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Abstract

Cellular deconvolution aims to estimate cell type fractions from bulk transcrip-
tomic and other omics data. Most existing deconvolution methods fail to account
for the heterogeneity in cell type-specific (CTS) expression across bulk samples,
ignore discrepancies between CTS expression in bulk and cell type reference
data, and provide no guidance on cell type reference selection or integration. To
address these issues, we introduce BLEND, a hierarchical Bayesian method that
leverages multiple reference datasets. BLEND learns the most suitable references
for each bulk sample by exploring the convex hulls of references and employs a
“bag-of-words” representation for bulk count data for deconvolution. To speed
up the computation, we provide an efficient EM algorithm for parameter estima-
tion. Notably, BLEND requires no data transformation, normalization, cell type
marker gene selection, or reference quality evaluation. Benchmarking studies on
both simulated and real human brain data highlight BLEND’s superior perfor-
mance in various scenarios. The analysis of Alzheimer’s disease data illustrates
BLEND’s application in real data and reference resource integration.

Keywords: Cellular deconvolution, Single-cell RNA sequencing, Bayesian estimation,
Gibbs sampling, EM algorithm, Maximum a posteriori estimation
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1 Introduction

Bulk RNA sequencing (RNA-seq) technology provides a valuable approach to studying
gene expression patterns across different tissues or conditions [1]. However, bulk RNA-
seq is typically performed on tissues composed of many cell types, where estimating
the proportion of each cell type in each sample can enrich analyses and help address
biases that occur due to cell type heterogeneity [2, 3].

Several biochemical pipelines have been developed to estimate cell type propor-
tions and account for the aforementioned biases, including directly measuring cell
type fractions or cell type-specific (CTS) expression (e.g., single-cell RNA-seq). Unfor-
tunately, the high cost of these pipelines precludes their use in large-scale studies.
Consequently, many in silico cellular deconvolution methods have been developed in
recent years to estimate cellular fractions as a computational alternative. Cellular frac-
tion estimates allow analysts to infer how cell type proportions vary with different
phenotypes, account for cell type confounding, and facilitate downstream CTS anal-
yses, such as estimating CTS gene expression, CTS differential expression, and CTS
expression quantitative trait loci analyses [4, 5].

Cellular deconvolution models bulk gene expression as the weighted average of CTS
gene expression, where the weights are cell type proportions. Among existing meth-
ods to estimate cell proportions, reference-based methods have shown more robust
performance compared to unsupervised reference-free methods [6, 7]. Reference-based
methods rely on single or sorted cell data to construct a CTS expression reference
matrix whose entries give each gene’s expected expression in each cell type. Due to
the challenges of incorporating inter-subject variation in CTS expression into decon-
volution models, existing methods assume the same reference matrix shared across
all study subjects and provide no guidance to choose appropriate references. This
belies the fact that there is often substantial heterogeneity in CTS expression that
arises due to differences in experimental conditions, technical batch effects, and vari-
ation in reference sequencing technologies. Nonetheless, the choice of reference is the
most important factor affecting deconvolution accuracy [7–9]. It is therefore critical
to develop new statistical methods to personalize signature matrices for each subject
to account for inter-subject variation in CTS expression.

To address the above issues, we developed BLEND, a hierarchical Bayesian model
that is, to our knowledge, the first deconvolution method to leverage multiple avail-
able references to create personalized references for study subjects. Inspired by Latent
Dirichlet Allocation (LDA) [10], we use a “bag-of-words” representation for bulk RNA-
seq count data whereby we view a read count as a word, a cell type as a topic, and a
bulk sample as a document. In this analogy, a cell-type topic’s reference is its distri-
bution over words. However, unlike conventional LDA-based deconvolution methods,
which assume references are shared across bulk samples, BLEND allows references to
be sample-specific and uses the data to learn each sample’s most appropriate refer-
ence among all possible references in the convex hull of available references. We show
through extensive realistic simulations and real data applications that such reference
learning drastically improves cell type proportion estimates. BLEND also stands out
for being user-friendly, as it eliminates the need for manual reference evaluation, data
transformation and normalization, and the selection of cell type marker genes.
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2 Results

2.1 Overview of BLEND method

BLEND is a cellular deconvolution method that can leverage multiple references as
visualized in Fig. 1. First, BLEND individualizes the most suitable reference matrix for
each bulk sample by exploring convex hulls of available CTS reference vectors. Second,
BLEND uses individualized references to deconvolve bulk count data by employing a
“bag-of-words” representation. BLEND adopts a unified hierarchical Bayesian frame-
work to incorporate these two steps. Two consistent parameter estimation strategies
are provided: Gibbs sampling and EM-MAP. The detailed statistical model of BLEND
is provided in Methods, and the algorithm derivation is in Supplementary Notes.
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Fig. 1 General framework of BLEND. BLEND takes multiple CTS expression references as
input to deconvolve the targeted bulk count RNA-seq data. BLEND models each bulk sample as
the weighted average of CTS gene expression, where the weights are cell type proportions (µ). For
each bulk sample, BLEND explores its most suitable references in the convex hulls of available CTS
references and performs deconvolution using a “bag-of-words” representation.

2.2 BLEND improves performance with partially matched
references

In the BLEND model, we assume the CTS expression of bulk samples lies in the
convex hulls of the provided references. We first tested BLEND with an oracle simu-
lation following the generative process and confirmed BLEND’s accuracy in reference
selection and cellular fraction estimation (Supplementary Notes). However, in most
real application settings, this usually is not the case. Here, we used a real dataset to
simulate data where only partial references were available.
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Mathys et al. [11] collected 427 individuals’ postmortem dorsolateral prefrontal
cortex (DLPFC) tissues from Religious Orders Study and Rush Memory and Aging
Project (ROSMAP) [12]. They measured gene expression levels across 2.3 million
nuclei isolated from these tissues using droplet-based single nucleus RNA-seq (snRNA-
seq). Among all donors, 418 of them contained cells of six major cell types in the
brain: astrocyte (astro), microglia (immune), inhibitory neuron (inh), oligodendrocyte
progenitor cell (OPC), oligodendrocyte (oligo) and excitatory neuron (ex). To generate
more realistic data in this simulation experiment, we randomly chose 40 out of 418
individuals (around 10%) to serve as references to deconvolve all 418 individuals. We
generated pseudo-bulk samples by simply summing up counts of snRNA-seq data for
each individual and used cell counts of different cell types to calculate the ground
truth for cellular fractions of all simulated bulk samples.

We compared BLEND with four deconvolution methods: BayesPrism [13], which is
a bag-of-words-based Bayesian method using a fixed reference; MuSiC [14], a weighted
nonnegative least squares method that utilizes multi-subject references; Bisque [15]
and hspe [16], both of which were recommended for brain tissue deconvolution by a
recent benchmarking paper [17].

Pseudo-bulk samples generated from the 40 individuals were provided with the
matched reference list, from which BLEND selects references. For each cell type, we
calculated Lin’s concordance correlation coefficient (CCC) [18] between the true and
estimated fractions across individuals. CCC ranges between minus one and one and
measures the deviation from the line y = x, where values close to one indicate points
lie closer to the line. CCC is preferred over other metrics like Pearson’s correlation
because it combines the mean difference and correlation between two sets of points to
capture both location and scale shifts from the ground truth. We also averaged CCC
across cell types to get mean CCC (mCCC). As visualized in bar charts in Fig. 2a,
BLEND has the largest CCC for each cell type. Moreover, BLEND selected matched
references for all cell types (Fig. 2b).

The more challenging case is the other 378 pseudo-bulk samples that do not
have matched references. Natural discrepancies between pseudo-bulk data and refer-
ences exist due to batch effects and biological differences among individuals. Fig. 2c
plots each method’s estimated fractions against the simulated ground truth propor-
tions. BLEND clearly has the largest CCC for each cell type, indicating BLEND’s
personalized references substantially improve cell type proportion estimates.

2.3 BLEND alleviates the discrepancy between bulk and
reference data

In most cases, the bulk data to be deconvolved do not have matched single-cell data.
Thus, we usually use single-cell data from other datasets. However, the cross-data
discrepancy in CTS gene expression is non-trivial. Here we show an example of two
large-scale snRNA-seq studies collected from the same subjects. Similar to the Mathys
data [11] we used in the simulations, Fujita et al. [19] collected snRNA-seq samples
from the same study (ROSMAP), while the CTS expression of two datasets shows
significant batch effects that form two distinct groups in the visualization (Fig. 3a).
There are 231 individuals who have snRNA-seq measurements from both datasets. We
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designed two sets of cross-data simulation studies (Fig. 3b). The first set used Mathys
scRNA-seq data as references to deconvolve pseudo-bulk data generated by collapsing
Fujita snRNA-seq data, which is named Mathys-Fujita. Vice versa, the second set
employed Fujita data as references to deconvolve pseudo-bulk data generated using
Mathys data, which is named Fujita-Mathys. The simulation method was consistent
with that in section 2.2.

After deconvolution. we calculated CCC between the estimated and ground truth
fractions for each cell type across all bulk samples and mCCC in each simulation
setting (Figs. 3c, and d). In the first setting, BLEND showed superior performance in
all cell types, with an mCCC of 0.41 higher than the runner-up (Bisque). In the second
setting, BLEND performed the best in five cell types and had the highest mean CCC.

2.4 BLEND provides accurate estimates in real data
application

In the human brain, most studies use frozen postmortem tissues for RNA sequencing.
Because cells are lysed, only nuclei can be measured using snRNA-seq techniques, while
cytoplasm transcripts are usually left out [20]. Instead, bulk RNA-seq extracted total
RNA from both nuclei and cytoplasm. Moreover, in real applications, reference data
are often from individuals with varying phenotypes, different brain regions, or even
different species than the bulk data [21]. Given these reasons, it may be unrealistic to
assume there is no discrepancy between the CTS gene expression underlying all bulk
samples and a specific reference.

To benchmark deconvolution methods in human brain, Huuki-Myers et al. [17]
provided a multi-assay dataset of postmortem human DLPFC, including snRNA-
seq, bulk RNA-seq, cell type fractions measured by RNAScope/Immunofluorescence
(RNAScope/IF). They collected 19 tissue blocks from the anterior, middle, and pos-
terior parts of DLPFC from 10 neurotypical adults. Different multi-assay technologies
were performed on adjacent sections of the same tissue block. Before performing
bulk RNA-seq, they used three RNA extraction methods: nuclear (Nuc), cytoplasmic
(Cyto), and total (Bulk), combined with two library preparation techniques: polyA
and RiboZeroGold. This resulted in a total of six library types. Finally, 110 bulk sam-
ples passed the quality control and were provided in the dataset. For RNAScope/IF,
cellular fractions of six cell types were measured, including astrocyte, microglia, oligo-
dendrocyte, endothelial, inhibitory neuron, and excitatory neuron. We then used the
individual CTS expression from snRNA-seq as references to deconvolve bulk data. For
the cellular fractions measured by RNAScope/IF, we found out that the proportions
of cell types were systematically under-measured since the average total proportion
was only 0.74, far less than 1. Thus, CCC or mean absolute error is not a proper met-
ric here. Instead, we used Pearson’s correlation coefficient to measure the correlation
between cellular fraction estimates and RNAScope/IF measurements.

We calculated the correlation between in silico estimates and RNAScope/IF
measurements across cell types and bulk samples under different library types and
RNA extraction combinations (Fig. 4). BLEND demonstrated unparalleled robust-
ness across all data preparation conditions, outperforming all competing methods in
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five distinct settings, except in one setting it achieved the second-highest performance
that was very close to the best performance.

Furthermore, BLEND’s performance can be improved with richer reference infor-
mation (Fig. 4). Sutton et al. [21] collected nine brain datasets and provided a list
of corresponding CTS reference matrices [22–30] with 6,388 genes. These datasets
were from varied sources and sequenced by different technologies. Reference names
and original data sources are in Supplementary Notes. Without any data evaluation
and processing, we added these references to the reference list and ran BLEND again.
These extra references further improved BLEND’s performance across all conditions.
BLEND shows high robustness when provided with varied references. The practi-
cal implication is that users can simply provide BLEND with all available references
without worrying if data with unsatisfying quality will bias the estimation results.

2.5 BLEND detects cell type abundance changes in
Alzheimer’s disease progression

To demonstrate BLEND’s performance in downstream analyses, we applied BLEND
to detect cellular abundance changes in Alzheimer’s disease. The Mount Sinai Brain
Bank (MSBB) study [31] provided bulk RNA-seq data of 894 samples collected from
postmortem human brain, 850 samples of which have corresponding Braak AD-staging
score (bbscore) for progression of neurofibrillary neuropathology. Brodmann area
information was also provided. To illustrate the adaptability of BLEND’s automated
reference selection, we directly used the Sutton reference list [21].

We visualized cellular fraction changes with boxplots for three major AD-associated
cell types: excitatory neurons, inhibitory neurons, and microglia (Figs. 5a-c). We
also reported Pearson’s correlation coefficients, identifying a significant decrease in
excitatory and inhibitory neurons and an increase in microglia.

Although these associations can be detected by other methods by using certain
references, users may suffer from selective reporting. BayesPrism and hspe allow single
reference matrix input. We applied BayesPrism and hspe to deconvolve the MSBB
data using single references in the Sutton reference list that have all cell types and
the averaged reference. Then, we repeated AD association analyses. Unfortunately,
most references suffer from issues including (1) zero median fraction estimates (<
0.001), (2) wrong AD association direction, and (3) no statistical significance (p-value
> 0.05) (Fig. 5d). BLEND helps avoid these issues by performing automated reference
selection.

The estimated reference mixing proportions can help us understand the impor-
tance of reference selection (Fig. 5d-j). While reference mixing proportions of bulk
samples were estimated independently, heatmaps all presented non-random patterns.
(1) First, reference quality matters the most. Astrocytes and endothelial cells both
preferred the IP reference [28], where authors acutely purified human astrocytes along
with other major cell types, serving as a high-quality reference. Excitatory neurons
selected CA reference [22], in which only excitatory neurons’ labels were validated
using RNAscope mFISH technology and thus have promising quality. OPCs preferred
the DM reference [23], derived from surgically resected brain tissues that generally
have higher quality than frozen tissues. (2) When two references have similar qualities,
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some biological factors start to show. Interestingly, for inhibitory neurons, we found a
significant association between the Brodmann area of bulk samples and their reference
preference (Chi-squared test, p-value< 2.2× 10−16). The NG reference [25] measured
human brain samples from Brodmann area 9, and 45.4% of bulk samples choosing NG
were from the adjacent Brodmann area 10. The LK reference [27] includes informa-
tion from Brodmann areas responsible for human executive functions, with 44.0% of
bulk samples choosing LK from area 44, located in this functional region.

3 Discussion

In summary, we presented BLEND, a novel hierarchical Bayesian model for cellular
deconvolution that estimates cellular fractions accurately and robustly, without the
unrealistic assumptions of no discrepancy reference and uniform CTS gene expression
across bulk samples in many existing deconvolution methods. By customizing refer-
ences for bulk samples through exploring convex hulls of all the available references,
BLEND elegantly accommodates cross-sample, cross-data, and cross-technology het-
erogeneity to improve cellular fraction estimation. We validated BLEND’s performance
through comprehensive benchmarking using both simulated and real multi-assay data
from postmortem human brain, revealing its superior accuracy and robustness in esti-
mating cellular fractions than state-of-the-art methods. By deconvolving large-scale
human brain data, we detected cellular abundance changes with AD progression,
showcasing its potential in published data integration and real-life application.

Notably, BLEND demonstrated its capability to find the most suitable references
for bulk samples automatically, eliminating the need for reference quality evaluation.
Moreover, BLEND needs no data transformation/normalization or cell type marker
gene selection before deconvolution. All of these facts illustrate that BLEND is an
accurate, robust, and easy-to-use deconvolution tool.

Nevertheless, there are some drawbacks of BLEND. First, the computational time
of our Gibbs sampler and EM-MAP algorithm can be relatively long, especially when
all genes are used and hundreds of references are provided to BLEND. However, the
EM-MAP algorithm has been implemented using Rcpp and allows parallelization,
which can accelerate computation enormously. Second, gene-gene correlation is ignored
in BLEND for model simplicity. Thus, even though we can estimate the posterior
distribution, statistical inference for cellular fractions is not appropriate. This issue
may not be major since most downstream analysis tools do not take the uncertainty in
point estimates into account. Providing accurate point estimates is more useful than
accounting for the uncertainty of biased estimates.

BLEND serves as an accurate and robust tool for cell type-specific analyses. In the
future, it will be interesting to design a unified statistical tool that can perform gene-
gene correlation-aware deconvolution utilizing multiple references and incorporate
cellular fraction estimate uncertainties in differential analysis.
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4 Methods

4.1 Notation used throughout the manuscript

For any positive integer n, we let [n] = {1, . . . , n}. For p ∈ [0, 1]n satisfying
∑n

i=1 pi =
1, we call the random variable x ∈ [n] categorically distributed as x ∼ Cat([n],p) if
P(x = i) = pi for all i ∈ [n].

4.2 Overview of BLEND’s probability model

BLEND models the deconvolution of bulk count RNA-seq data using multiple CTS
gene expression references. Let Xn,g ∈ N0 be the bulk RNA-seq count for gene g ∈ [G]

in subject n ∈ [N ] and Rn =
∑G

g=1Xn,g be the read depth for subject n. Let µn ∈
[0, 1]T be the n-th subject’s vector of cell type fractions across T cell types, which

satisfies
∑T

t=1 µn,t = 1. We assume there are Mt available references for cell type t
and let Φt,m ∈ [0, 1]G be the m-th reference for cell type t. As this is a distribution

over genes,
∑G

g=1 Φt,m,g = 1. Our goal is to estimate cell type proportions µn given
the observed data {Xn,g}g∈[G] and references {Φt,m}t∈[T ];m∈[Mt].

BLEND uses a generative “bag-of-words” model [10] to generate each read’s gene
identity. Briefly, we first draw the read’s cell type of origin. The probability the read is
assigned to gene g is then determined by the originating cell type’s reference. Unlike
traditional LDA, which assumes references are the same across subjects [10], BLEND
allows references to be subject-specific by assuming that the reference for cell type t
in subject n lies in the convex hull of {Φt,m}m∈[Mt]. We formalize these ideas in the
below generative probability model, which generates the observed data {Xn,g}g∈[G]

for each subject n. The graphical plate representation is in Supplementary Notes. We
implicitly condition on read depth Rn and observed references Φt,m, although we leave
them out of conditioning arguments for presentation simplicity.
(i) Generate a length-T vector of cell type proportions µn | α ∼ Dirichlet(α).
(ii) For each cell type t ∈ [T ], generate a length-Mt vector of reference mixing

proportions ψn,t | βt ∼ Dirichlet(βt).
(iii) For read r ∈ [Rn], draw its cell type source Yn,r | µn ∼ Cat([T ],µn).

(iv) Draw the r-th read’s gene identity, X̃n,r, as X̃n,r | (Yn,r = t,ψn,t) ∼
Cat([G],ΦBLEND

n,t ), where ΦBLEND
n,t =

∑Mt

m=1 ψn,t,mΦt,m.

(v) For each gene g ∈ [G], set Xn,g =
∑Rn

r=1 1{X̃n,r = g}.
Step (iv) lets each subject have their own reference ΦBLEND

n,t for each cell type t,
which is assumed to be a convex combination of the observed references {Φt,m}m∈[Mt].
This is quite general, as it allows a subject’s reference to be the average of observed
references (ψn,t,m = 1/Mt for all m) or be determined by only a subset of references
(ψn,t,m is large for some references m and small for others). The latter will occur when
references are sampled from multiple populations, where ψn,t,m will be large if reference
m and the CTS expression for subject n are sampled from the same population. This
ensures our model captures the variation in CTS expression across subjects.
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4.3 Parameter estimation strategies of BLEND

Here we derive a Gibbs sampler to sample from the posterior P(µn, {ψn,t}t∈[T ] |
{Xn,g}g∈[G],α, {βt}t∈[T ]), where our estimator for cell type proportions is then the
posterior expectation of µn. To ensure Gibbs updates are tractable, we introduce a new
latent variable by noting that drawing the r-th read’s gene identity in step (iv) of the
above generative probability model is equivalent to the following two-step procedure:

Zn,r | (Yn,r = t,ψn,t) ∼ Cat([Mt],ψn,t)

X̃n,r | (Yn,r = t, Zn,r = m) ∼ Cat([G],Φt,m).

The new latent variable Zn,r is interpretable as the r-th read’s reference source. To
derive the Gibbs sampler, let

Sn,g,t,m =

Rn∑
r=1

1{X̃n,r = g, Yn,r = t, Zn,r = m}

be the number of gene g’s reads that are drawn from cell type t using reference
m ∈ [Mt], and define Sn,g = {Sn,g,t,m}t∈[T ];m∈[Mt]. In Gibbs sampling, we sample
from marginal posteriors

P({Sn,g}g∈[G] | µn, {ψn,t}t∈[T ], {Xn,g}g∈[G],α, {βt}t∈[T ]),

P(µn | {Sn,g}g∈[G], {ψn,t}t∈[T ], {Xn,g}g∈[G],α, {βt}t∈[T ]), and

P({ψn,t}t∈[T ] | {Sn,g}g∈[G],µn, {Xn,g}g∈[G],α, {βt}t∈[T ]).

The Gibbs sampler converges quickly due to the large library sizes in bulk RNA-seq
data. We let the entries of α and βt be 0.01 in practice, which ensures the priors for
µn and ψn,t are non-informative.

While our Gibbs sampler is relatively fast and easy to implement, we would ideally
optimize computation to be able to estimate cell-type proportions in modern datasets
that include thousands of subjects. We therefore present an algorithm to maximize the
posterior distribution, that is, to derive the maximum a posteriori (MAP) estimate for
µn and {ψn,t}t∈[T ]. We use an expectation-maximization (EM) algorithm to maximize
the log-posterior after introducing the latent variables Sn,g = {Sn,g,t,m}t∈[T ];m∈[Mt].
Define the latent variable-augmented log-posterior to be

l̃(µn, {ψn,t}t∈[T ]) = logP(µn, {ψn,t}t∈[T ] | {Xn,g,Sn,g}g∈[G],α, {βt}t∈[T ]).

The E-step of the EM algorithm is then:

Q(µn, {ψn,t}t∈[T ]) = E{l̃(µn, {ψn,t}t∈[T ])},

where expectation is taken with respect to the distribution P({Sn,g}g∈[G] |
{Xn,g}g∈[G],µ

(0)
n , {ψ(0)

n,t}t∈[T ]), where µ
(0)
n and ψ

(0)
n,t are the algorithm’s current values
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of µn and ψn,t. The M-step is

argmaxµn,{ψn,t}t∈[T ]
Q(µn, {ψn,t}t∈[T ]),

subject to µn ≥ 0, ψn,t ≥ 0,

T∑
t=1

µn,t = 1, and

Mt∑
m=1

ψn,t,m = 1 for all t ∈ [T ].

Aside from being able to provide the same parameter estimates, EM-MAP sim-
plifies estimation by replacing the time-consuming sampling process and the need for
additional samples after burn-in with purely algebraic operations and direct param-
eter estimation upon convergence. We implement the Gibbs sampler in R and the
EM-MAP algorithm in Rcpp. In the MSBB application, it takes the Gibbs sampler
36 minutes to deconvolve one bulk sample (6,388 genes) using nine references. Apart
from providing consistent estimates (Supplementary Notes), the EM-MAP algorithm
significantly reduces computation time to 1.5 minutes.

4.4 Cell size adjustment

After the parameter estimation, we discuss the interpretation and use of the cellular
fraction parameter µn. In BLEND, we model RNA transcripts directly. Thus, µn

should be interpreted as proportions of transcript attributed to cell types in the tissue
(RNA fractions). When cell fractions are of interest, we need to consider the varying
abundance of transcripts of different cell types, which is quantified by a cell size vector
S ∈ RT

+. S can be given or estimated by the average library sizes of cell types. Then,
we estimate cell fractions by

µcell
n,t =

µn,t/St∑T
t∗=1(µn,t∗/St∗)

.

In benchmarking studies with reliable ground truth of cell fractions, such as
simulation, we perform cell size adjustment first before comparison.

Acknowledgements. The results published here are in whole or in part based on
data obtained from the AD Knowledge Portal (https://adknowledgeportal.org ). Study
data were provided by the Rush Alzheimer’s Disease Center, Rush University Med-
ical Center, Chicago. Data collection was supported through funding by NIA grants
P30AG10161 (ROS), R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917
(MAP), R01AG30146, R01AG36042 (5hC methylation, ATACseq), RC2AG036547
(H3K9Ac), R01AG36836 (RNAseq), R01AG48015 (monocyte RNAseq) RF1AG57473
(single nucleus RNAseq), U01AG32984 (genomic and whole exome sequencing),
U01AG46152 (ROSMAP AMP-AD, targeted proteomics), U01AG46161(TMT pro-
teomics), U01AG61356 (whole genome sequencing, targeted proteomics, ROSMAP
AMP-AD), the Illinois Department of Public Health (ROSMAP), and the Transla-
tional Genomics Research Institute (genomic). Additional phenotypic data can be
requested at www.radc.rush.edu. The MSBB data were generated from postmortem
brain tissue collected through the Mount Sinai VA Medical Center Brain Bank and
were provided by Dr. Eric Schadt from Mount Sinai School of Medicine.

10

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.606458doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606458
http://creativecommons.org/licenses/by-nc/4.0/


Declarations

Funding

This research was funded in part through NIH’s R01AG080590 and R03OD034501.

Competing interests

The authors declare that they have no competing interests.

Data availability

This work mainly used five public datasets, including Mathys data (https://
www.synapse.org/#!Synapse:syn52293417), Fujita data (https://www.synapse.org/
#!Synapse:syn31512863), LIBD data (https://github.com/LieberInstitute/Human
DLPFC Deconvolution), MSBB bulk RNA-seq data (https://www.synapse.org/
Synapse:syn22025006) and Sutton reference list (https://github.com/Voineagulab/
BrainCellularComposition).

Code availability

Package is available at https://github.com/Penghuihuang2000/BLEND.

Author contribution

Under the supervision of J.W. and C.M., P.H. conceived the idea, derived algorithms,
and conducted experiments. P.H., J.W., and C.M. designed the experiments and wrote
the manuscript. P.H. and M.C. implemented the software. J.W. provided funding
support.

References

[1] Thind, A.S., Monga, I., Thakur, P.K., Kumari, P., Dindhoria, K., Krzak, M.,
Ranson, M., Ashford, B.: Demystifying emerging bulk rna-seq applications: the
application and utility of bioinformatic methodology. Briefings in bioinformatics
22(6), 259 (2021)

[2] Jaffe, A.E., Irizarry, R.A.: Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biology 15(2), 31 (2014)

[3] Shen-Orr, S.S., Tibshirani, R., Khatri, P., Bodian, D.L., Staedtler, F., Perry,
N.M., Hastie, T., Sarwal, M.M., Davis, M.M., Butte, A.J.: Cell type–specific gene
expression differences in complex tissues. Nature methods 7(4), 287–289 (2010)

[4] Wang, J., Devlin, B., Roeder, K.: Using multiple measurements of tissue to
estimate subject-and cell-type-specific gene expression. Bioinformatics 36(3),
782–788 (2020)

11

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.606458doi: bioRxiv preprint 

https://www.synapse.org/#!Synapse:syn52293417
https://www.synapse.org/#!Synapse:syn52293417
https://www.synapse.org/#!Synapse:syn31512863
https://www.synapse.org/#!Synapse:syn31512863
https://github.com/LieberInstitute/Human_DLPFC_Deconvolution
https://github.com/LieberInstitute/Human_DLPFC_Deconvolution
https://www.synapse.org/Synapse:syn22025006
https://www.synapse.org/Synapse:syn22025006
https://github.com/Voineagulab/BrainCellularComposition
https://github.com/Voineagulab/BrainCellularComposition
https://github.com/Penghuihuang2000/BLEND
https://doi.org/10.1101/2024.08.02.606458
http://creativecommons.org/licenses/by-nc/4.0/


[5] Wang, J., Roeder, K., Devlin, B.: Bayesian estimation of cell type–specific gene
expression with prior derived from single-cell data. Genome research 31(10),
1807–1818 (2021)

[6] Hu, M., Chikina, M.: Heterogeneous pseudobulk simulation enables realistic
benchmarking of cell-type deconvolution methods. bioRxiv, 2023–01 (2023)

[7] Avila Cobos, F., Alquicira-Hernandez, J., Powell, J.E., Mestdagh, P., De Preter,
K.: Benchmarking of cell type deconvolution pipelines for transcriptomics data.
Nature communications 11(1), 5650 (2020)

[8] Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., Schoeberl, B.,
Raue, A.: Estimation of immune cell content in tumour tissue using single-cell
rna-seq data. Nature communications 8(1), 2032 (2017)

[9] Cai, M., Yue, M., Chen, T., Liu, J., Forno, E., Lu, X., Billiar, T., Celedón, J.,
McKennan, C., Chen, W., et al.: Robust and accurate estimation of cellular frac-
tion from tissue omics data via ensemble deconvolution. Bioinformatics 38(11),
3004–3010 (2022)

[10] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of machine
Learning research 3(Jan), 993–1022 (2003)

[11] Mathys, H., Peng, Z., Boix, C.A., Victor, M.B., Leary, N., Babu, S., Abdelhady,
G., Jiang, X., Ng, A.P., Ghafari, K., et al.: Single-cell atlas reveals correlates of
high cognitive function, dementia, and resilience to alzheimer’s disease pathology.
Cell 186(20), 4365–4385 (2023)

[12] Bennett, D.A., Buchman, A.S., Boyle, P.A., Barnes, L.L., Wilson, R.S., Schnei-
der, J.A.: Religious orders study and rush memory and aging project. Journal of
Alzheimer’s disease 64(s1), 161–189 (2018)

[13] Chu, T., Wang, Z., Pe’er, D., Danko, C.G.: Cell type and gene expression decon-
volution with bayesprism enables bayesian integrative analysis across bulk and
single-cell rna sequencing in oncology. Nature Cancer 3(4), 505–517 (2022)

[14] Wang, X., Park, J., Susztak, K., Zhang, N.R., Li, M.: Bulk tissue cell type
deconvolution with multi-subject single-cell expression reference. Nature commu-
nications 10(1), 380 (2019)

[15] Jew, B., Alvarez, M., Rahmani, E., Miao, Z., Ko, A., Garske, K.M., Sul, J.H.,
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Fig. 2 Benchmarking cellular deconvolution methods with partial reference simulation.
a, Barchart visualization of CCC between the estimated and ground truth fractions for each cell type
across 40 pseudo-bulk samples with matched references and mCCC across cell types. b, Heatmaps of
estimated reference mixing proportions of the pseudo-bulk samples with matched references. Rows
represent bulk samples, and columns represent references. c, Scatter plots of 378 samples with no
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estimated ones. CCC calculated for each cell type between estimated and true fractions is presented
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The CCC of the best performer for each cell type is highlighted in red. astro: astrocyte; inh: inhibitory
neuron; OPC: oligodendrocyte progenitor cell; oligo: oligodendrocyte; ex: excitatory neuron.
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Fig. 5 Analyzing MSBB postmortem human brain data. a-c, Differential cellular fractions
with Alzheimer’s disease progression of three cell types. The x-axes represent Braak AD-staging
score (bbscore), and the y-axes represent cellular fractions. Correlation test results between bbscore
and cellular fractions are shown in brackets below titles. d, Issues of BayesPrism and hspe when
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