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Abstract

The primary cilium is a ubiquitous microtubule-based organelle that senses external environment 

and modulates diverse signaling pathways in different cell types and tissues. The cilium originates 

from the mother centriole through a complex set of cellular events requiring hundreds of distinct 

components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical 

entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which 

include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light 

detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, 

which is packed with membranous discs enriched for components of the phototransduction 

machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing 

photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia 

biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A 

network. We will also explore how recent technologies can advance our understanding of cilia 

biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.
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1. Introduction

The cilium is an evolutionarily conserved and ubiquitous microtubule-based organelle, 

which participates in a variety of cellular processes critical for development and 

homeostasis. Based on the ability to beat rhythmically to move extracellular fluid or lack 

thereof, the cilium can be classified as motile and non-motile. In vertebrates, motile cilia are 

mainly present in specialized cells, such as spermatozoa, epithelial lining of the respiratory 

tract, brain ventricles and the embryonic node [1,2]. Non-motile cilia, also called primary 

cilia, are largely associated with sensing extracellular chemical and mechanical cues and 

mediating signal transduction [3].

As one of the most ancient organelles observed, cilia were first documented by Van 

Leeuwenhoek in the 17th century for their motile properties in protozoan [4]. Contrary to 

the motile cilia with obvious beating dynamics, the non-motile primary cilia in metazoans, 
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especially mammals, have long been considered vestigial until the discovery of the 

relationship between flagella/primary cilia biogenesis and polycystic kidney disease (PKD). 

Defects in the tg737 gene, a homolog of Chlamydomonas IFT88, result in compromised 

primary cilium assembly in cells lining the urinary tract tubule, leading to mis-localization 

of PKD-related proteins [5,6]. Soon thereafter, primary cilia defects were shown to impede 

Sonic hedgehog (Shh) and calcium signaling [7,8], thereby implicating the primary cilium as 

a signaling organelle. Subsequent in vivo and in vitro studies demonstrated a major role of 

primary cilia in transducing exogenous cues and modulating numerous signaling pathways 

including Hedgehog (Hh), Wingless (Wnt), mammalian target of Rapamycin (mTOR), G 

protein-coupled receptors (GPCR), platelet-derived growth factor receptor (PDGFR)-alpha, 

transforming growth factor (TGF)-beta and Notch [9,10]. These studies have established 

primary cilia as the cellular antenna and a signaling hub for tissue morphogenesis and 

homeostasis [11]. Underscoring its importance, compromised biogenesis and/or dysfunction 

of the primary cilium has been identified in a broad spectrum of phenotypically overlapping 

yet highly variable disorders called ciliopathies, which can be associated with retinal 

degeneration, cystic renal disease, obesity, liver dysfunction, skeletal deformities, congenital 

heart defects, and brain developmental abnormalities [12,13]. Notably, among over 200 

reported cilia-associated clinical manifestations in the Online Mendelian Inheritance in Man 

database (OMIM; https://omim.org), retinal degeneration is a highly penetrant phenotype 

and appears in over half of the ciliopathies.

The vertebrate retina is a light-sensitive tissue comprising six major types of neurons (rod 

and cone photoreceptors, horizontal, bipolar, amacrine and retinal ganglion cells) as well 

as one type of glial cell (Müller glia), which form a laminated structure interconnected 

by synapses for transmission of visual signals [14]. The photoreceptors are involved in 

capturing photons and converting the stimuli into electrical responses via a signaling 

cascade called phototransduction. The electrical signals are then integrated and processed 

by interneurons (bipolar, horizontal and amacrine cells) and transmitted to the brain through 

the optic nerve consisting of bundled axons of retinal ganglion cells [15]. Phototransduction 

is initiated in the modified cilium of photoreceptors called the outer segment (OS), 

which is structurally and functionally adapted for efficient photon capture. Rod and cone 

photoreceptors share a similar OS morphology and protein composition but differ in 

important details related to their distinct functions. Rods primarily function in dim light 

and are capable of detecting even a single photon, whereas cones are responsible for bright 

light and color vision [14] (Fig. 1). The OS is continually renewed, with new discs added 

at the base and older discs shed at the tip. The shed discs are then phagocytosed by retinal 

pigment epithelium (RPE) that is critical for maintaining photoreceptor function and survival 

[16,17].

Mutations in over 200 genes (RetNET, https://sph.uth.edu/retnet/) can lead to dysfunction 

and/or death of photoreceptors in retinal degenerative diseases including retinitis pigmentosa 

(RP) and Leber congenital amaurosis (LCA), which constitute a significant cause 

of incurable vision impairment or blindness worldwide. Many of these genes are 

photoreceptor- or RPE-specific, whereas others are expressed broadly but manifest an overt 

disease only in the retina. This review focuses on biogenesis of the primary cilium and on 

ciliopathies, especially those exhibiting retinal phenotypes. As an easily accessible tissue 
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for in vivo studies, the retina is an excellent model to investigate complex features of cilia 

formation and ciliary transport, ciliopathies, and evaluation of treatment options.

In the following sections, we begin by describing the structure of the primary cilium, 

followed by the process of ciliogenesis. Next, we focus on the unique features of the 

modified cilium in photoreceptors and elaborate on genetic mutations and disruption in 

macromolecular complexes that contribute to retinal ciliopathies, using CP110-CEP290­

CC2D2A network as an example. Finally, we conclude with recent advances in innovative 

technologies and therapies relevant to retinal ciliopathies.

2. Structure of the cilium

In most mammalian cells, the cilium is typically 250–300 nm in diameter and 1–10 μm in 

length [18,19]. The cilium consists of a microtubule-based backbone, called the axoneme, 

and a ciliary membrane continuous with the plasma membrane [20] (Fig. 1). The axoneme 

elongates from the basal body (BB), which originates from the mature mother centriole 

(MC) with a structure of 9 distal appendages (DA) and varying numbers of subdistal 

appendages (SDA) [21] (Fig. 1C). As in centrioles, the BB is composed of a barrel 

shaped, 9-fold radially symmetric structure with triplet microtubules [22]. Its proximal end 

is anchored by striated ciliary rootlets, which are composed of polymers of intermediate 

filament-like protein rootletin, to provide structural support to the cilium [23]. The distal 

end of the BB features a transition from triplet microtubules to doublets of ciliary axoneme. 

This transition zone (TZ) in the proximal portion of the cilium possesses a unique functional 

significance and features Y-shaped linkers that tether the ciliary axoneme to the ciliary 

membrane [24] (see Fig. 1B). In photoreceptors, the TZ is commonly referred to as the 

connecting cilium (CC).

The ciliary axoneme emerges from the BB and is comprised of nine doublet microtubules 

known as outer doublets [25], which are subjected to post-translational modifications 

including acetylation, glutamylation, detyrosination and glycylation that are crucial for 

ciliary length, stability, functions and motility [20,26]. Other structural components include 

tektins and the protofilament ribbon proteins, which provide additional stability to axonemal 

microtubules [20]. To enable the bending motion, the axoneme of the motile cilium 

possesses an additional central pair of microtubules, which connect with the outer doublets 

by radial spokes and dynein arms (Fig. 1A). Thus, cross-sectional views of motile cilia 

usually present a 9 + 2 configuration. In contrast, primary cilium typically lacks the central 

pair of microtubules and contains a 9 + 0 configuration [27] (see Fig. 1A). Exceptions to this 

general rule include nodal cilia, which are motile but lack the central pair of microtubules 

[28]. Some sensory cilia, such as kinocilia of cochlear hair cells and olfactory sensory 

neurons, while immotile, do possess the central pair of microtubules [29,30]. In most 

mammalian cells, an invaginated plasma membrane, known as the ciliary pocket at the base 

of axoneme, is the site of active endocytosis and docking of intraflagellar transport (IFT) 

particles [31].

Chen et al. Page 3

Semin Cell Dev Biol. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Primary cilia biogenesis

Biogenesis of the primary cilium is a highly complex yet well-orchestrated process involving 

multiple cellular machineries and signaling pathways (Table 1 and Fig. 2). Formation of the 

cilium is initiated by apical migration of the MC to become the BB, followed by extension 

of the axonemal microtubules, formation of the TZ, and growth of the cilium through ciliary 

trafficking machineries such as IFT. Depending upon whether the elongation initiates at 

the cell surface or within the cytoplasm, the process of primary cilia biogenesis can be 

categorized as an extracellular or intracellular pathway, respectively [32]. The extracellular 

pathway is observed in polarized epithelial cells of the kidney and lung, whereas the 

intracellular assembly is adopted by most cells including photoreceptors [33,34]. We will 

primarily discuss the intracellular pathway in this review.

3.1. Mother centriole maturation

In mammalian cells, the centriole is an evolutionally conserved microtubule-based organelle 

with typical dimensions of ~200 nm in diameter and ~500 nm in length and a cylindrical 

structure of nine microtubule triplets [35]. A pair of perpendicularly positioned centrioles 

(the mother and daughter centrioles) recruit an amorphous proteinaceous meshwork, called 

the pericentriolar material (PCM), to form the centrosome [36]. The centrosomes are formed 

through interaction between the centrioles and less well-defined PCM proteins such as the 

γ-tubulin ring complex (γTuRC) and PCM1 [37,38]. As the primary microtubule-organizing 

center (MTOC) of the cell, the centrosomes are responsible for nucleation of microtubule 

assembly in interphase cells and docking of the bipolar microtubule spindle during mitosis 

[39]. The centrosomes can also act as the actin-organizing center in cells, in addition to its 

essential function in the regulation of cilium biogenesis and maintenance [34,40].

Centrosome duplication and conversion of the MC to the BB are tightly coordinated with 

the cell cycle. In the G1/S phase of proliferating cells, the daughter centriole (DC) loses 

the DC-enriched proteins, a process required for centriole duplication and maturation [34] 

(Table 1). Assembly of new centrioles is initiated at the proximal end of both the MC and 

the DC (Fig. 2A). In vertebrates, the centriole receptor CEP152 and CEP192, which encircle 

the proximal end of the template centrioles, recruit PLK4 and subsequently STIL [41,42]. 

Phosphorylation of STIL by PLK4 triggers the binding of SAS6 and initiates the assembly 

of the cartwheel, the structural base of the newly formed DCs, limiting the accumulation of 

PLK4 at the centrioles to prevent the formation of additional centrioles [43,44]. Facilitated 

by CEP135, SAS6 can oligomerize into a 9-fold symmetrical structure of the cartwheel [45]. 

Growth of the cartwheel depends on the addition of SAS6 to the proximal end of the stack 

to stabilize the structure [44]. The newly formed DCs remain tightly anchored to the side of 

the MC until centriole disengagement at the late mitosis or early G1 phase in the next cell 

cycle, a process catalyzed by a cysteine protease, called separase, and PLK1 [46,47] (Fig. 

2A). This is a key licensing step that restricts centrosome duplication to occur only once 

during a cell cycle.

In the late G2 phase, the DC from the previous cell cycle begins to mature, acquiring 

DA and SDA structures by sequential recruitment of respective proteins to the distal end 

of the centriole [34] (Table 1) (Fig. 2A). DAs are responsible for membrane docking 
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and recruitment of IFT machinery at the distal end [48]. As shown by super-resolution 

microscopy, DAs display a cone-shaped structure with the backbone of a pinwheel complex 

that is sequentially formed by CEP83, CEP89, and SCLT1 [49] (Fig. 2A inset). In turn, 

this complex recruits CEP164 and FBF1, the latter one demarcates the distal end of the DA 

matrix near the ciliary membrane [49] (see Fig. 2A inset). SDAs anchor microtubules and 

participate in endosome recycling [50]. Their formation is regulated by a different set of 

proteins including γ-tubulin, which directly participates in the nucleation of microtubules 

[34] (Table 1). CC2D2A initiates the hierarchical assembly of other SDA proteins by 

recruiting ODF2, which serves as the anchor for binding to CCDC120 and CCDC68, 

followed by the recruitment of CEP170 and Ninein [51].

To initiate the M phase, the two centrosomes, each with newly formed mother-daughter 

centriole pairs, segregate to the opposite poles of the cell and establish a bipolar spindle. 

Upon exit from the cell cycle, the MC gains competence for ciliogenesis in response to 

specific developmental and/or environmental signals (Fig. 2A).

3.2. Formation of ciliary vesicles (CVs) and the TZ

Docking of preciliary vesicles (PCVs) at DAs of the MC constitutes an initial step of 

ciliogenesis. PCVs originate as small cytoplasmic vesicles from the Golgi apparatus and 

the recycling endosomes and are transported to DAs through sequential actions of dynein, 

myosin MYO5A, and actin network (Fig. 2B). Dynein facilitates the transport of MYO5A­

associated PCVs to the pericentrosomal area along microtubules, followed by subsequent 

delivery of these PCVs to DAs as mediated by MYO5A along the ARP2/3-associated 

branched actin network [52] (Fig. 2B). These PCVs fuse to form a large CV through 

membrane tubulation mediated by the ESP15 homology domain (EHD)-1, a SNARE 

membrane fusion regulator, and EHD-1 binding protein SNAP29 and EHD-3 [53] (Fig. 

2B). Small GTPase ARL13B, F-BAR domain PACSIN proteins and components of the 

RAB8-RAB11 GTPase cascade, which are important for the transition of the MC to the 

BB, are enriched in the CVs [54,55]. RAB11 and microtubule-associated protein (MAP) 

11 recruit RABIN8 (a guanine nucleotide exchange factor) to the CVs, a process mediated 

by transport particle protein (TRAPP) II complex [55,56]. RABIN8 then interacts with 

CEP164 to activate RAB8, which together with ARL13b promotes the growth of the ciliary 

membrane and selective trafficking of ciliary proteins to the nascent cilium [57–59].

In addition to docking of CVs and initiation of ciliogenesis, DA proteins also initiate 

elongation of the ciliary axoneme. Centriolar coiled-coil protein of 110 kDa (CP110) is 

localized to the distal end of the mature MC and “caps” the growing microtubules to 

modulate ciliogenesis [60,61]. Removal of CP110 is driven by a small calcium-binding 

protein CETN2 and recruitment of tau-tubulin kinase TTBK2 by DA protein CEP164, which 

subsequently phosphorylates various substrates including CEP164 itself, the kinesin KIF2A 

and CEP83 [62,63]. Concurrently with CP110 removal, the IFT machinery is recruited to the 

DAs by DA proteins and mediates the recruitment of ciliary motor proteins kinesin-2 and 

dynein-2, IFT proteins, and trafficking of ciliary axonemal components such as tubulin 

[53,64] (Fig. 2B). INPP5E, a lipid-modified phosphoinositide phosphatase involved in 
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initiation of ciliogenesis and ciliary trafficking, is recruited to the ciliary base by CEP164 

[65,66].

The TZ emerges shortly after IFT machineries are recruited to the DAs and is marked 

by the Y-links visible on cross sectional profiles (Fig. 2B). The Y-links are characterized 

by Y-shaped fibers tethering each microtubule doublet to the ciliary membrane and 

may be correlated to bead-like intramembranous particles, called ciliary necklace, that is 

visible from the exterior surface [67,68]. The Y-links and ciliary necklace exhibit a close 

connection with each other, yet their relationship and function(s) remain unclear [24,69]. 

Interactome analyses of the TZ proteins have identified two biochemically distinct TZ 

protein complexes. The NPHP complex is associated with nephronophthisis, whereas the 

MKS complex is abnormal primarily in Meckel (MKS) and Joubert syndrome (JS) and 

related disorders (JSRD) [24,70] (Table 1).

The NPHP and MKS complexes interact with each other through a network of loose 

connections, forming two major hubs: CEP290 in the MKS complex, which binds to 

NPHP5 of the NPHP complex, and Inversin (also called NPHP2) complex in the NPHP 

module, comprising of NPHP3, NEK8, ANKS6 and ANKS3 [65]. Other proteins and 

lipid components in the TZ are also believed to contribute to the unique composition 

and function of the TZ. For example, a ring-like structure consisting of the GTP-binding 

proteins of SEPTIN family (SEPTIN2, SEPTIN 7 and possibly other members) constitutes 

the diffusion barrier of the TZ [71]. Another example is phosphoinositide lipid PI(4,5)P2, 

which is restricted to the proximal ciliary membrane by the ciliary enzyme INPP5E and 

regulates TZ function [72]. PI(4,5)P2 also participates in the TZ maturation in Drosophila 
[73]. Additionally, a proteomic analysis of Chlamydomonas TZ uncovered a crucial role 

of ESCRT protein complex in shedding of extracellular vesicles from the primary cilium 

[74]. The corresponding TZ components of other species and their functions in primary 

cilia of mammals require further investigation. Super-resolution microscopy technologies 

demonstrate that the NPHP complex is close to the TZ microtubules, consistent with the 

tubulin-binding capacity of NPHP1 and NPHP4, whereas the MKS complex is mostly 

associated with the ciliary membrane [65]. However, the location of the protein complex 

hub CEP290 from different species is still controversial [65]. It is unclear whether it is 

species-specific, or cilia-type-specific, or related to the large size of CEP290.

TZ appears to be a hotspot for ciliopathies due to its complex protein networks and crucial 

roles in cilia biogenesis and functions. In mice, defects in the MKS complex cause more 

severe diseases and even embryonic lethality, whereas mutations in the NPHP proteins 

broadly lead to kidney defects along with occasional extrarenal phenotypes including 

photoreceptor degeneration [13] (Table 1). Curiously, mutations in RPGRIP1L in the NPHP 

complex can be associated with more severe ciliopathies such as Meckel-Gruber syndrome 

and JS and/or modify retinal degeneration phenotype in ciliopathies [75–77]. Ciliogenesis 

defects are more severe when both an NPHP and an MKS complex component are disrupted 

compared to when either one is impaired, suggesting some functional redundancy between 

the MKS and the NPHP complexes [65]. More severe defects can be caused by disruption 

in interaction between TZ complexes and IFT machineries [65]. How TZ complexes interact 

with IFT components and their role in ciliogenesis are still poorly understood.
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After the formation of the TZ, the axonemal microtubules elongate with transport of ciliary 

proteins and building blocks of the ciliary axoneme such as tubulin (Fig. 2B). Fusion of 

the CV with the plasma membrane exposes the primary cilium to the external environment. 

The outer region of the ciliary vesicle then becomes a ciliary pocket adjacent to the ciliary 

membrane [18] (Fig. 2B).

3.3. Ciliary trafficking

Primary cilia have a distinct protein composition that can be attributed to a specialized 

ciliary trafficking machinery. Soluble proteins that are not associated with the membrane 

can enter the cilium by passive diffusion or active transport utilizing microtubule motor 

proteins. Passive diffusion of soluble proteins is size-dependent because of size-exclusion 

characteristics of the DA and the TZ. DA proteins are also referred to as transition 

fibers (TFs) when associated with the ciliary membrane or its precursors. Super-resolution 

microscopy of cross sections of TFs indicate ~60 nm space between adjacent ones [78], 

which may execute size-dependent entry and exit of soluble proteins in and out of cilia as 

part of a gating mechanism. A similar mechanism might be utilized by the TZ, in which the 

Y-links and the protein meshwork between them have been proposed to act as a molecular 

sieve-like barrier [79]. Therefore, the capacity of a protein moving in and out of the cilia 

might depend on size in passive diffusion.

Active transport would circumvent the limitation of protein size, relying on cargo 

association with IFT machineries, which is the primary route for soluble and membrane­

associated ciliary proteins that are transported in and out of the cilium. The IFT machineries 

are composed of microtubule motors, IFT complexes and accessory proteins [20] (Fig. 3A). 

Depending on the direction of IFT, the movement of cargo proteins along the axoneme is 

catalyzed by two different sets of motor proteins: kinesins and dyneins. Anterograde IFT, 

which transports cargos from the ciliary base to the tip, is executed by plus end-directed 

kinesin-2 motors (Table 1). Cytoplasmic dynein-2 is a minus end-directed motor responsible 

for retrograde IFT, which moves cargo proteins from the ciliary tip to the base [80] (Table 

1).

The two IFT complexes, IFT complex A and complex B, include components that are highly 

enriched in protein-protein interaction domains, which enable them to carry substantial 

cargo proteins. Yet, complex A and complex B have distinct biochemical constituents and 

functions. Complex B participates in anterograde transport, which is essential for cilia 

assembly and maintenance [20], whereas complex A does not seem to be required for cilia 

assembly but is essential for retrograde transport [20] (Table 1). Although participating in 

IFT of different directions, complex A and B move together along the ciliary axoneme. 

Separation of complex A and B leads to defective ciliary transport, suggesting cooperative 

interaction between the IFT complexes [81].

IFT accessory proteins such as KAP act as membrane adaptors for specific cargo proteins 

and IFT complexes [82]. Some of these accessory proteins are also essential for the 

architecture of IFT complexes [83]. To access the cilium, cytosolic proteins interact with 

microtubule motors, IFT complexes and cargo adaptors such as TULP3 and the BBSome 

(Table 1). Integral membrane-associated cargo proteins need ciliary localization sequences 
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(CLSs) to interact with the IFT machineries. For example, a specific group of GPCRs is 

transported into the cilium by IFT accessory proteins such as TULP3, which serves as a 

membrane adaptor in complex A [84]. Ciliary localization of lipid-anchored proteins such 

as RP2 requires binding to an adaptor importin- β2, which associates with the KIF17 

component of the kinesin-2 motor complex [85]. Peripheral membrane proteins can also 

be transiently solubilized by interaction with lipid-binding transporter proteins to cross 

the ciliary gate. Two important examples are UNC119 and PDE6D, which recognize 

the myristoylated and prenylated residues of targeted cargo proteins, respectively [65]. 

Binding of UNC119 and PDE6D to targeted residues inhibits association of cargo proteins 

to the plasma membrane for trafficking across the TZ. Once inside the cilium, a small 

GTP-binding protein ARL3 binds to transporter proteins, thereby inducing the dissociation 

of transporter-cargo complex and enabling the cargo to associate with the ciliary membrane. 

ARL3 activity depends on RP2 and ARL13B, which regulate the association with GDP 

and GTP [66,86]. These two trafficking systems antagonize each other, probably since both 

UNC119 and PDE6D rely on the activity of ARL3 [87].

The IFT machineries are also needed to transport membrane-associated proteins out of the 

cilium. GPCRs are transported out of cilia by another set of adaptors: the small Arf-like 

GTPase ARL6 (membrane-associated with GTP and the BBSome bound; BBS3), and the 

sole effector of ARL6 (BBS3) – the BBSome [88]. The BBSome acts as an IFT cargo to 

mediate the exit of other proteins from cilia such as Hh mediator, GPR161 [89].

Ciliary and nuclear transport share several interesting similarities. First, both nuclear and 

ciliary import require specific localization signals, although so far no clear consensus 

sequence has been identified for ciliary localization or protein recognition machineries 

[90]. Second, the TZ has a similar selective protein transport function as the nuclear pore, 

which allows cargo movement between the nucleus and the cytoplasm [91]. Third, Ran-GTP 

in the cilium and Ran-GDP in the cytoplasm are important for ciliary transport, as is in 

nuclear transport [92,93]. Fourth, numerous ciliary proteins have additional functions in the 

nucleus to regulate gene expression during the cell cycle or when the cell is under stress. 

For example, CEP290, which is hub of the TZ, also localizes to the nucleus and participates 

in the cellular response to DNA damage and replication stress [94]. CEP290 interaction 

partner RPGR, together with RPGRIP1, might have a role in recruiting nucleophosmin to 

the centrosome in the regulation of cell cycle [95]. For more information about the nuclear 

functions of ciliary proteins, we direct readers to other excellent reviews [96,97].

3.4. Cilia disassembly

The primary cilium is resorbed or shed before cells re-enter the cell cycle. Cilium 

disassembly requires depolymerization of axonemal microtubules and scission of the ciliary 

membrane. One of the key regulators in this process is the mitotic kinase AURORA 

A, which is activated upon cell cycle re-entry. Activated AURORA A phosphorylates 

and stimulates histone deacetylase HDAC6, which then destabilizes and depolymerizes 

axonemal microtubules [98,99]. Another histone deacetylase HDAC2 positively regulates 

the expression of AURORA A to promote cilium disassembly, which can lead to 

development of various types of cancers when misregulated [100]. The kinesins KIF2A 
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and KIF24 also participate in this process. Located at the proximal side of the BB, KIF2A 

is degraded and KIF24 (which is associated with CP110) is inhibited upon ciliogenesis 

[101]. Upon re-entry to the cell cycle, KIF2A is activated by G2/M phase kinase PLK1 and 

promotes microtubule depolymerization. Similarly, KIF24 is phosphorylated and activated 

by NEK2, a cell cycle kinase expressed between S and G2 phase, to promote microtubule 

disassembly. This process is irreversible once S phase begins [102,103].

Cilium disassembly also requires remodeling of the ciliary membrane, which mainly 

involves the ciliary pocket and scission of the distal tip of the cilium. The ciliary pocket 

is an actin-docking site located at the periciliary subdomain at the junction of ciliary 

and plasma membranes [104]. One important mediator between mitogenic stimulation and 

cilium disassembly is the insulin-like growth factor 1 (IGF1) signaling pathway. Upon 

activation of the IGF1 pathway by binding of IGF1 to ciliary IGF1R, phosphorylated 

DYNLT1 is recruited to the TZ [105]. DYNLT1 interacts with F-actin and other active 

polymerization regulators to remodel the ciliary pocket and enhance clathrin-mediated 

endocytosis. In addition, scission of the cilium from the distal tip can be observed upon 

growth stimulation. The site of cilium decapitation is determined by ciliary distribution of 

PI(4,5)P2, which induces actin polymerization in coordination with other actin regulators 

[106]. AURORA A depletes ciliary INPPE5 and re-distributes PI(4,5)P2 to facilitate actin 

nucleation and CV release [107]. Notably, CV release preferentially removes the IFT-B 

complex, which participates in anterograde transport for cilium growth, thereby promoting 

cilium disassembly [106]. The ubiquitin-proteasome system components also participate in 

the cilium disassembly [108,109]. For more details, we refer readers to reviews that cover 

this topic more extensively [34,110].

3.5. Regulation of cilia assembly/disassembly

The primary cilium is disassembled before mitosis and reassembled after mitotic exit 

or upon mitogen deprivation, highlighting a close coordination between the cell cycle 

and ciliogenesis. As such, the assembly and disassembly are tightly regulated processes. 

The timing of cilium assembly is controlled by transcriptional regulation as well as 

growth factor/mitogen stimulation. For example, the RFX family transcription factors are 

reported to control the expression of BB machineries and cilia-specific proteins required for 

ciliogenesis [111].

A number of growth factors/mitogens are involved in regulating ciliogenesis and cell 

cycle. For instance, serum deprivation stimulates ciliogenesis in cultured cells. Serum 

lysophosphatidic acid inhibits cilium development via the downstream PI3K/AKT signaling 

pathway, which regulates RABIN 8 preciliary trafficking and thus the initiation of RAB8­

dependent ciliogenesis by the RAB11-RAB8 cascade [112]. Epidermal growth factor 

(EGF) and platelet-derived growth factor (PDGF) both suppress ciliogenesis and initiate 

cilium disassembly utilizing NEK2 and AURORA A. In addition, binding of PDGF to 

PDGF receptor β activates PLCγ, which releases intracellular Ca2+ from the endoplasmic 

reticulum to activate calmodulin and AURORA A [113,114].

Although primary cilia are microtubule-based organelles, a crucial role of actin has 

been suggested in the regulation of their positioning, assembly, and functions through 
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branched F-actin and the actin nucleating ARP2/3 complex. The latter interacts with the 

nucleation promoting factor WASH, which is recruited to the centrosome by PCM1 [115]. 

Therefore, the centrosome likely functions both as a microtubule- and actin-organizing 

center. Cytoplasmic and cortical branched F-actin networks mainly have an inhibitory role 

in cilium assembly, lengthening and material exchange with the cytoplasm. Cytoplasmic 

F-actin inhibits the transport of ARL13B-associated ciliary vesicles to the BB, whereas 

those at the base of cilia and ciliary pocket act as a barrier for the diffusion of plasma 

membrane proteins such as GPCRs [88,116]. Inside the cilium, F-actin organizes lipid 

corrals to limit receptor diffusion and regulates its length by decapitation at the distal tip 

[106,117]. WASH activates ARP2/3 to nucleate actin polymerization at the centrosome to 

form pericentrosomal networks, which are required for the trafficking of MYO5A to the BB 

and the formation of a diffusion barrier to regulate passage into and out of the cilium [40]. 

FHDC1, a unique member of the formin family, coordinates actin and microtubule dynamics 

at the SDA to anchor BB positioning and regulate cilia length [118]. ARP2/3 activity 

may also coordinate with lysine deacetylase KDM3A to modulate axonemal microtubule 

assembly by controlling IFT entry [119,120]. For more details on actin-based regulation of 

ciliogenesis, see a recent review [40].

4. Specialized sensory cilia of photoreceptors

Photoreceptors are highly specialized neurons that are anatomically organized into a distinct 

layer in the retina. As mentioned earlier, the OS of a photoreceptor is a modified sensory 

cilium containing phototransduction components, whereas the inner segment (IS) houses 

the endoplasmic reticulum, Golgi apparatus, and mitochondria to meet the high energy 

demand and biosynthetic needs of the cell. The presynaptic terminal of a photoreceptor 

connects to the second-order neurons including bipolar and horizonal cells [121]. The 

visual process is initiated by photon capture in the OS and the phototransduction cascade 

ensues. A comprehensive proteomic study of mouse photoreceptor OS and connecting 

cilium (the TZ) identified ~2000 proteins, of which only a few hundred are shared with the 

primary cilium of other cell types, as the OS contains abundant specific proteins subserving 

phototransduction [122].

4.1. Morphology of the OS

The OS of rod and cone photoreceptors is largely homologous in structure but differs in 

morphology and protein compositions. While the rod OS is cylindrical, the cone OS is 

tapered and conical in most vertebrate species including humans (see Fig. 1). The OS 

of both photoreceptors possesses a similar cytoskeletal backbone when compared to the 

primary cilium of other cell types. The ciliary rootlet is more highly developed than any 

other cell types and anchors the proximal end of the BB and extends deep into the IS to 

stabilize the OS [123]. Axonemal microtubule doublets extend distally, reaching about one 

half of the rod photoreceptor OS and to the tip in the cones [124]. As the microtubules 

extend distally, the doublets gradually transition to singlets [125]. The Y-links crosslink 

microtubules to the surrounding membrane at the CC [126]. The CC measures ~0.3 μm 

in diameter and ~1–1.5 μm in length in both rods and cones in most vertebrate species 

[127], which is almost 3 times the length of the TZ of other primary cilia. Recent advances 
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in super resolution microscopy have uncovered a specialized feature of the photoreceptor 

CC, in which the proximal portion is homologous to the TZ of primary cilia in other cell 

types, whereas the distal region is a photoreceptor-specific extension. The specialized distal 

zone is maintained by SPATA7 and its interacting partners, such as RPGR and RPGRIP1, 

which have important functions in stabilizing axonemal microtubules [128]. Molecular 

mechanisms underlying the maintenance of the ciliary axoneme by the distal CC and why it 

is specialized in photoreceptors require further investigation.

Photoreceptor OS is among the largest of mammalian cilia to accommodate tightly stacked 

membranous discs harboring visual pigments and other phototransduction proteins [129]. In 

mouse rods, membranous discs are arranged at a density of ~30 discs per μm totaling up to 

2000 discs. These discs are densely packed with visual pigments and associated proteins for 

efficient photon capture and rapid signal transduction [130]. While rod discs are enclosed 

except for the nascent discs at the base, cones largely maintain open discs through the 

entire OS [131–133] (see Fig. 1). The rod visual pigment rhodopsin, the most abundant 

disc membrane protein in rod cells, is organized as rows of dimers to reach a density of 

~48,000 monomer per μm2 to provide additional structural support and maintains the disc 

configuration [134].

Another unique feature of the photoreceptor OS is its continuous renewal. Each day ~10% 

of the OS is shed from the distal tip and phagocytosed by the RPE. The length of the OS 

remains constant as new discs are formed at the base [135,136]. Rapid renewal of the OS 

requires efficient generation of new discs. Formation of new discs starts with evagination 

of the OS membrane driven by an expanding branched actin network, forming open discs 

consisting of closed rim, open rim and lamellar regions [137,138] (see Fig. 1). PRPH2 

and its homolog ROM1 both form homodimers, which further associate to form tetrameric 

complexes that are located exclusively at the disc rim [139]. These complexes are required 

for the maintenance of hairpin-like curvature of the closed rim structure and morphogenesis 

of discs, which would otherwise be excreted as ectosomes [140]. As the newly forming discs 

protrude from the plasma membrane and expand, they are maintained flat by PRCD, without 

which the nascent discs bulge and release extracellular vesicles [141]. In rod photoreceptors, 

the closed discs are formed once a disc reaches the full OS diameter and the expansion of 

an open rim encloses the space between adjacent surfaces of the two lamellae [133]. An 

integral membrane protein CD113 localizes to open rims and forms a connection with the 

IS plasma membrane in the ciliary pocket via PROM1 and PCDH21 [142,143], suggesting a 

plausible role of the ciliary pocket in biogenesis of OS discs. The ciliary pocket and the CC 

are connected through other filamentous proteins, mainly the USHER protein complexes, 

for the maintenance and stability of the OS [144,145]. The ciliary pocket is also a site 

for docking of post-Golgi vesicles and transport of OS components such as opsins, an 

alternative approach of ciliary protein transport in photoreceptors [144,146].

4.2. Protein transport to OS

In addition to basic building blocks of primary cilia, additional photoreceptor-specific 

proteins are required for the OS to mediate phototransduction. Together with the rapid 

renewal, these features of photoreceptor OS necessitate robust protein synthesis, high energy 
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supply in the IS, and efficient transport of OS-bound proteins. Similar to primary cilia 

of other cell types, ciliary gating of the OS is established by hydrogel-like size-excluding 

barriers of transition fibers, which only allow the passage of proteins less than 70 kDa, and 

the protein meshwork in the CC [147]. The selective trafficking of microtubule components 

for the ciliary axoneme in photoreceptors is analogous to that of the primary cilium in other 

cell types. Protein cargos are delivered from the base to the tip by anterograde transport, 

which is mediated by IFT-B complex with kinesin-2 motor complexes. Once the cargos are 

delivered, the IFT-B components and other ciliary proteins are transported from the tip to the 

base by dynein-2-driven IFT-A complexes via retrograde transport [148] (Fig. 3B).

OS-bound membrane proteins appear to be transported through a somewhat different route 

(Fig. 3B and C). Rhodopsin is the most abundant protein in rod OS, comprising more than 

80% of the proteins in the OS [149]. The transport of rhodopsin to the OS is likely through 

a conventional pathway, which is accomplished through fusion of carrier vesicles with 

the periciliary membrane, and an unconventional pathway, which is achieved by recycling 

endosomes. In the conventional pathway, rhodopsin is synthesized in the endoplasmic 

reticulum and transported through the Golgi and trans-Golgi network to sort into carrier 

vesicles targeting the OS. This process is mediated through specific ciliary localization 

signals at the C-terminus of rhodopsin to facilitate the interaction with ciliary targeting 

molecules and fusion with carrier vesicles [150]. Rhodopsin is transported through the CC to 

the site of disk morphogenesis by two motor proteins kinesin-2 and myosin-7a, the latter of 

which is an actin-dependent molecular motor localized to the periciliary membrane complex 

in mouse and calyceal processes in primates [145,151]. The C-terminus of rhodopsin also 

interacts with SARA, an early endosome protein, suggesting the feasibility of rhodopsin 

transport in an unconventional pathway by early and recycling endosomes [152,153]. In 

addition, RAB11 also regulates the sorting of rhodopsin at recycling endosomes in cultured 

MDCK cells [154]. Whether rhodopsin is transported to the OS through either or both 

of these pathways requires further investigation. Other membrane-associated proteins, such 

as PRPH2, utilize both conventional and unconventional pathways to reach the ciliary 

membrane and disc rim region [155,156].

Photoreceptors feature light-activated translocation of soluble phototransduction proteins 

including transducin, arrestin and recoverin. In the dark, translocation of transducin into the 

rod OS may increase the gain of phototransduction, while under the light, translocation of 

arrestin to the OS could accelerate inactivation of phosphorylated rhodopsin and expedite 

recovery of the photoresponse [157]. Diffusion of these proteins is energy independent but 

requires steric volume exclusion, suggesting a steric interaction between soluble translocated 

proteins and highly constrained space between OS disc membranes [158].

5. CP110-CEP290-CC2D2A network in early ciliogenesis and ciliopathies

Retinal ciliopathies can be caused by mutations in genes for photoreceptor OS structure 

and/or function. Notably, mutations in the same gene can lead to both non-syndromic and 

syndromic retinal ciliopathies based on the type and the location of mutations as well 

as individual modifier genetic variations. In this section, we mainly focus on the CP110­

CEP290-CC2D2A network in early ciliogenesis and ciliopathies.
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5.1. CP110

CP110 and its interaction partner CEP97 are critical for cell cycle regulation and were the 

first proteins shown to negatively regulate cilia assembly [63]. CEP97 is a Ca2+-binding 

protein that likely serves as a chaperone to stabilize CP110 for recruitment to the distal 

centriole [63,159]. CP110 forms large complexes with calmodulin and centrins, which 

constitute a family of calcium-binding phosphoproteins in the centrosome of eukaryotic cells 

[160]. CETN2 was reported to regulate CP110 levels and ciliogenesis in chicken but does 

not seem to impact the development of photoreceptor OS in mouse [161].

CP110 levels and localization to the centrosome are tightly regulated in a cell cycle­

dependent manner. CP110 protein amount drops significantly in the G2/M and G0/G1 

phases as a consequence of transcriptional controls, ubiquitin-mediated proteasomal 

destruction, and microRNA-mediated turnover of CP110 mRNA [162–164]. Knockdown 

of either CP110 or CEP97 leads to inappropriate cilium formation in proliferating cells 

and genome instability, whereas overexpression of either inhibits ciliogenesis in non­

proliferating cells [160]. CP110 caps the distal end of centrioles but is absent at the BB 

in ciliated cells. The removal of CP110 from the distal MC is associated with two serine/

threonine kinases, TTBK2 and MARK2. Recruitment of TTBK2 relies on DA components 

and MARK2 interacts with SDA component ODF2, indicating crucial roles of DA and 

SDA components in the removal of CP110 from the MC to promote cilium assembly. 

In addition to CEP97, CP110 interacts with other proteins that further control its activity 

and consequently cilia formation. For example, CEP104 is a microtubule plus-end tracking 

protein that co-localizes with CP110 at the distal end of centrioles in proliferating cells 

and is absent from the BB during ciliogenesis. However, CEP104 counteracts the effects 

of CP110 and CEP96 and promotes the onset of ciliary axoneme growth [165]. CP110 and 

CEP290 also bind to RAB8A for cilium assembly [166]. Another interaction partner of 

CP110 is KIF24, which binds to CP110 and CEP97 to stabilize the complex and inhibit 

ciliogenesis [103].

The insights on CP110 function are primarily based on cell culture studies; nonetheless, 

animal models have provided significant new information on CP110 function in vivo. 

Elevated levels of CP110 are associated with chronic rhinosinusitis, a respiratory disease 

with abnormal or lack of motile cilia, consistent with cell culture data [167]. Studies using 

the Cp110-knockout mice suggest a dual role of CP110 in vivo [61]. Germline loss of 

Cp110 results in neonatal lethality due to severe cilia defects, with phenotypes reminiscent 

of human short ribpolydactyly syndrome, a form of ciliopathy with significant skeletal 

abnormalities. In Cp110-null embryos, primary cilia formation is compromised in multiple 

tissues with impaired Shh signaling, indicating a positive role of CP110 in ciliogenesis. 

Indeed, CP110 is required for docking of the BB to plasma membrane in early stages of 

cilia formation. CP110 loss results in abnormal distribution of SDA components. In Cp110 
knockout mouse embryonic fibroblasts (MEFs) generated from these embryos, both SDAs 

and DAs are absent in the majority of the BB and development of the TZ is compromised 

[61]. Thus, while eventual removal of CP110 from the distal end of the MC is a prerequisite 

for cilia growth, CP110 also plays a positive role during earlier steps of ciliogenesis.
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5.2. CEP290

CEP290 is localized to the centrosomes in dividing cells and distributes to the distal 

MC in quiescent cells and the TZ in primary and sensory cilia, in which CEP290 serves 

as a hub to connect the MKS and NPHP complexes. CEP290 interacts with a number 

of ciliary proteins including: RPGR, RPGR-interacting protein 1 (RPGRIP1), dynactin 

subunits, kinesin-2 subunits KIF3A and KAP3, CETN1, PCM-1, Ninein, NPHP5, CP110, 

and CC2D2A [166,168,169]. CEP290 mutations can result in a broad spectrum of clinical 

manifestations, including LCA, JS, JSRD, NPHP, SLS, and MKS [170–172]. LCA is 

associated with mutations throughout CEP290, while JS and MKS mutations are mainly 

located at the C-terminus and N-terminus, respectively [173,174].

The most common retinopathy (LCA) mutation in CEP290 gene is an A-to-G nucleotide 

change in intron 26 (c.2991 + 1655A >G; IVS26) that creates a novel splice donor site and 

results in a 128-bp cryptic exon with a premature stop codon [175,176]. Aberrant splicing 

caused by this mutation is more pronounced in human photoreceptors than in other cell 

types, providing a plausible explanation for a penetrant phenotype in the retina [175]. So far, 

no clear genotype-phenotype relationship is established for CEP290-associated ciliopathies, 

though the function of residual CEP290 from hypomorphic alleles may be related to the 

less severe clinical manifestation [177]. AHI1 and RPGR variants are reported to modify 

phenotypes associated with CEP290 mutations [178,179].

The CEP290 protein level remains constant throughput the cell cycle, including in the G0 

phase, yet pleiotropic functions of CEP290 appear to be blocked by CP110 until the exit 

from the cell cycle and subsequent removal of CP110 [166]. CEP290 interacts with the 

centriolar satellite protein PCM-1. The depletion of CEP290 disrupts subcellular distribution 

and PCM-1 complex formation in cultured cells, leading to disorganization of cytoplasmic 

microtubule network and disruption of centriole migration and protein trafficking to the 

centrosomes [37]. Notably, induced pluripotent stem cell (iPSC)-derived photoreceptors 

from LCA patients and JSRD patient fibroblasts display defects in docking of preciliary 

vesicles and ciliary membrane formation [181]. Treatment of cells with drugs that inhibit 

actin filament polymerization and/or actin dynamics, such as cytochalasin D or latrunculin 

B, alleviates ciliogenesis defects caused by the loss of CEP290 [182,183]. Taken together, 

these data suggest that CEP290 mutations have an impact on cytoplasmic microtubule 

and/or actin network. Indeed, the CEP290 myosin tail domain indicates actin-related 

functions of the protein [172,184].

In C. reinhardtii and C. elegans, absence of CEP290 does not affect cilia formation but leads 

to altered ciliary protein composition [185,186], suggesting a gating function of CEP290. In 

concordance, JSRD patient fibroblasts having no detectable CEP290 protein show elevated 

Shh signaling [181]. Mice with complete loss of Cep290 die before weaning due to cilia 

defects in multiple organs including hydrocephalus [174]. In photoreceptors of Cep290−/− 

mice, the BB fails to dock to the apical cell membrane, leading to complete failure of OS 

morphogenesis. In another study, a mouse line carrying gene-trap in intron 23 of Cep290 
displays a less severe phenotype, and the mice are fertile and viable beyond one year [187]; 

however, the milder phenotype might be attributed to leakage of gene trap alleles [173]. The 

rd16 mouse is a spontaneous Cep290 mutant with an in-frame deletion in the myosin tail of 
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CEP290, leading to rapidly- progressing degeneration of photoreceptors but no syndromic 

phenotype [184]; though olfactory and hearing defects were identified in later studies 

[174,188]. Photoreceptors of rd16 mice have malformed CC and rudimentary OS structure 

[174], consistent with ciliary defects of photoreceptors in iPSC-derived retinal organoids 

from CEP290-LCA patients [181,189]. Thus, the rd16 allele is a hypomorph of Cep290 and 

phenocopies human CEP290-LCA. These studies demonstrate an essential role of CEP290 

in the biogenesis and functions of the CC and OS, and a relatively independent role of 

different domains of CEP290 in cilia biogenesis. However, the precise function of each 

domain of CEP290 in cilium assembly and mechanisms of distinct CEP290-ciliopathies 

require further investigation.

We note that CEP290 is also required for targeting of RAB8B GTPase in connection with 

the BBSome for initiation of IFT and vesicular trafficking [37,166], suggesting an important 

role of CEP290 in ciliary growth and trafficking. CEP290 directly interacts with BBS6 and 

loss of CEP290 impairs the recruitment of BBS4 and BBS8 to the BBSome, leading to 

defects in cilium assembly [169,190]. Although CEP290 does not directly bind to the IFT 

machineries, its interaction partner NPHP5 binds to IFT22 and facilitates IFT. Deletion of 

CEP290 myosin tail domain after CC formation resulted in photoreceptor phenotype similar 

to BBSome mutants, with mis-localization of rhodopsin in the IS and synapse protein 

syntaxin 3 and syntaxin-binding protein 1 transported to the OS [191]. Notably, the OS of 

these mutant photoreceptors do not show rapid degeneration. Given the high turnover rate of 

photoreceptor OS, CEP290 likely has distinct roles at different stages of cilium biogenesis. 

Future studies on CEP290 interactome at different developmental stages would provide 

useful insights into its function in photoreceptors.

5.3. CC2D2A

CC2D2A is an interaction partner of CP110, CEP290 and another TZ protein TCTN1 [192], 

all of which participate in cilium assembly. In humans, CC2D2A mutations lead to RP, 

JS, and MKS [193–195]. Cc2d2a mutations appear to manifest species-specific phenotypes. 

In zebrafish, photoreceptors of Cc2d2a-null mutants form shorter OS with mis-localization 

of opsins and Rab8a-associated vesicles in the IS, suggesting its role in ciliary trafficking 

[196,197]. In contrast, loss of CC2D2A in mammals leads to more severe phenotypes. Loss 

of Cc2d2a in mice showed embryonic lethality caused by severe abnormalities in multiple 

tissues due to the absence of cilia, resembling human MKS [192]. The retina of a rare 

survivor Cc2d2a null mouse reveals severe disruption of the outer nuclear layer, where 

photoreceptor cell bodies are located, with poorly developed IS and OS and absence of 

ERG responses. Similarly, Cc2d2a MEFs show the absence of primary cilia and impaired 

assembly of SDA at the MC, suggesting an indispensable role of CC2D2A in the formation 

of SDA in mammalian cells. The underlying mechanism of discrepancy between zebrafish 

and mammals needs further investigation.

6. Innovative technologies and therapies for retinal ciliopathies

No treatment options are currently available for ciliopathies. Most ciliopathies exhibit little 

genotype-phenotype relationship, showing more complex disease etiologies [13]. Mutations 
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in one gene can be implicated in multiple distinct ciliopathies affecting multiple organs with 

variable manifestations. For example, mutations at different sites of CEP290 can lead to 

non-syndromic LCA, syndromic JS and JSRD, BBS, MKS or SLS. This variance is thought 

to be related to the residual functional domain(s) of the hypomorphic protein [177]. Yet, it 

is unclear whether these different ciliopathy-associated mutations affect distinct functions 

of CEP290 at different locations, or if they form an allelic series impacting the same 

function [13]. Similarly, different mutations in CC2D2A lead to MKS and JS with little 

phenotypic overlap [198]. Mutations can also alter protein isoforms with distinct functions, 

such as mutations in ARL6 (BBS3). Disruption of a major ARL6 (BBS3) variant leads 

to typical syndromic phenotypes, while mutations in a longer isoform are shown to affect 

photoreceptor survival in zebrafish and mice [199]. Genetic modifiers can also influence 

clinical features of mutations in ciliopathy-associated genes. For example, RPGRIP1 and 

RPGRIP1L might have overlapping functions in mammals and phenotypes caused by 

mutations of one gene may be modified by the other [13]. CEP290 and MKKS both 

participate in the formation of the TZ, and mutations in either are deleterious for cilia 

formation, yet a combination of Cep290rd16 and Mkksko alleles in mice surprisingly leads to 

improved ciliogenesis and sensory functions [200]. These findings suggest complex protein 

interactions in biogenesis and maintenance of the primary cilium and pose significant 

obstacles in identifying the causal allele for therapies. Moreover, with such a large number 

of disease-associated ciliary genes, it would be expensive and time-consuming to design and 

evaluate treatments for individual mutations.

Although biochemical and genetic studies have provided substantial information on the 

interactome of primary cilia, advances in high resolution imaging technologies are needed 

to elucidate the organization of ciliary structures and functions. For example, the TZ is 

supposed to be a hotspot for ciliopathies, yet the detailed structure of the TZ and how 

it controls ciliary composition is still unclear. The C. elegans orthologue of CEP290 

localizes to the TZ axoneme and is required for the formation of the central cylinder, while 

the Chlamydomonas CEP290 is located in the Y-links and necessary for their formation 

[185,201]. We have poor understanding of whether CEP290 protein spans the TZ axoneme 

and Y-links, or if the locations and functions of CEP290 are species-specific. Clarification 

of these divergent observations would provide useful insights to elucidate the function of 

ciliary proteins in cilium biogenesis and pathologies.

Current studies on underlying mechanisms of ciliopathies are based on cell lines and/or 

animal models. These in vivo and in vitro models undoubtedly have provided significant 

insights, yet pathophysiology of ciliopathies in humans is still poorly understood. For 

example, the most common mutation in CEP290-LCA patients is an intronic mutation 

(c.2991 + 1655A >G) that leads to inclusion of a cryptic exon with a stop codon [176], 

but efforts to replicate this allele precisely in mice have not been successful [202]. Also, 

different mutations in the same gene may lead to different phenotypes in different tissues. 

For instance, hypomorphic mutations in the core IFT-B complex protein IFT172 lead 

to skeletal defects, while other mutations in the same gene cause retinal degeneration. 

These observations suggest cell type-specific functions of ciliary proteins or distinct 

mechanisms of disease pathogenesis in different tissues [203]. However, some cell types 

such as photoreceptors are difficult to maintain in primary cultures [204]. While cell lines 
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offer certain advantages, they do not mimic cell type-specific features or tissue-specific 

microenvironments to investigate disease progression; such is the case with photoreceptors, 

a highly polarized cell type with unique morphological and functional features.

Application of new imaging modalities has begun to unravel unprecedented resolution 

of the primary cilium and uncover previously unappreciated features of this structure. 

High-throughput and high-content screening coupled with CRISPR-based genome editing 

has enabled a deeper investigation of genes associated with specific features of the 

primary cilium in a global and highly efficient manner. With the innovation of three­

dimensional culture systems, human PSCs can be coaxed into retinal organoids under proper 

developmental cues in an appropriate spatiotemporal context. These organoids develop 

all major retinal cell types capable of self-patterning into a laminated structure with a 

rudimentary OS-like structure in photoreceptors, offering a tissue-relevant cell source to 

study photoreceptor OS ciliogenesis and modeling ciliopathies [205,206]. More importantly, 

iPSCs-derived retinal organoids from ciliopathy patients show disease-associated ciliary 

defects, providing a valuable in vitro platform to study disease pathology and develop 

therapies [181,207–209]. In the following section, we will review recent advances and 

applications of imaging modalities, gene therapy and drug discovery in understanding 

disease mechanisms and developing treatments for ciliopathies.

6.1. Imaging modalities for the ciliary structure

TEM is traditionally the most widely used tool for examining the ultrastructure of cilia in 

healthy and diseased states. The wavelength of an electron beam is 100,000-fold shorter 

than that of light in the visible range (400 nm for blue light). As spatial resolution is 

diffraction limited and inversely proportional to wavelength, this explains the superior 

resolution of TEM compared to light microscopy [210]. However, one limitation of TEM 

is that it does not reveal the identity of ciliary proteins, thus providing little information 

on the architecture of compact multiprotein complexes such as the TZ. Immuno-EM was 

developed to overcome this obstacle and has been applied to reveal the localization of TZ 

proteins and the docking site of IFT machineries [185,211], yet the sample preparation 

process is technically challenging and time-consuming. Stimulated emission depletion 

imaging (STED) microscopy is an optical physics-based imaging technique, which is able 

to reveal the relative locations of protein complexes without tedious sample processing. 

It captures the signals of various fluorophores from collective samples and recreates the 

relative localization of ciliary proteins using position averages, which are then overlapped 

with representative TEM images [212]. This technique has provided new insights into the 

architecture of the TZ and may reveal novel functions of well-known ciliary proteins. For 

example, the distribution of IFT complex components were found to be associated with the 

cilium growth condition and mainly accumulated at the transition fibers and the distal end of 

the TZ, suggesting unexplored mechanisms of IFT in cilium biogenesis.

One significant limitation of TEM is that the thin sections do not represent the three­

dimensional architecture of the cilium. Although serial section-TEM can partially achieve 

this goal, it is time-consuming, labor-intensive, prone to artifacts and has low resolution 

along the axis perpendicular to the cutting plane. There was no satisfactory technology that 

Chen et al. Page 17

Semin Cell Dev Biol. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can efficiently image an entire cell in three dimensions until the advances of focused ion 

beam scanning electron microscopy (FIB-SEM). FIB-SEM incorporates etches by a beam 

of focused ions and scanning electron microscope (SEM) to achieve consistent z slices with 

a thickness of 3 nm [213]. Combination of FIB-SEM with correlative light and electron 

microscopy enables the detection of ciliary structures with associated membrane tubules, 

and EHD1+ membrane tubules are shown to be connected to the ciliary pocket membrane to 

facilitate the development of primary cilia [54].

Recent development in Cryo-EM has permitted sample preparation in near native conditions, 

allowing direct observation of multiple conformations at atomic resolution [214]. A recent 

application of Cryo-EM on T. thermophila reveals new classes of ciliary proteins that are 

associated with the microtubule doublets and may have a function in stabilizing the structure 

and facilitating the elongation of β-tubule [25]. However, information on the connection 

between the ciliary axoneme and the BB is often lost upon sample processing. Cryo-electron 

tomography (cryo-ET), which utilizes a thicker sample combined with subvolume averaging, 

can maintain all relevant spatial information, albeit at the expense of resolution and potential 

for averaging [215]. This technique has revealed previously undiscovered details of the 

BB and the TZ, including the two structurally distinct regions along the proximal-distal 

axis in mammalian centrioles, as well as the photoreceptor-specific extension of the distal 

CC [35,128]. A few studies have coupled cryo-ET with super-resolution stochastic optical 

reconstruction microscopy (STORM) to define the subdomain structure of the TZ. STORM 

uses antibodies conjugated to specialized fluorophores, whose emission can be captured by 

super-resolution fluorescence nanoscopy in order to localize specific proteins at resolutions 

well below the diffraction limit of immunofluorescence [216]. This new advance has 

successfully identified key molecular signatures in the TZ and provided new insights in BBS 

and JS disease mechanisms [68,217]. These advances in imaging modalities would be useful 

to link specific mutations to alterations of ciliary structure, facilitating the structure-based 

drug design [218].

6.2. Gene therapy

Gene therapy by gene replacement or gene editing has been successful in several 

mammalian ciliopathy models and can potentially rescue ciliary defects [219]. Delivery 

of a full-length or partial wild-type gene would be a useful approach for treatment of 

ciliopathies. Delivery of a full-length wild-type gene into relevant disease tissues can restore 

cilia structures and functions in animal models [219]. However, questions remain as to 

whether there would be undesirable side-effect (s) by overexpression of certain proteins, 

particularly if the target cells are already under stress due to the disease mutation. In 

addition, the limited packaging capacity of adeno-associated virus (AAV) (~5 kb), at present 

the most efficient gene delivery vehicle to retinal neurons, is insufficient to deliver genes 

with larger sizes into target tissues. An alternative approach is to deliver only a partial 

gene encoding a specific functional domain impacted by mutation(s). The feasibility of such 

an approach has been demonstrated recently, where the myosin tail domain of CEP290 

is delivered to the degenerating rd16 retina [220]. The treated rd16 mice show structural 

and functional maintenance of photoreceptors, suggesting that the delivered myosin tail 
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domain is able to cooperate with the endogenous hypomorphic CEP290 protein to restore 

ciliogenesis and photoreceptor function.

With advances in CRISPR-based genome editing approach, ciliopathy-causing mutations 

can in theory be corrected for therapeutic purposes. In a recent study, a genome-editing 

cassette was shown to target IVS26 in CEP290 and restore normal CEP290 expression 

in a human cell line, retinal explants, humanized mice, and non-human primates with a 

desirable efficiency [221]. Similarly, CRISPR-based approach has been used to correct 

frameshift or deletion mutations in ciliopathy patient iPSCs [207,208]. Retinal organoids 

and/or retinal pigment epithelium differentiated from these corrected patient iPSCs 

demonstrate improved morphology of cilia structure and gene profiles resembling the 

control transcriptomes compared to the untreated ones. These studies provide important 

proof-of-concept evidence for the application of CRISPR-based therapeutic approaches in 

the treatments of ciliopathies. However, the transcriptomes of retinal tissues differentiated 

from corrected iPSCs display deviations from the control, likely arising from off-target 

effects of CRISPR-based system. In addition, it is still unclear what the effective treatment 

window for gene repair would be. Whether morphological and functional rescue of 

phenotypes could be achieved when patients reach the appropriate age for such treatments 

require further investigation. Additionally, the single-base editing efficiency of CRISPR­

based system is far below therapeutic needs (< 10% in monolayered cell culture) and is not 

suitable for ciliopathies caused by point mutations at this stage [222].

A transcript repair approach utilizes antisense oligonucleotides (AONs) to restore normal 

splicing of genes affected by mutations at splicing donor/receptor sites. The AON approach 

could partially restore normal splicing of IVS26 in treated retinal organoids derived from 

iPSCs of a CEP290-LCA patient, demonstrating improved morphology of photoreceptors 

[189]. Moreover, no serious adverse effects are observed in a clinical trial with 10 patients 

treated with this approach, and the patients report some vision improvement [223].

Recent development of high-throughput screening using CRISPR-based gene disruption 

have provided new paradigms for treatment development. In initial screens, a pool of single­

guide RNAs (sgRNAs) was introduced in bulk into mouse fibroblast cell lines engineered 

with cilium-dependent Hh signaling driven anti-blasticidin reporter gene [224]. In this 

case, genes affecting ciliary Hh signaling could be identified through their modulation of 

blasticidin resistance. Such an approach can be tailored with different reporters using patient 

fibroblasts or iPSC-derived tissues to identify key ciliary genes to restore appropriate ciliary 

signaling.

6.3. Drug discovery

With over 200 genes identified for ciliopathies and the continuously increasing number of 

identified causal genes [13], it is not feasible to tailor gene therapy for individual mutations. 

Therefore, various compounds targeting disease-associated symptoms or cilia biogenesis are 

developed as an alternative therapeutic approach. For example, primary ciliary dyskinesia 

can be caused by mutations in genes encoding an axonemal dynein intermediate chain 

necessary for ciliary motility, and phenotypes include dysfunction in respiratory motile 

cilia, sperm flagella, and nodal cilia [225]. Antibiotic administration is now used to 
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reduce inflammation and techniques for airway clearance are also applied to maintain the 

respiratory function [226–228]. In retinal ciliopathies, delaying or even blocking apoptosis 

of photoreceptor cells can provide a means for maintaining patient vision. Supplementations 

of antioxidants such as vitamin A, vitamin B3, docosahexaenoic acid (DHA) or lutein 

have been shown to prevent photoreceptor apoptosis [229,230]. Neurotrophic agents such 

as ciliary neurotrophic factor, brain-derived neurotrophic factor, and anti-apoptotic drug 

(tauroursodeoxycholic acid, rasagiline, norgestrel, and myriocin) have been applied in the 

treatment of retinitis pigmentosa [231]. Pharmaceutical modulations of unfolded protein 

response caused by ciliary defects using valproic acid, guanabenz, and a specific Caspase 12 

inhibitor have also been demonstrated to protect photoreceptors and maintain light detection 

in Bbs12−/− animal model [232].

Approximately 10% of human genetic diseases are caused by nonsense mutation-induced 

premature termination codon (PTC) in the coding region of mRNA, leading to generation of 

truncated protein with missing or no function(s) [233]. Read-through drugs that are able to 

overcome PTC in translation offer a promising approach to restore protein function(s) and 

reduce disease symptoms without editing genome or transcriptome of patients. Treatment 

of spinal muscular atrophy patient fibroblasts and animal models with pyranmycin TC007 

has shown substantial increase of full-length protein in both systems, as well as longer 

survival of motor neurons and longer lifespan of the mice, suggesting the feasibility of such 

a pharmaceutical approach [234,235]. Another read-through drug PTC124 also demonstrates 

biocompatibility and recovery of protein functions in cell culture, retinal explant and animal 

models of Usher 1C [236]. While the applications of read-through drugs on animal models 

have shown positive results, much remains to be done. Major safety and technical concerns 

including toxicity, bioavailability, efficacy must be solved before clinical use of these drugs.

A promising study of high-throughput screening on CEP290−/− RPE1 cell line has 

identified Eupatilin as an effective therapeutic agent to rescue defects in the TZ caused by 

CEP290 mutations through an increased recruitment of NPHP5 protein to the TZ [237]. 

Intravitreal injection of Eupatilin into rd16 mice, the animal model of CEP290-LCA, 

reveals maintenance of cone photoreceptors and a modest functional recovery. This study 

demonstrates the feasibility of treatment of ciliopathies by modulation of ciliary proteins by 

small molecule drug(s). However, rod photoreceptors, which are the first cell type impacted 

by the disease, cannot be maintained by Eupatilin. This could be due to faster degeneration 

of rod photoreceptors, or perhaps that rod photoreceptors utilize an alternative mechanism 

for cilium biogenesis compared to RPE1 cells. Although cilium biogenesis and ciliopathies 

demonstrate cell type-/tissue-specific features, performing high-throughput screening using 

mouse or human photoreceptors is technically challenging, due to small number of cells 

in the retina. Alternatively, stem cell-derived retinal organoids can be used to generate 

photoreceptor cells in sufficient quantity [238]. Mouse retinal organoids have a short 

differentiation time (< 35 days) and high differentiation efficiency, making them suitable for 

large-scale screening [239]. Although a better model to recapitulate human pathology, the 

retinal organoids generated from patient iPSCs take as much as 180 days for differentiation 

and requires labor-intensive manipulations [206], posing significant challenges for large­

scale applications such as high-throughput screening. However, a recent protocol bypasses 

the dissection process and enables simple and efficient large-scale production of human 
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retinal organoids to meet the high demand of cells in the screening [240]. A pharmaceutical 

approach is recently reported to convert mouse fibroblasts directly to photoreceptors by five 

small molecules [241]. Although a desirable approach, the differentiation efficiency and the 

polarity of two-dimensional photoreceptors require further investigation. For the treatment 

design of high-throughput screening and use of retinal organoids for treatment, we direct our 

readers to our recent reviews [242,243].

7. Conclusion

In conclusion, the biogenesis of primary cilium requires orchestrated actions of numerous 

complex protein networks. Mutations disrupting these networks lead to structural and/or 

functional defects of the primary cilium, which are manifested as a broad spectrum of 

diseases called ciliopathies. Photoreceptors harbor a specialized primary cilium with unique 

features, which make it especially vulnerable to functional defects. The accessibility to 

retinal photoreceptor cilia offers a unique opportunity to investigate disease mechanisms and 

evaluate treatments for ciliopathies. Recent innovation in technologies should accelerate this 

process.
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Abbreviations

AAV adeno-associated virus

AON antisense oligonucleotides

AV adeno virus

BB basal body

BBS Bardet-Biedl syndrome

CC connecting cilium

CLS ciliary localization sequence

Cryo-ET cryo-electron tomography

CV ciliary vesicle

DA distal appendage

DC daughter centriole

FIB-SEM focused ion beam scanning electron microscopy
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GPCR G protein-coupled receptor

Hh Hedgehog

IFT intraflagellar transport

iPSC induced pluripotent stem cells

IS inner segment

JS Joubert syndrome

JSRD Joubert syndrome and related disorders

LCA Leber congenital amaurosis

MC mother centriol

MEF mouse embryonic fibroblast

MKS Meckel syndrome

mTOR mammalian target of Rapamycin

NPHP nephronophthisis

OMIM Online Mendelian Inheritance in Man database

OS outer segment

PCM pericentriolar material

PCD primary ciliary dyskinesia

PCV preciliary vesicle

PDGFR platelet-derived growth factor receptor

PTC Premature termination codon

RP retinitis pigmentosa

RPE retinal pigment epithelia

SDA subdistal appendage

SEM scanning electron microscopy

sgRNAs single-guide RNAs

SLS Senior-Løken syndrome

STED stimulated emission depletion imaging

STORM super-resolution stochastic optical reconstruction microscopy

TEM transmission electron microscopy
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TF transition fiber

TGF transforming growth factor

TZ transition zone

Wnt Wingless
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Fig. 1. 
The architecture of the general primary cilium (left) and the photoreceptor outer segment 

(right). The primary cilium consists of a ciliary membrane and an axoneme. The ciliary 

membrane is continuous with the plasma membrane but differs in compositions to regulate 

diverse signaling pathways. In most mammalian cells, the plasma membrane invaginates 

at the base of the axoneme, forming the ciliary pocket for endocytosis and docking of 

intraflagellar transport particles. The axoneme elongates from the basal body (BB), which is 

the mature mother centriole with distal appendages and subdistal appendages. Cross-section 

diagrams at different positions of the primary cilium with a doublet (axoneme) (“9 + 

0” configuration), doublet with Y-links (transition zone), and triplet microtubule structure 

(basal body) are shown in upper A, B, and C insets, respectively. In motile cilia, the 

axoneme displays “9 + 2” configuration, with an additional pair of microtubules in the 

center (Lower A inset). Photoreceptors feature a gradual doublet (base) to singlet (tip) 

microtubule transformation in the ciliary axoneme [125]. Photoreceptors harbor distinct 

features to accommodate their sensory function: the outer segment contains tightly packed 

discs with phototransduction machineries to efficiently capture photons; the inner segment 

possesses the endoplasmic reticulum, Golgi apparatus, and a large number of mitochondria 

to meet the high energy demand and biosynthetic needs of the photoreceptors; the ciliary 

rootlet anchors the BB to the inner segment to stabilize the outer segment.
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Fig. 2. 
Centriole and cilium biogenesis. (A) Regulation of centriole biogenesis during the cell cycle. 

In the G1/S phase of proliferating cells, assembly of new centrioles are initiated on both the 

mother centriole and the daughter centriole, creating two mother-daughter centriole pairs. 

The newly formed centrioles elongate throughout the G2 phase. In the late G2 phase, the 

daughter centriole from the previous cell cycle acquires distal appendages and subdistal 

appendages by sequential recruitment of their structural components. Subdistal appendages 

anchor microtubules and facilitate the formation of the pericentriolar material. To initiate 

the M phase, the two pairs of centrosomes separate, migrate to the opposite poles of the 

cells and establish bipolar spindles. Upon exit from cell cycle, the mother centriole docks 

to the plasma membrane by distal appendages for cilium assembly in response to specific 

developmental and/or environmental signals. (B) Intracellular pathway of cilium biogenesis. 

Ciliogenesis is initiated by docking of preciliary vesicles from the Golgi apparatus and 

recycling endosomes to distal appendages. These vesicles subsequently merge to form a 

large ciliary vesicle containing machineries for the maturation of the mother centriole and 
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the trafficking of nascent cilia. Upon CP110 removal, the intraflagellar transport (IFT) 

complexes (IFT-A, pink oval and IFT-B, blue oval) and motor proteins (kinesin-2 motors, 

red ball and dynein-2 motors, purple ball) are recruited to distal appendages. The transition 

zone emerges shortly after the recruitment of IFT machineries and is characteristic of the 

Y-links. The ciliary axoneme elongates and the ciliary membrane extends with the transport 

of ciliary proteins and building blocks, forming the ciliary sheath. Fusion of the ciliary 

sheath with the plasma membrane exposes the primary cilia to the external environment.
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Fig. 3. 
Intraflagellar transport (IFT) of the general primary cilium (A) and photoreceptor outer 

segments (B). A schematic of the base of primary cilium is shown at (C). The IFT 

machineries are composed of the microtubule motors (kinesins and dyneins), IFT complex 

(A and B) and accessory proteins (e.g. TULP3, the BBSome). Most ciliary proteins are 

trafficked to the base of the primary cilia from the post-Golgi network through microtubules 

in vesicles with the accessory proteins (green oval), which serve as membrane adaptors 

for specific cargo proteins and IFT complexes. Complex A (pink oval) and complex 

B (blue oval) move along the microtubule together, yet they have distinct biochemical 

constituents and functions. Complex B interacts with plus end-directed kinesin-2 motors 

(red ball) and participates in anterograde transport from the ciliary base to the tip, which 

is essential for cilia assembly and maintenance. Complex A binds to a minus end-directed 

motor cytoplasmic dynein-2 (purple ball), which is responsible for retrograde IFT to move 

cargo proteins from the ciliary tip to the base. In photoreceptors with constant and rapid 

renewal of the outer segment, besides the conventional pathway by IFT machineries, 

highly enriched phototransduction proteins (e.g. rhodopsin) can also be transported through 

recycling endosomes.
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Table 1

Functions of major disease-associated proteins in cilia biogenesis [13,18,20,124,150].

Gene symbol Protein Function Associated disease(s) in humans or mice

Centriole and pericentriolar material (PCM)

PCM1 Pericentriolar material 1 Centriolar satellite component, 
anchors microtubules to the 
centrosome

Papillary thyroid carcinoma in humans; 
reduced brain size in haploinsufficient mice

PCNT Pericentrin Pericentriolar material 
component, important to 
normal functioning of the 
centrosomes, cytoskeleton, and 
cell-cycle progression

Seckel syndrome-4 and microcephalic 
osteodysplastic primordial dwarfism-2 in 
humans

Daughter 
centriole

CEP120 Centrosomal protein 120 Microtubule-dependent 
coupling of the nucleus and the 
centrosome

JS-31 and Short-rib thoracic dysplasia-13 in 
humans

CNTROB Centrobin Centriole duplication and 
cytokinesis

Defects in reproduction

Mother 
centriole

OFD1 OFD1 Centriole and centriolar satellite 
protein

Centriole and centriolar 
satellite protein

OFD-1, Simpson-Golabi-Behmel 
syndrome-2 JS-10, and RP-23 in humans

C2CD3 C2 domain-containing protein 3 Centriolar distal appendage 
assembly;Recruitment of other 
ciliary proteins, including 
intraflagellar transport proteins

OFD-14 in humans

Distal 
appendage

CEP83 Centrosomal protein 83 Primary cilium assembly NPHP-18 in humans

SCLT1 Sodium channel and clathrin linker 1 Cilium assembly PKD

CEP164 Centrosomal protein 164 Microtubule organization, 
DNA damage response, 
chromosome segregation and 
assembly of primary cilia

NPHP-15 in humans

Subdistal 
appendage

TUBG1 Tubulin gamma 1 Structural component 
of centrioles, binding 
to microtubules through 
interaction with γ-tubulin ring 
complex of PCM

Complex cortical dysplasia with other brain 
malformations-4

CP110 Centriolar coiled-coil protein 110 Regulator of cell cycle; 
Inhibitor of ciliogenesis

Defects in multi-organ development

CC2D2A Coiled-coil and C2 domain containing 
2A

Cilium formation MKS and Visceral heterotaxy in mice; 
MKS-6, JS-9 and COACH syndrome in 
humans

ODF2 Outer dense fiber of sperm tails 2 Major outer dense fiber protein Infertility

NIN Ninein Positioning and anchoring the 
microtubules minus-ends

Seckel syndrome-7 in humans

Motor protein

KIF3A
KIF3B

Kinesin family member 3A
Kinesin family member 3B

Component of heterotrimeric 
kinesin-2 motor complex

PKD-1; dysostosis
Mice with null mutation die during the 
midgestational period
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Gene symbol Protein Function Associated disease(s) in humans or mice

KIFAP3 Kinesin associated protein 3 70% homozygous knock-out die from heart 
failure shortly after birth

KIF17 Kinesin family member 17 Component of homodimeric 
kinesin-2 motor complex

Impaired neural functioning

DYNC2H1 Dynein cytoplasmic 2 heavy chain 1 Component of cytoplasmic 
dynein 2

Asphyxiating thoracic dystrophy 3 in both 
humans and miceVACTERL association in 
mice

WDR34 WD repeat domain 34 Short-rib thoracic dysplasia-11 with or 
without polydactyly

DYNLL1 Dynein light chain LC8-type 1 Preweaning lethality in mice

DYNC2LI1 Dynein cytoplasmic 2 light intermediate 
chain 1

Retrograde transport of cargo 
in primary cilia via the 
intraflagellar transport system

Short-rib thoracic dysplasia-15 with 
polydactyly

Transition zone 
(TZ)

TCTN1 Tectonic family member 1 Component of the MKS 
complex

JS-3 in humans

TCTN2 Tectonic family member 2 MKS-8 and JS-24 in humans

TCTN3 Tectonic family member 3 OFD-5 and JS-18 in humans

MKS1 MKS transition zone complex subunit 1 MKS-1, JS-28 and BBS-13 in humans; 
MKS, atrioventricular septal defect and 
tetralogy of Fallot in mice

B9D1 B9 domain containing 1 JS-27 in humans; MKS in mice

B9D2 B9 domain containing 2 Ciliogenesis defects in humans; preweaning 
lethality in mice

CC2D2A Coiled-coil and C2 domain containing 
2A

MKS-6, JS-9 and COACH syndrome in 
humans; MKS and Visceral heterotaxy in 
mice

TMEM67 Transmembrane protein 67 NPHP-11, MKS-3, COACH syndrome, and 
BBS-4 in humans; MKS, cystic kidney 
disease, and visceral heterotaxy in mice; 
JS-6 in both humans and mice

TMEM216 Transmembrane protein 216 JS-2 and MKS-2 in humans

TMEM231 Transmembrane protein 231 JS-20 in humans

TMEM107 Transmembrane protein 107 MKS-13 and OFD-15 in humans

CEP290 Centrosomal protein 290 Protein hub of the MKS and 
NPHP complexes

BBS-14, MKS-4, and SLS in humans; 
Cystic kidney disease and

NPHP1 Nephrocystin 1 Component of the NPHP 
complex

SLS, NPHP-1, and JS-4 in humans

NPHP3 Nephrocystin 3 Renal-hepatic-pancreatic dysplasia and 
MKS-7 in humans; PKD in mice; NPHP-3 
in both humans and mice

NPHP4 Nephrocystin 4 SLS and NPHP-4 in humans; NPHP in mice

IQCB1(also 
called NPHP5)

IQ motif containing B1 SLS and LCA in humans

NEK8 NIMA related kinase 8 NPHP-9 and renal-hepatic-pancreatic 
dysplasia in humans; PKD in mice

ANKS6 Ankyrin repeat and sterile alpha motif 
domain containing 6

NPHP-16 in humans; visceral heterotaxy in 
mice

INVS Inversin Component of the NPHP 
complex, protein hub of the 
MKS and NPHP complexes

NPHP-2 in both humans and mice; 
Tetralogy of Fallot in mice

INPP5E Inositol polyphosphate-5phosphatase E Regulate Golgi-vesicular and 
cilia-vesicular trafficking

JS-1 in humans
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Gene symbol Protein Function Associated disease(s) in humans or mice

RPGR Retinitis pigmentosa GTPase regulator Guanine nucleotide exchange 
factors interacts with RPGRIP1

RP-3 and X-linked cone-rod dystrophy-1 in 
both humans and mice

RPGRIP1 RPGR interacting protein 1 Interacts RPGR to facilitate 
ciliogenesis

LCA-6 in both humans and mice; Cone-rod 
dystrophy-13 in humans

RPGRIP1L RPGRIP1 like Interacts with interact with 
NPHP4

MKS-5 and COACH syndrome in humans; 
MKS in mice; JS-7 in both humans and 
mice

Intraflagellar transport (IFT)

IFT20, 46, 52, 
57

Intraflagellar transport 20, 46, 52, 57 Component of IFT complex B Homozygous null mutation embryonically 
lethal in mice

HSPB11 heat shock protein family B (small) 
member 11

Homozygous null mutation neonatally lethal 
in mice

IFT27 Intraflagellar transport 27 Homozygous null mutation neonatally lethal 
in mice

TRAF3IP1 TRAF3 interacting protein 1 SLS-9 in humans; Homozygous null 
mutation embryonically lethal in mice

IFT74 Intraflagellar transport 74 Visceral heterotaxy in mice

IFT80 Intraflagellar transport 80 Asphyxiating thoracic dystrophy-2 in 
humans and mice; Asphyxiating thoracic 
dystrophy-3 in mice

IFT81 Intraflagellar transport 81 Short-rib thoracic dysplasia 19 with or 
without polydactyly in humans

IFT88 Intraflagellar transport 88 PKD in mice

IFT172 Intraflagellar transport 172 RP-71 and short-rib thoracic dysplasia-10 
with or without polydactyly in humans; 
Retinal degeneration and atrioventricular 
septal defect in mice

IFT43 Intraflagellar transport 43 Component of IFT complex A Cranioectodermal dysplasia-3 in humans

WDR35 WD repeat domain 35 Sensenbrenner syndrome in humans; Short­
rib thoracic dysplasia 7 with or without 
polydactyly in both humans and mice

TTC21B Tetratricopeptide repeat domain 21B NPHP-12 and asphyxiating thoracic 
dystrophy-4 in humans; Cystic kidney 
disease in mice

IFT140 Intraflagellar transport 140 Short-rib thoracic dysplasia 9 with or 
without polydactyly in both humans and 
mice; Asphyxiating thoracic dystrophy-1 in 
mice

WDR19 WD repeat domain 19 NPHP-3, craniometaphyseal dysplasia, and 
asphyxiating thoracic dystrophy 5 in 
humans; ciliopathy in mice

TULP3 TUB like protein 3 Cargo adaptor for IFT complex 
A

PKD in mice

CLUAP1 Clusterin associated protein Cargo adaptor for IFT complex 
B

Homozygous mutant mid-gestationally 
lethal in mice

TTC26 Tetratricopeptide repeat domain 26 Homozygous for a spontaneous nonsense 
partially prenatally lethal in mice

BBS1, 4 BBS1, 4 Component of the BBSome BBS in both humans and mice; Obesity in 
mice

BBS2 BBS2 BBS-2 in both humans and mice; RP-74 in 
humans

BBS5, 7, 9 BBS5, 7 BBS humans

TTC8 Tetratricopeptide repeat domain 8 BBS-8 in both humans and mice; RP-51 in 
humans
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Gene symbol Protein Function Associated disease(s) in humans or mice

BBS10 BBS10 Interacts with the BBSome; A 
molecular chaperone that may 
affect the stability and folding 
of other ciliary proteins

BBS-10 in humans

UNC119
PDE6D

Unc-119 lipid binding chaperone
Phosphodiesterase 6D

Lipid-binding transporter 
proteins to facilitate the 
transport of ciliary periphery 
membranes across the TZ

Retinal degeneration in homozygous null 
mice JS-22 in humans

Photoreceptor-specific outer segments (modified primary cilium)

PRPH2 Peripherin 2 Structural outer segment 
proteins

RP-7 in both humans and mice; fundus 
albipunctatus, partial central choroid 
dystrophy, patterned macular dystrophy 
1, and vitelliform macular dystrophy in 
humans

ROM1 Retinal outer segment membrane protein 
1

RP-7 in humans

TULP1 TUB like protein 1 RP-14 in both humans and mice; LCA-15 in 
humans

CDHR1 Cadherin related family member 1 CRD-15 in humans

EYS Eyes shut homolog RP in humans

FSCN2 Fascin actin-bundling protein 2, retinal RP-30 in both humans and mice; auditory 
system disease and retinal degeneration in 
mice

PROM1 Prominin 1 RP-41 in both humans and mice; CRD and 
Stargardt disease in humans

RHO Rhodopsin Photoreceptor sensory function 
proteins

RP-4 and congenital stationary night 
blindness autosomal dominant 1 in both 
humans and mice; fundus albipunctatus in 
humans

ABCA4 ATP binding cassette subfamily A 
member 4

CRD-3, RP-19 and Stargardt disease in both 
humans and mice; AMD-2 in humans

CNGA1 Cyclic nucleotide gated channel subunit 
alpha 1

RP-49 in humans

CNGA3 Cyclic nucleotide gated channel subunit 
alpha 3

Achromatopsia 2 in humans

CNGB1 Cyclic nucleotide gated channel subunit 
beta 1

RP-45 in both humans and mice

CNGB3 Cyclic nucleotide gated channel subunit 
beta 3

Achromatopsia 2 in both humans and mice; 
Stargardt disease in humans

GNAT1 G protein subunit alpha transducin 1 Congenital stationary night blindness in 
humans

GNAT2 G protein subunit alpha transducin 2 Achromatopsia 4 in both humans and mice

GUCA1A Guanylate cyclase activator 1A CRD-14

GUCA1B Guanylate cyclase activator 1B RP-48 in humans

OPN1LW Opsin 1, long wave sensitive Partial, protanopic colorblindness in humans

OPN1MW Opsin 1, medium wave sensitive Blue cone monochromacy in both humans 
and mice; Red color blindness in humans

OPN1SW Opsin 1, short wave sensitive Blue color blindness in humans

PDE6A Phosphodiesterase 6A RP-43 in both humans and mice

PDE6B Phosphodiesterase 6B RP-40 and congenital stationary night 
blindness autosomal dominant 2 in both 
humans and mice

PDE6C Phosphodiesterase 6C Cone dystrophy in humans; Achromatopsia 
in mice
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Gene symbol Protein Function Associated disease(s) in humans or mice

PDE6G Phosphodiesterase 6G RP-57 in both humans and mice

RDH12 Retinol dehydrogenase 12 LCA-13 in humans

RGS9 and 
RGS9BP

Regulator of G protein signaling 9 and 
binding protein

Bradyopsia in humans

SAG S-antigen visual arrestin RP-47 and Oguchi disease-1 in humans

ARL6 (BBS3)
CLRN1

ADP-ribosylation factor-like 6
Clarin 1

Connecting cilium and 
axoneme-associated
proteins

BBS-3 and RP-55 in humans Usher
syndrome type 3A in both humans and 
mice; RP-61 in humans

FAM161A FAM161 centrosomal protein A RP-28 in both humans and mice

KIZ Kizuna centrosomal protein RP-69 in both humans

MAK Male germ cell associated kinase RP-62 in both humans

RAB28 RAB28, member RAS oncogene family CRD-18 in both humans and mice

RP1 RP1 axonemal microtubule associated RP-1 in both humans and mice

RP1L1 RP1 like 1 Occult macular dystrophy in humans

RP2 RP2 activator of ARL3 GTPase RP-2 in both humans and mice

SPATA7 Spermatogenesis associated 7 LCA-3 in both humans and mice

TOPORS TOP1 binding arginine/serine rich 
protein, E3 ubiquitin ligase

RP-31 in humans

USH2A Usherin Usher syndrome type 2A in both humans 
and mice; RP-39 in humans

JS, Joubert syndrome; RP, Retinitis pigmentosa; OFD, Orofaciodigital syndrome; NPHP, Nephronophthisis; MKS, Meckel syndrome; PKD, 
Polycystic kidney disease; BBS, Bardet–Biedl syndrome; SLS, Senior-Løken syndrome; CRD, cone-rod dystrophy; AMD; age-related macular 
degeneration.
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