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Purpose: Parallel RF transmission (PTx) is one of the key technologies
enabling high quality imaging at ultra-high fields (≥7T). Compliance with reg-
ulatory limits on the local specific absorption rate (SAR) typically involves
over-conservative safety margins to account for intersubject variability, which
negatively affect the utilization of ultra-high field MR. In this work, we present
a method to generate a subject-specific body model from a single T1-weighted
dataset for personalized local SAR prediction in PTx neuroimaging at 7T.
Methods: Multi-contrast data were acquired at 7T (N = 10) to establish ground
truth segmentations in eight tissue types. A 2.5D convolutional neural net-
work was trained using the T1-weighted data as input in a leave-one-out
cross-validation study. The segmentation accuracy was evaluated through local
SAR simulations in a quadrature birdcage as well as a PTx coil model.
Results: The network-generated segmentations reached Dice coefficients of
86.7%± 6.7% (mean± SD) and showed to successfully address the severe inten-
sity bias and contrast variations typical to 7T. Errors in peak local SAR obtained
were below 3.0% in the quadrature birdcage. Results obtained in the PTx con-
figuration indicated that a safety margin of 6.3% ensures conservative local SAR
estimates in 95% of the random RF shims, compared to an average overestima-
tion of 34% in the generic “one-size-fits-all” approach.
Conclusion: A subject-specific body model can be automatically generated
from a single T1-weighted dataset by means of deep learning, providing the
necessary inputs for accurate and personalized local SAR predictions in PTx
neuroimaging at 7T.
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1 INTRODUCTION

Ultra-high field MRI (B0 ≥ 7T) is known to offer higher
resolution structural and physiological information than
attainable at 3T, particularly in the brain.1 At ultra-high

field, parallel transmission (PTx) using multiple RF trans-
mitters is a key technology to address the increased level of
non-uniformity in the RF field distribution.2–4 PTx allows
for dynamic manipulations of the B1

+ field distribution by
adjusting the RF phases and amplitudes of the individual

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

464 wileyonlinelibrary.com/journal/mrm Magn Reson Med. 2022;88:464–475.

https://orcid.org/0000-0001-9974-7662
https://orcid.org/0000-0003-2396-2504
https://orcid.org/0000-0003-0365-4942
https://orcid.org/0000-0003-2885-5812
https://orcid.org/0000-0003-4045-9732
http://creativecommons.org/licenses/by/4.0/


BRINK et al. 465

transmit channels, thereby enabling optimization of the
spin excitation process. This flexibility comes at the cost,
however, of an increased range of potential local RF power
absorption levels in the body, for which in Europe regu-
latory limits are defined by the IEC in terms of the peak
10 g-averaged specific absorption rate (SAR).

Although global SAR metrics such as head-averaged
SAR can be adequately monitored via the RF input power,
as is commonly done in single-channel (i.e., non-PTx) sys-
tems, local SAR cannot be measured and is generally a
complex function of both system characteristics as well as
the subject-specific anatomy.5 Depending on the excitation
pattern of the RF transmit array, local SAR can vary by as
much as 600% for a given RF input power.6 This aspect
can be accounted for in the local SAR model by employing
the so-called Q-matrix formalism,7 often compressed to a
smaller set of virtual observation points with a pre-defined
safety factor to account for the compression loss.8 Addi-
tionally, local SAR is known to vary by up to 70% depend-
ing on the anatomy of the subject, including aspects such
as tissue distribution as well as positioning within the
RF coil.9–11 This intersubject variability is typically esti-
mated offline, by evaluating multiple generic body mod-
els, and accompanied with conservative safety margins to
ensure compliance in all subjects. This “one-size-fits-all”
approach inevitably compromises the RF performance and
limits the utilization of PTx at ultra-high fields, as well
as limits our insight into the actual RF exposure levels
imposed by ultra-high field MRI systems.

Several groups have previously demonstrated
subject-specific approaches to SAR prediction by estab-
lishing a subject-specific anatomical model from MR data
which is then evaluated in an electromagnetic solver.12,13

This builds on the principle that local SAR depends pre-
dominantly on the geometry of electrically distinct tissues,
rather than their exact dielectric properties.14,15 To address
the time-consuming process of image segmentation, tech-
niques based on semi-automatic segmentation,12 image
registration,13 computer vision16,17 and deep learning have
been proposed.18 The resulting synthesized body model
can then facilitate both subject-specific calculations of
local SAR as well as tailored PTx pulse designs, both key
to the ultra-high field MR workflow.19,20 As these stud-
ies are typically based on 3T data which are relatively
free from image artifacts, the resulting image segmen-
tation methods are not directly suited to handle 7T data
due to the increased level of image shading and con-
trast non-uniformity, which would lead to segmentation
errors and inaccuracies in the resulting SAR predic-
tions. Addressing these inaccuracies would require either
time-consuming manual corrections or, alternatively, an
additional MR examination at 3T.

In this work, we present a method based on deep learn-
ing to generate a subject-specific numerical body model

for local SAR prediction automatically from a single 3D
T1-weighted neuroimaging dataset acquired at 7T, which
can be run in a few minutes and is standard in almost
all neuroimaging protocols. The network is trained using
a custom set of segmented body models derived from
multi-contrast 7T data to serve as the ground truth. By
using the original T1-weighted data as input for train-
ing, RF-induced image nonuniformities and artifacts typ-
ical to 7T are automatically accounted for by the net-
work. Finally, the accuracy of the network-generated body
models is evaluated in terms of the 10 g-averaged SAR
in both a quadrature birdcage RF coil model as well as
a PTx configuration and compared to the conventional
“one-size-fits-all” approach.

2 METHODS

The approach for developing the custom set of body mod-
els and deep learning segmentation method is schemati-
cally illustrated in Figure 1 and described in more detailed
in the following sections. Healthy volunteers were scanned
under a protocol approved by the local institutional review
board. Signed informed consent was obtained from all
volunteers.

2.1 MR protocol

A multi-contrast MR protocol was acquired in 10 healthy
volunteers (5 male, 5 female, age 26.9± 9.7) on a 7T MR
system (Achieva, Philips Healthcare, Best, the Nether-
lands) equipped with a quadrature birdcage head coil and
a 32-channel receive coil array (Nova Medical, Wilming-
ton, MA). The imaging protocol started with image-based
B0 shimming up to third-order and image-based receive
coil sensitivity calibration in the entire head and neck
region using vendor-supplied routines. All anatomical
data were acquired at an isotropic spatial resolution
of 1 mm3 and a field of view of 192× 256× 256 mm3

in a sagittal orientation covering the head and
neck.

The MR protocol included a T1w 3D MP-RAGE
sequence (TR/TE/TI= 4.9/2.3/1050 ms, shot inter-
val= 2500 ms, 69 shots, flip angle= 5◦, sensitivity
encoding (SENSE) factor= 1.5× 2 [AP×RL], acquisition
time= 2 min 54 s), a T2w 3D fast spin echo (FSE) sequence
(TR/TE/TEeq = 2500/205/132 ms, echo train length
(ETL)= 128, refocusing angle= 70◦, SENSE factor = 2× 2,
partial Fourier factor = 6/8, number of signal averages = 2,
acquisition time = 4 min 5 s), and a PDw 3D spoiled gradi-
ent echo sequence (TR/TE = 3.7/1.97 ms, flip angle = 10◦,
acquisition time = 2 min 39 s). Additionally, a three-point
multi-acquisition 3D Dixon sequence was acquired for
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F I G U R E 1 Schematic illustration of the multi-contrast data used for generating the custom set of body models (N = 10) to serve as
ground truth, of which the T1-weighted data is used as input for training the deep learning method. Whereas the semi-automatic
segmentation process involves many steps with elaborate user interaction, the deep learning method produces the body model from the
original T1-weighted data automatically

water/fat separation (TR/TE1/ΔTE = 6.3/3.0/0.33 ms, flip
angle= 15◦, SENSE factor= 2× 2, acquisition time= 5 min
21 s), and B1

+ mapping was performed using a multislice
DREAM sequence (in-plane resolution = 4× 4 mm2, slice
thickness = 4 mm, TR/TE = 4.0/1.97 ms, STEAM/imaging
flip angle = 50◦/10◦, acquisition time = 13 s).21 All image
reconstructions were performed twice, with intensity nor-
malization of the receive coils first calibrated to the volume
coil and subsequently calibrated to a sum-of-squares com-
bination of the receive elements, using vendor-supplied
reconstruction routines. This results in having an intensity
bias imprinted on the data that is similar to that obtained
either in a transmit/receive RF coil or a receive-only RF
coil array, respectively.

2.2 Semi-automatic segmentation
for ground truth generation

The image data were segmented into eight distinct tis-
sue types to ensure accurate predictions of local SAR,15

using a semi-automatic segmentation pipeline involving
Matlab 9.10 (MathWorks, Natick, Massachusetts, USA),
FSL 6.0 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and 3D
Slicer (https://www.slicer.org/).22,23 The target tissue types
extended those suggested by the study of Buck et al.15

and included internal air, bone, muscle, fat, white mat-
ter, gray matter, cerebrospinal fluid, and eye tissue. This
resulted in 10 three-dimensional body models with cor-
responding T1w image data to serve as pairs of ground
truth and input data in the development of the deep learn-
ing segmentation method. The approach is graphically
illustrated in Figure 1.

The semi-automatic segmentation procedure started
with a custom intensity bias correction procedure based
on the DREAM data to correct for the RF-induced
nonuniformities in the 7T image data.24 The underlying
stimulated-echo and FID images were first used to derive
B1

+ and M0B1
− maps based on the corresponding sig-

nal expressions,21 which were subsequently fitted onto a
spherical function basis to remove the M0 component and
noise.25 The fitted maps were then used to generate a bias
field estimate by using the signal equations corresponding
to gradient-recalled (GRE) and spin-echo sequences,26 viz.

SIGRE = M0 sin
(
𝛾B+

1 𝜏
)

B−
1 ∝ B+

1 B−
1

SIFSE = M0 sin
(
𝛾B+

1 𝜏
)3B−

1 ∝ sin
(
𝛾B+

1 𝜏
)3B−

1

which were applied to the corresponding datasets. The bias
correction procedure is graphically illustrated and com-
pared to conventional N4 bias correction in Figure 2. After
intensity correction, all datasets were co-registered using
the rigid registration procedure from the Elastix toolbox in
3D Slicer.27

Body tissues were distinguished from bone and inter-
nal air by thresholding the PDw data, followed by manual
correction of image artifacts such as eye motion or resid-
ual intensity bias. The PDw data were then median filtered
and paranasal sinuses identified within the corresponding
cranial bone sections by means of thresholding. Care was
taken to ensure that the bone wall around the sinuses was
no less than 2 mm thick. Brain extraction and segmenta-
tion were performed on the T1w data using the BET and
FAST toolboxes within FSL.28 The T2w data were used to
segment the eyes using a region growing algorithm in 3D

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.slicer.org/
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F I G U R E 2 Custom intensity bias correction procedure based on DREAM data. Bias fields for gradient-recalled (GRE) and fast spin
echo (FSE) sequences were estimated by fitting the DREAM-generated B1

+ and M0B1
− maps to a spherical function basis (A), which were

subsequently used to correct the image data (B)

Slicer. The remaining body tissues were segmented into
fat and muscle based on the fat fraction maps that were
derived from the Dixon data. Finally, a 1 mm layer of skin
was enforced by replacing fat voxels in the outer layer of
the body model with muscle.

2.3 Deep learning segmentation

A convolutional neural network was designed based on the
ForkNET topology18 and implemented using Tensorflow29

in Python. The network architecture consists of multiple
U-net structures with one common encoder and nine par-
allel decoders, each output corresponding to one of the
tissue segments in addition to one for the background. As
3D convolutional neural networks often pose demanding
memory requirements, a 2.5D approach was adopted by
training three independent 2D networks for each of the
three orthogonal slice orientations. The network topology
had a total of 23 layers, of which 6 were pooling layers. The
first layer encoded eight feature maps, and this number
doubled after each of the pooling layers. This yielded a total
number of 5 million trainable network parameters per 2D
network. All convolutions were performed using a kernel
size of 3× 3, stride of 1× 1 and padding of 1. All deconvolu-
tions and max pooling steps were performed using a kernel
size of 2× 2. Batch normalization was performed with a
momentum of 0.9 and a stability parameter of 𝜀 = 0.001.
After summing the three network outputs, tissue labels
were assigned according to the maximum output channel.
In the case when none of the channels generated an output

(i.e., all outputs being equal to zero), which would result
in a void voxel within the model, a neighborhood majority
vote was applied.18

A cross-validation study was performed to test the per-
formance of the deep learning segmentation method on
independent data which were not used for training the
network. To achieve this, all training was performed in
a leave-one-out manner, in which the test subject (i.e.,
the 3D dataset that was used for testing the network) was
excluded from the entire training stage. The network was
then trained using randomized 2D slices of the original
T1w data (i.e., without any pre-processing) as input, and
corresponding 2D slices of the semi-automatic segmen-
tations as the ground truth, in which 90% of the dataset
was used for training and 10% for validation. This means
that the transverse and coronal networks were trained
with 2304 slices of 192× 256 pixels in size and that the
sagittal network was trained with 1728 slices of 256× 256
pixels in size. Either the T1w data with volume coil or
sum-of-squares intensity normalization were used as input
data, yielding a dedicated network for either reconstruc-
tion setting. Training was performed using batches of 10
randomized training images per iteration in 40 epochs
using the ADAM optimizer.30 The Dice coefficient, also
known as Dice similarity index, was used to measure seg-
mentation quality and employed as a loss function for
training. One epoch took approximately 114 s on a GPU
(Tesla K40c, NVIDIA, Santa Clara, CA), which resulted in
a total training time of approximately 4 h per test subject.
After training and testing, the network was re-initialized
with random weights, and the procedure was repeated on
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the following test subject such that the accuracy of the
method could be evaluated in all datasets (N = 10) in an
independent manner.

2.4 RF field simulations

RF field simulations on the ground truth and
network-generated body models were obtained at
300 MHz using XFdtd (version 7.4, Remcom Inc., State
College, PA) to evaluate the B1

+ and 10 g-averaged SAR
distribution (SAR10g). Literature values for the dielec-
tric properties and density were assigned to each of the
tissue types.31 SAR averaging was performed using a
custom region growing algorithm, which ensures cor-
rect averaging around the outer borders of the model.32

All simulations were performed in a 2 mm uniform dis-
cretization grid with a sinusoidal excitation at 300 MHz on
an Intel Xeon 2.80 GHz processor equipped with a GPU
(Tesla K40c, NVIDIA, Santa Clara, CA), and all custom
post-processing was implemented in Matlab (version 9.10,
MathWorks, Natick, MA).

First, a single-channel RF exposure assessment was
performed on each of the body models in a shielded
16-rung high-pass birdcage model driven in quadrature
mode using fixed excitation ports at each of the capaci-
tor gaps. The rungs of the birdcage were 18 cm long and
2.5 cm wide, the inner diameter was 30 cm and the outer
diameter of the shield was 36 cm. The birdcage RF coil
model was validated experimentally in a head-sized phan-
tom through B1

+ mapping as well as MR thermometry.33

Simulations in the birdcage model took approximately
130 s to reach a steady state with −40 dB of convergence,
owing to the non-resonant nature of the coil model, and
the resulting field data were normalized to 1 W of RF input
power.

A PTx RF exposure assessment was finally carried out
on each of the body models by evaluating 1000 random
RF shims in a generic eight-channel unshielded loop array
coil with an inner diameter of 30 cm. The loop elements
had a 6 cm width and 24 cm length and had six tuning
capacitor breaks. The RF coil was simulated using excita-
tion ports at each of the 48 capacitor gaps and tuned using
a circuit co-simulation method which involved a custom
optimization procedure aimed to minimize both the input
reflection coefficients and worst case coupling between
channels.34,35 The tuning process was performed by load-
ing the coil with a reference body model “Duke” from the
Virtual Family,36 and yielded tuning capacitances of 3.6 pF
and a series matching capacitor of 5.9 pF. All input reflec-
tion coefficients were below −12 dB, hence the coil model
did not require retuning when different body models were
inserted. After tuning the coil in the circuit co-simulation

domain, field data were combined to produce the B1
+ and

electric field response for each of the channels. The electric
field data were then combined to construct Q-matrices,37

which were averaged over 10 g of tissue and converted
into a vectorized format to allow for efficient evaluation of
the local SAR in arbitrary RF shim settings.19,20 A series
of 1000 random RF shims was finally evaluated in both
the ground truth as well as the network-generated body
models by assigning random phases and amplitudes to all
RF channels and comparing the resulting SAR10g distribu-
tions. All PTx simulation results were normalized to a total
input power of 1 W. Port-wise simulations of the PTx coil
model took around 30 s per port and post-processing (i.e.,
circuit co-simulation and averaging of the Q-matrices)
took around 100 s. In all, the PTx exposure analysis in a
single body model took approximately 25 min.

3 RESULTS

3.1 Deep learning segmentation

The segmentation results of the leave-one-out
cross-validation study are shown in Figure 3. The
network-generated models showed a strong similarity
with the ground truth models, indicating that the net-
work was able to account for the non-uniform intensity
and contrast variations within the head as well as the
strong signal drop-off towards the neck. In particular, the
paranasal sinuses and bone segments were correctly dis-
tinguished despite having a very similar signal intensity
in the T1w data, indicating the leverage obtained through
the deep learning approach. Some models showed some
undersegmentation in distal neck regions where SNR was
very low, however this may not be problematic as local
SAR is typically low here as well. On average, around 158
voxels within the 3D model were not classified by any
of the decoder branches and were generated using the
neighborhood majority vote rule. Results obtained for the
sum-of-squares intensity normalized data were essentially
the same.

The Dice coefficients for the different tissue segments
in the cross-validation study are shown in Figure 4,
showing an overall Dice coefficient of 86.7%± 6.7%
(mean± SD). Median Dice coefficients were greater than
80% in all segments, with fat reaching the lowest overall
accuracy. We note that this metric reflects segmentation
errors in the entire field of view, including areas where the
SAR10g is typically low, for example in the neck where the
gross anatomy is expected to be more relevant than the
local tissue properties. Structures with a well-defined MR
contrast and shape, such as white matter and eye tissues,
reached the highest overall dice coefficients.
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F I G U R E 3 Leave-one-out cross-validation results comparing ground truth and deep learning-based segmentations in all volunteers.
Shown are sagittal cross-sections of the T1-weighted data (top), ground truth segmentations (middle), and network-generated segmentations
(bottom). The deep learning method shows to account for the nonuniform contrast and severe drop-off in intensity towards the neck. In each
of these evaluations, the test subject was excluded from the training data to ensure generalizability

3.2 RF field simulations

The accuracy of the network-generated body models was
evaluated by comparing simulations and measurements of
the B1

+ field in the quadrature birdcage RF coil model,
which are shown in Figure 5. The simulated B1

+ shows

a high degree of correspondence with the measured B1
+

data, both in terms of the relative distribution as well as in
terms of peak transmit efficiency.

Simulations of the SAR10g distribution in the ground
truth and network-generated body models obtained in
the quadrature birdcage model are shown in Figure 6.
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F I G U R E 4 Boxplot diagram showing the Dice coefficients
obtained in the cross-validation study (N = 10). Center lines
indicate median values, box limits indicate 25th and 75th
percentiles, whiskers extend to 5th and 95th percentiles and outliers
are represented by dots

The bottom row shows the voxel-wise underestimation
error obtained by subtracting the SAR10g data obtained
in the network-generated model from those obtained in
the ground truth model. In other words, underestimation
of SAR10g (i.e., undesired from a safety compliance point
of view) corresponds to a positive underestimation error.
The peak SAR10g values obtained in the network-generated
body models were within 3.0% of those obtained in the
corresponding ground truth body models, for all subjects.
This is considerably lower than the intersubject variabil-
ity in peak SAR10g of 37.2% (i.e., absolute range divided by
the mean value) and practical uncertainty levels associated
with RF exposure assessments.6,15,33 The head-averaged
SAR values obtained in the network-generated models
were within 1.8% of those obtained in the ground-truth
models.

Results of the PTx RF exposure assessment are shown
in Figure 7, showing sagittal cross-sections of the maxi-
mum SAR10g value obtained in the 1000 random RF shims.
Both maximum as well as minimum intensity projections
of the voxel-wise underestimation error are shown in the

two bottom rows, where the underestimation error corre-
sponds to the maximum SAR10g maps, here.

An overview of the peak SAR10g underestimation error
in the PTx configuration is shown in Figure 8a, obtained
by comparing the peak SAR10g produced in each of the
network-generated models with that produced in the cor-
responding ground truth model, for each of the 1000 ran-
dom RF shims. Figure 8B shows the peak SAR10g overes-
timation error in the generic “one-size-fits-all” approach,
obtained by comparing the peak SAR10g produced in each
of the ground truth body models with the maximum peak
SAR10g that is produced in the other nine body models of
the dataset, for each of the 1000 random RF shims. The
underestimation error had a mean value of −1.5%, which
corresponds to a slight overestimation of the peak SAR10g,
and in 95% of the RF shims the underestimation error was
found to be less than 4.8%. By incorporating these into a
safety factor, the subject-specific approach would incur an
effective peak SAR10g overestimation of up to 6.3% with
a 5% probability of underestimation, whereas the generic
approach would result in an average overestimation of
34%, reaching over 95% of overestimation in 5% of the
cases. For comparison, increasing the confidence interval
of the safety factor to 99% would lead to an effective peak
SAR10g overestimation of up to 9% with a 1% probability of
underestimation.

4 DISCUSSION

In this work we have explored the potential of deep learn-
ing for generating a subject-specific numerical body model
from a single T1-weighted 7T image dataset for personal-
ized local SAR prediction. Local SAR compliance is one
of the current bottlenecks hindering clinical use of PTx
at 7T. Most vendors impose restrictive safety margins on
the use of PTx of up to 300% to ensure compliance, which
compromise image quality by limiting the allowed range
of sequence parameters such as the refocusing tip angles
in FSE sequences or the minimum repetition time that can

F I G U R E 5 Experimental validation of the ground truth segmentations in the quadrature birdcage RF coil. Shown are the simulated
(top) and measured (bottom) B1

+ data. All data were normalized to 1 W of input power
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F I G U R E 6 Quadrature birdcage local SAR assessment. Shown are simulated SAR10g distributions in ground truth (top) and
network-generated body models (middle), and corresponding underestimation error maps (bottom). Figure footers denote peak SAR10g

values (top, middle) and the corresponding relative underestimation (bottom). Positive errors indicate a peak SAR10g underestimation in the
network-generated model

F I G U R E 7 PTx local SAR assessment. Shown are maps of the maximum SAR10g value obtained in the evaluation of 1000 random RF
shims in the ground truth (top) as well as network-generated models (middle), and projections of the SAR10g underestimation and
overestimation (bottom). Positive errors indicate SAR10g underestimation in the network-generated model

be attained. Such compromises make that 7T is currently
not utilized to its full potential, limiting its clinical impact.
Subject-specific information on local SAR would enable
tailoring the RF safety margins to the individual subject,
rather than applying generic models with overconservative
safety margins, thereby removing unnecessary limitations
and enabling PTx to be exploited at its full potential.

The segmentation performance of the proposed deep
learning approach was found to be of high quality, as
reflected in the local SAR results. By training the network
on 7T MR data with severe intensity bias and contrast
non-uniformities throughout the field of view, the method
was found to correctly account for these intrinsic image
characteristics, despite that only nine subjects were used

for training the network in each of the cross-validation
cycles. This means that the method relieves the operator
from performing elaborate bias-correction procedures or
other image processing steps, but instead can be directly
applied to the 7T data without any pre-processing. Of all
tissues, fat reached the lowest overall segmentation accu-
racy with a median Dice coefficient of 80%. This can be
explained by the different MR contrast mechanisms that
were used, with ground truth segmentations being based
on chemical shift, encoded in the Dixon data, as opposed to
the T1-weighted contrast of the input data. From Figure 3,
it can be observed that fat is often undersegmented in the
lower portion of the body models. This also corresponds
to the region where the adiabatic RF inversion pulse fails
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F I G U R E 8 Statistical analysis of the peak SAR10g accuracy
obtained with the deep learning segmentation method in the PTx
configuration in 1000 random PTx excitation settings. Shown are
histograms of the peak SAR10g underestimation error obtained in the
network-generated models (A) and the peak SAR10g overestimation
obtained in the generic “one-size-fits-all” approach (B)

to reach a proper inversion, explaining the inconsistent
T1-weighting of the input data in this region. Other groups
have proposed acquiring multiple MR contrasts or even
MR fingerprinting as input data to improve the segmen-
tation quality17,38; however, such approaches would sub-
stantially increase the acquisition time and interfere with
the MR workflow. Finally, the ForkNET network design
was chosen here, and was previously shown by Rashed
et al. to outperform a conventional U-NET in semantic seg-
mentation of MRI data; however, other network designs
may also be conceivable. This may also involve different
loss functions, such as cross entropy, or include atten-
tion mechanisms to promote SAR-sensitive regions of the
model to be represented with improved quality.39

In the current study, the RF exposure assessment took
approximately 2 min in the quadrature birdcage model
and 25 min. in the PTx configuration, both relatively
time-consuming compared to the deep learning segmen-
tation step taking only 14 s. Together with the acquisi-
tion of the T1w input data, which took almost 3 min,
this constitutes a total workflow of around 6 min for
the single-channel RF exposure assessment and close to
30 min for the PTx exposure analysis. Future work should
therefore aim to reduce both the MR data acquisition and
RF simulation time, to improve the integration of the
subject-specific approach into the MR workflow. Options
to speed up the RF simulations would include using a

larger simulation grid size, leveraging parallel computing
as well as using specialized EM solvers such as MARIE.40

For example, increasing the simulation grid from 2 mm to
4 mm reduces the computation time for the PTx exposure
analysis from 25 min to around 7 min. In a PTx setting, we
should note that the B1

+ predictions obtained from the RF
simulations would also allow subsequent PTx pulse cal-
ibrations, potentially saving time by avoiding volumetric
B1

+ mapping procedures, which can take several minutes
to acquire.41–43

Recently, other groups explored methodologies to infer
local SAR directly from B1

+ maps using deep learning,44

exploiting the coupled structure of the magnetic and
electric RF fields, or even directly from anatomical MR
images.45 Although such approaches show potential to
resolve local SAR in a single-channel configuration or for
a specific RF shim setting, these have not yet been demon-
strated in a comprehensive PTx workflow, which would
require channel-wise local SAR information as well as
information accounting for the interference between the
different channels. Our approach has the advantage that
the subject-specific anatomical model can be used to per-
form a full RF exposure analysis, including for example
channel-wise analyses or dedicated PTx excitation settings.
Additionally, our approach can potentially handle MRI
data from a wider variety of RF coils, as most PTx arrays
optimized for neuroimaging are capable of generating a
circular polarized (CP1

+) mode that will produce an exci-
tation B1

+ field very similar in distribution to that obtained
in the quadrature birdcage, which was used here. This
would then also produce contrast variations and intensity
bias effects comparable to those present in the data used for
training the network. Additionally, different receive chan-
nel combination strategies have been addressed by includ-
ing both sum-of-squares as well as volume-coil normalized
data in the training dataset. Remaining intersystem varia-
tions in image intensity are anticipated to fall well within
the range of intersubject variations, which the network
was well capable of addressing as shown by the current
study.

Limitations of the current study include the limited
size of the dataset (N = 10). In a previous segmentation
study at 3T stable training was obtained with a similar
number of subjects.46 To determine whether this was also
adequate in the current study, we evaluated the conver-
gence of the leave-one-out cross-validation study when
using fewer subjects, for example, N = 5 up to N = 10
(cf. Supporting Information Figure S1, which is avail-
able online). The peak SAR10g error was found to be no
greater than 3.1% and converged smoothly to the val-
ues obtained when all subjects were included. Although
this suggests generalizability of the network, segmenta-
tions in subjects with a significantly different anatomy, for
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example, pediatric subjects or in specific pathologies, may
potentially reveal inconsistencies and may require further
extensions of the training dataset. A challenge with includ-
ing pathologies in the training data is that it is not yet clear
whether the dielectric properties could still be represented
using the current set of tissue clusters. Another limitation
of our study, and of RF exposure assessments in general,
is that it is not possible to validate the RF simulation
results with in vivo measurements of the SAR distribu-
tion. We have experimentally validated our head models
by comparing the measured and simulated B1

+ fields in
the birdcage model, which despite showing a strong agree-
ment leave some room for further model refinements. An
underlying shortcoming in this validation approach, is that
errors in local SAR may not always be directly reflected
in the B1

+ distribution.47 Additionally, the PTx exposure
analysis was only performed in a single PTx coil model,
and other PTx coil designs may show a different sensi-
tivity to segmentation errors. Finally, in the PTx analysis,
we considered only static RF shimming with random exci-
tation settings, which also includes settings that do not
produce practically useful B1

+ distributions. Although this
enables generalization of the results, a more realistic anal-
ysis could target tailored PTx pulses such as kT-points,
SPINS pulses or local SAR-optimized RF pulse designs,
specifically.19,20,48,49

5 CONCLUSIONS

In this work, we demonstrate a method based on
deep learning to automatically generate a subject-specific
numerical body model from a single T1-weighted 7T
image dataset for personalized RF exposure prediction.
The network-generated body models showed reproduction
of the ground truth RF exposure results with a high level
of agreement, with peak local SAR errors below 3.0% in
the quadrature birdcage model. In the PTx configuration,
a safety margin of 6.3% was sufficient to ensure a con-
servative local SAR prediction in 95% of the random RF
shims, compared to an average overestimation of 34% in
the “one-size-fits-all” approach. As a T1-weighted image
is typically acquired at the start of a neuroimaging proto-
col as a basic anatomical reference, the procedure has the
potential to be seamlessly integrated into the MR work-
flow.

ACKNOWLEDGMENTS
The authors acknowledge useful discussions with dr.
Andre Kuehne, dr. Alessandro Sbrizzi, and dr. Leoor Alon.
This work was supported by the Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO) through
a VENI fellowship (TTW.16820).

DATA AVAILABILITY STATEMENT
Python source code and trained networks are avail-
able for download via https://github.com/wygerbrink/
PersonalizedDosimetry.

ORCID
Wyger M. Brink https://orcid.org/0000-0001-9974-7662
Sahar Yousefi https://orcid.org/0000-0003-2396-2504
Rob F. Remis https://orcid.org/0000-0003-0365-4942
Marius Staring https://orcid.org/0000-0003-2885-5812
Andrew G. Webb https://orcid.org/0000-0003-4045-
9732

REFERENCES
1. Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of

neuroimaging at 7 T. Neuroimage. 2018;168:477-489.
2. Katscher U, Börnert P. Parallel RF transmission in MRI. NMR

Biomed. 2006;19:393-400.
3. Zhu Y. Parallel excitation with an array of transmit coils. Magn

Reson Med. 2004;51:775-784.
4. Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission

for ultrahigh-field imaging. NMR Biomed. 2016;29:1145-1161.
5. Liu W, Collins CM, Smith MB. Calculations of B1 distribution,

specific energy absorption rate, and intrinsic signal-to-noise
ratio for a body-size birdcage coil loaded with different human
subjects at 64 and 128 MHz. Appl Magn Reson. 2005;29:5-18.

6. Hoffmann J, Henning A, Giapitzakis IA, et al. Safety testing and
operational procedures for self-developed radiofrequency coils.
NMR Biomed. 2016;29:1131-1144.

7. Graesslin I, Vernickel P, Börnert P, et al. Comprehensive RF
safety concept for parallel transmission MR. Magn Reson Med.
2015;74:589-598.

8. Eichfelder G, Gebhardt M. Local specific absorption rate con-
trol for parallel transmission by virtual observation points. Magn
Reson Med. 2011;66:1468-1476.

9. de Greef M, Ipek O, Raaijmakers AJE, Crezee J, van den
Berg CAT. Specific absorption rate intersubject variability in
7T parallel transmit MRI of the head. Magn Reson Med.
2013;69:1476-1485.

10. Le Garrec M, Gras V, Hang MF, Ferrand G, Luong M, Boulant N.
Probabilistic analysis of the specific absorption rate intersub-
ject variability safety factor in parallel transmission MRI. Magn
Reson Med. 2017;78:1217-1223.

11. Ajanovic A, Hajnal JV, Malik S. Positional sensitivity of specific
absorption rate in head at 7T. Proceedings of the 28th Annual
Meeting of ISMRM; 2020:4251.

12. Homann H, Börnert P, Eggers H, Nehrke K, Dössel O,
Graesslin I. Toward individualized SAR models and in vivo
validation. Magn Reson Med. 2011;66:1767-1776.

13. Jin J, Liu F, Weber E, Crozier S. Improving SAR estima-
tions in MRI using subject-specific models. Phys Med Biol.
2012;57:8153-8171.

14. Shao Y, Shang S, Wang S. On the safety margin of using
simplified human head models for local SAR simulations of
B1-shimming at 7 Tesla. Magn Reson Imaging. 2015;33:779-786.

15. de Buck MHS, Jezzard P, Jeong H, Hess AT. An investigation
into the minimum number of tissue groups required for 7T

https://github.com/wygerbrink/PersonalizedDosimetry
https://github.com/wygerbrink/PersonalizedDosimetry
https://orcid.org/0000-0001-9974-7662
https://orcid.org/0000-0001-9974-7662
https://orcid.org/0000-0003-2396-2504
https://orcid.org/0000-0003-2396-2504
https://orcid.org/0000-0003-0365-4942
https://orcid.org/0000-0003-0365-4942
https://orcid.org/0000-0003-2885-5812
https://orcid.org/0000-0003-2885-5812
https://orcid.org/0000-0003-4045-9732
https://orcid.org/0000-0003-4045-9732
https://orcid.org/0000-0003-4045-9732


474 BRINK et al.

in-silico parallel transmit electromagnetic safety simulations in
the human head. Magn Reson Med. 2021;85:1114-1122.

16. Torrado-Carvajal A, Eryaman Y, Turk EA, et al.
Computer-vision techniques for water-fat separation in ultra
high-field MRI local specific absorption rate estimation. IEEE
Trans Biomed Eng. 2019;66:768-774.

17. Milshteyn E, Guryev G, Torrado-Carvajal A, et al. Individu-
alized SAR calculations using computer vision-based MR seg-
mentation and a fast electromagnetic solver. Magn Reson Med.
2021;85:429-443.

18. Rashed EA, Gomez-Tames J, Hirata A. Development of accurate
human head models for personalized electromagnetic dosime-
try using deep learning. Neuroimage. 2019;202:116132.

19. Hoyos-Idrobo A, Weiss P, Massire A, Amadon A, Boulant N. On
variant strategies to solve the magnitude least squares optimiza-
tion problem in parallel transmission pulse design and under
strict SAR and power constraints. IEEE Trans Med Imaging.
2014;33:739-748.

20. Pendse M, Stara R, Khalighi MM, Rutt B. IMPULSE: a scal-
able algorithm for design of minimum specific absorption
rate parallel transmit RF pulses. Magn Reson Med. 2019;81:
2808-2822.

21. Nehrke K, Börnert P. DREAM—a novel approach for
robust, ultrafast, multislice B1 mapping. Magn Reson Med.
2012;68:1517-1526.

22. Smith S, Jenkinson M, Woolrich M, et al. Advances in functional
and structural MR image analysis and implementation as FSL.
NeuroImage. 2004;23:S208-S219.

23. Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as
an image computing platform for the quantitative imaging net-
work. Magn Reson Imaging. 2012;30:1323-1341.

24. Brink WM, Webb AG. DREAM-based receive uniformity correc-
tion for whole body MRI at 3T. Proceedings of the 24th Annual
Meeting of ISMRM; 2016:938.

25. Lattanzi R, Sodickson DK. Ideal current patterns yielding opti-
mal signal-to-noise ratio and specific absorption rate in mag-
netic resonance imaging: computational methods and physical
insights. Magn Reson Med. 2012;68:286-304.

26. Mugler JP. Optimized three-dimensional fast-spin-echo MRI.
J Magn Reson Imaging. 2014;39:745-767.

27. Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW.
Elastix: a toolbox for intensity-based medical image registration.
IEEE Trans Med Imaging. 2010;29:196-205.

28. Zhang Y, Brady M, Smith S. Segmentation of brain MR
images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans Med Imaging.
2001;20:45-57.

29. Abadi M, Agarwal A, Barham P. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems, 2015.
Software available from tensorflow.org.

30. Kingma DP, Ba J. Adam: a method for stochastic optimization.
3rd International Conference on Learning Representations, ICLR.
International Conference on Learning Representations. ICLR;
2015.

31. Hasgall P, Di Gennaro F, Baumgartner C, et al. IT’IS Database
for thermal and electromagnetic parameters of biological tis-
sues. Version 4.0. 2018 doi: 10.13099/VIP21000-04-0.

32. Kuehne A, Seifert F, Ittermann B. GPU-accelerated SAR com-
putation with arbitrary averaging shapes. Proceedings of the 20th
Annual Meeting of ISMRM; 2012:2735.

33. Brink WM, Wu Z, Webb AG. A simple head-sized phantom
for realistic static and radiofrequency characterization at high
fields. Magn Reson Med. 2018;80:1738-1745.

34. Paška J, Froehlich J, Brunner DO, Pruessmann KP, Vahldieck R.
Field superposition method for RF coil design. Proceedings of the
17th Annual Meeting of ISMRM; 2009.

35. Beqiri A, Hand JW, Hajnal JV, Malik SJ. Comparison between
simulated decoupling regimes for specific absorption rate
prediction in parallel transmit MRI. Magn Reson Med.
2015;74:1423-1434.

36. Christ A, Kainz W, Hahn EG, et al. The virtual
family—development of surface-based anatomical models of
two adults and two children for dosimetric simulations. Phys
Med Biol. 2010;55:N23-N38.

37. Graesslin I, Homann H, Biederer S, et al. A specific absorp-
tion rate prediction concept for parallel transmission MR. Magn
Reson Med. 2012;68:1664-1674.

38. Alon L, Cloos MA, Tal A, Sodickson DK, Collins CM. Subject
specific body model creation using MR fingerprinting. Proceed-
ings of the 23rd Annual Meeting of ISMRM; 2015:299.

39. Yousefi S, Sokooti H, Elmahdy MS, et al. Esophageal tumor
segmentation in CT images using dilated dense attention Unet
(DDAUnet). IEEE Access. 2021;9:99235–99248.

40. Villena JF, Polimeridis AG, Eryaman Y, et al. Fast electro-
magnetic analysis of MRI transmit RF coils based on accel-
erated integral equation methods. IEEE Trans Biomed Eng.
2016;63:2250-2261.

41. Nehrke K, Versluis MJ, Webb A, Börnert P. Volumetric B1+
mapping of the brain at 7T using DREAM. Magn Reson Med.
2014;71:246-256.

42. Tse DHY, Wiggins CJ, Ivanov D, et al. Volumetric imaging with
homogenised excitation and static field at 9.4 T. Magma (New
York, NY) 2016;29:333–345.

43. Brunheim S, Gratz M, Johst S, et al. Fast and accurate
multi-channel B1+ mapping based on the TIAMO tech-
nique for 7T UHF body MRI. Magn Reson Med. 2018;79:
2652-2664.

44. Meliadò EF, Raaijmakers AJE, Sbrizzi A, et al. A deep learning
method for image-based subject-specific local SAR assessment.
Magn Reson Med. 2020;83:695-711.

45. Gokyar S, Robb FJL, Kainz W, Chaudhari A, Win-
kler SA. MRSaiFE: an AI-based approach towards the
real-time prediction of specific absorption rate. IEEE Access.
2021;9:140824-140834.

46. Rashed EA, Diao Y, Hirata A. Learning-based estimation
of dielectric properties and tissue density in head models
for personalized radio-frequency dosimetry. Phys Med Biol.
2020;65:065001.

47. Alon L, Deniz CM, Carluccio G, Brown R, Sodickson DK,
Collins CM. Effects of anatomical differences on electromag-
netic fields, SAR, and temperature change. Concepts Magn Reson
Part B Magn Reson Eng. 2016;46:8-18.

48. Cloos MA, Boulant N, Luong M, et al. kT-points: short
three-dimensional tailored RF pulses for flip-angle homoge-
nization over an extended volume. Magn Reson Med. 2012;
67:72-80.

49. Malik SJ, Keihaninejad S, Hammers A, Hajnal
JV. Tailored excitation in 3D with spiral nonselec-
tive (SPINS) RF pulses. Magn Reson Med. 2012;67:
1303-1315.

http://dx.doi.org/0


BRINK et al. 475

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Convergence of the leave-one-out cross-
validation study evaluated in the quadrature birdcage
configuration. When using fewer subjects (N = 5) the
peak local SAR10g is within 3.1% compared to the
cross-validation result based on using all subjects (N = 10).
Values shown are peak SAR10g (top) and relative peak

SAR10g error (bottom) compared to the value obtained
when using all subjects (N = 10).
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