had previously been modified with
a SalI-URA3-SalI PCR product fragment. The tet operator
array plasmids pDD2246, pDD250, pDD252, pDD255,
pDD256 and p2577 used to generate strains DD1471-
1475 were constructed by cloning a AatII-TRP1-NdeI
PCR product fragment into the pLAU44 tetOx240 plas-
mid and then cloning the appropriate genomic integration

target sequence from Chr XIV adjacent to the tet operator
array. All plasmid sequences are available upon request.
All plasmids were verified by multiple restriction digests
as well as sequencing of crucial regions.
The S. cerevisiae strains in this study are summarized

in Additional file 2: Table S2 and illustrated in Fig. 1a.
The tet and lac operator arrays for all Chr XIV strains
were integrated between convergent genes. The termina-
tors of these genes were duplicated and flank the insertion
sites such that all genes retain their wild type terminators.
Additional file 2: Table S2 columns 5’ and 3’ indicate the
pairs of convergent genes where the insertions took place.
DD1407 generation: WT yeast strain K699 (W303) was
transformed first with pDD2244 (tetR-GFP-TetR-mCher-
ry::ADE2) linearized with PciI, and then with pDD2246
linearized with PfoI. DD1413 was generated by succes-
sively cloning in linearized pAFS135, pDD2248, pDD202,
pDD206, and pDD207. It was verified by PCR using pri-
mer pairs 1988 + 1952, 2061 + 2062, 2044 + 2529, and
2051 + 2058, which flank the appropriate integration sites
at the URA3 locus. Strains DD1471-1475 were generated
using plasmids pDD2244 and pDD2245, and the appropri-
ate lacO and tetO array plasmids pDD246, 2247, 2248,
and pDD249-256, and were verified by PCR using primers
2452–2468. Strain DD1336 was generated by cloning line-
arized pDD2247 into T6002 and was verified by PCR
using primers 2067–2074.

Cell culture
Tetracycline was added to all cell cultures to diminish
the affinity of the tet repressor DNA binding protein for
its DNA binding site, as per Dubarry [52]. Optimal con-
centration resulting in 94 % maximum fluorescence in-
tensity was determined via concentration series and
measured on the OMX. The colocalising strain and most
sample strains were streaked to YPAD and cultured
overnight, propagated in liquid culture for 8 h, cultured
overnight in 75%SC/25%YPA + 2%dextrose + 20 ng/ml
tetracycline, washed in the culture media and placed on
ice. In all cases cells were adhered to concanavalin A-
treated 35 mm glass-bottomed MatTek culture dishes
for 10 min at 22.0 °C, then allowed to temperature-
equilibrate in the microscope enclosure at 23.5 °C for an
additional 10 min.

Image acquisition
All imaging was performed with a GE|OMX Blaze®
microscope. Immersion oil with refractive index 1.514
was used in all cases. Typical video acquisition included
5 μm stack height, 250 nm step size, 21 images per
stack, 128 × 128 field of view (FOV), 50–100 time
points, excitation 3–8 msec, ND 31–100 for mCherry
and ND 5–10 for GFP, and sequential channel acquisition.
The microscope enclosure is maintained at 23.5° Celsius.
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Videos and associated tracking data are available at url:
http://dx.doi.org/10.17867/10000102.

Channel alignment protocol and image processing
Channel alignment parameters for an initial coarse align-
ment were generated using single stacks of twenty-nine
1024x1024 FOV images with step size of 125 nm of a
Tetraspeck 100 nm bead slide or laser milled slide
(LMS) using the red and green channel cameras. Coarse
alignment lateral parameters were calculated using Soft-
worx software, which included a translation, magnifica-
tion, and rotation. Coarse axial alignment offset was
determined manually using the Softworx Measure Chro-
matic Correction function. Channel alignment fine tun-
ing parameters were calculated using live cell 3-D
tracking data from the colocalising strain, DD1407,
which has single red and green colocalising spots of di-
mensions assumed to be smaller than the PSF. 50–100
time points of 17 128 × 128 FOV images/stack were gen-
erated with 3-8 msec exposures generated sequentially
from red and green channels. Videos were split into in-
dividual channels and saved in 4-byte float format. Dark-
field images, generated previously by taking the mean
pixel intensity of 1000 images at set exposure times,
were then subtracted from the individual video channels
to correct for noise arising from the CMOS cameras.
Videos were denoised with the ND-SAFIR denoising
software [86] using the Sedat Lab settings iter = 5, p = 3,
sampling = 2, noise = Gaussian, adapt = 0, island = 4, and
np = 8 [53], and then deconvolved via Softworx using a
ratio (conservative) method tailored to an idealized ob-
jective of the model used in our OMX Blaze, and saved
in 4-byte float format. Individual channel files were
fused into a single red plus green video file and coarse
alignment was performed with Softworx using the bead
slide or LMS alignment offset parameters. The spots
were tracked using Imaris, the x, y, and z offsets between
the different channels were determined for each time
point using Excel spreadsheet, and the means of these
offsets were calculated from data from multiple videos.
Fine-tuning alignment was performed in Excel by sub-
tracting these mean offsets from the red channel x, y,
and z spot coordinates, which resulted in a final transla-
tion. After the fine tuning alignment had been per-
formed on the colocalising strain videos, the mean
distance between the red and green spots for all time
points from all videos was determined via Pythagorean
Theorem to be 63 nm, with a standard deviation of
37 nm. The tracking data is available at https://idr-
demo.openmicroscopy.org/webclient/annotation/1645869.

Quality control
Plotting z coordinate versus error indicated that once
tagged loci diffused to within 1 μm of the top or bottom

of a stack, error increased (not shown), and for this rea-
son these data points were eliminated from both control
and sample data sets. Plotting maximum spot intensity
or contrast versus error, followed by LOESS smoothing,
revealed correlations which allowed for elimination of
data points with high error (not shown). Based on this
GFP and mCherry contrast thresholds were both set at
12, while minimum intensity threshold for mCherry and
GFP was set at 25 and 16 respectively. Use of these
thresholding values removed images where the positions
of foci were not sufficiently well defined to obtain high
resolution locations. Using these threshold values, we
were able to generate live cell 3-D 2-channel videos with
250 nm step size, 5 μm stack size, 21 images per stack,
and up to 100 time points. As experimental video data
were subjected to the same thresholding protocol, it is
assumed that the resulting error was also 63 nm.

Relative orientation anisotropy
We assessed the degree of anisotropy of the spatial
orientation of each pair of marked loci by mapping them
to UV-space. The Cartesian co-ordinates ri = (xi, yi, zi) of
the distance vector between the ends of a locus were
mapped into a unit square,

ui ¼ 1
2π

tan−1
yi
xi
; vi ¼ rij j−zi

2 rij j : ð1Þ

If the original vectors ri are isotropic (uniformly
distributed on a sphere S2), then the transformed co-
ordinates (ui, vi) are uniformly distributed over [0, 1]2.
We applied a two-dimensional Kolmogorov-Smirnov
test [87, 88] to all (ui, vi) across each video. The test
statistic, D, measures the degree of anisotropy in the
ri distribution.

RV analysis
RV coefficient analysis is similar to Pearson’s correlation
coefficient analysis, but is a multivariate generalization
rather than bivariate [57]. When used to compare the
positions of two genomic loci in 3D over time, the RV
coefficient indicates relative independence of motion of
the two loci. Larger magnitudes of the coefficient corres-
pond to a greater tendency for the two loci to track
together.

Mean square displacement analysis
Mean square displacement analysis was performed for
individual fluorescent loci using accepted methods [89].

The OMX Blaze microscope
The GE|OMX Blaze® microscope is fitted with an Olym-
pus UPlanSApo 60× 1.42NA oil objective, a Piezo stage,
a BGR standard filter set (DAPI 436/31, FITC 528/48,
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A568 609/37, cy5 683/40), conventional widefield solid-
state 461–189 nm and 563–588 nm LED solid state light
sources, 3 back-illuminated 15 bit scientific CMOS cam-
eras (PCO AG, Germany) with 1024 × 1024 chip size,
and a temperature control chamber set to 23.5 C. The
instrument is controlled by proprietary GE software.

Additional files

Additional file 1: Figure S1. Two step channel alignment improves
resolution. Channel alignment has traditionally been performed using
multispectral beads of dimensions smaller than the PSF. Stacks of 100 nm
Tetraspeck bead images in separate channels were analysed using
Softworx alignment software to calculate rotational, translational, tilt, and
magnification offsets. When colocalising strain videos were aligned
following this protocol the mean measured distance between the tagged
loci was calculated to be 110 nm. Including the fine-tuning step reduced
the mean error to 63 nm. Error bars are standard deviation. Figure S2.
Distance verses time plots. For individual videos acquired in this study,
spot separation distance in um is plotted against time in seconds. Graphs
are grouped by strain as indicated. Each video is assigned an alphabetical
identifier which corresponds. Figure S3. Chromatin composition at reporter
loci. High-resolution ChIP profiling enrichments for the chromatin constituents
indicated across the loci studied. Rpb1, PolII Ser2P, PolII Ser5P, Pcf11, Spt4,
Spt5, Spt6, Spt16, and TFIIB data were generated by [90]. Histone H3 K36
monomethylation, K36 dimethylation, and K79 trimethylation data
were generated by [91]. Histone H2B K123 ubiquitylation data were
generated by [92]. Ino80 data were generated by [93]. Figure S4.
MSD curves for operators flanking each reporter locus. Mean square
displacement is plotted for the fluorescently tagged operator sequences
flanking each locus used. Data for the GFP tagged lacI are shown in green
and mCherry tetR in red. Data from movies taken over different time scales
is combined. The grey line indicates the profile anticipated for anomalous
diffusion, MSD(Δt) ∝Δt1/2 [89]. The green and red lines show the best-fitting
lines of Brownian diffusion, MSD(Δt) ∝Δt. Figure S5. PolII enrichment at
tetO and lacO array integration sites on Chr XIV. Enrichment of PolII subunit
Rpb3 along the relevant loci is shown in green [94]. Integration sites
of arrays of bacterial repressor binding sites are indicated by down
carats (‘V’). Locations of open reading frames, as well as their position
on Watson or Crick strands, are indicated by blue and purple arrows.
(A) All lacO and tetO arrays on Chr XIV were integrated between
convergent genes and the terminators of the convergent genes were
duplicated such that each copy flanked the insertion site. In this way
all genes retained wild type copies of their terminators after insertion. (B)
PolII enrichments at the integration sites of the 70.6 kb strain. TetO array
was integrated between YDL089w and YDL088c, and lacO array was
integrated between YDL055c and YDL054c. (C) PolII enrichments at
the integration sites of the 25.3 kb strain. This strain is flanked by
the ura3-1 point mutant and wild type URA3. (PDF 5372 kb)

Additional file 2: Plasmids and strains used in this study. (PDF 460 kb)
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