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Purpose: In this work, an algorithm named mRBioM was developed for the identification
of potential mRNA biomarkers (PmBs) from complete transcriptomic RNA profiles of
gastric adenocarcinoma (GA).

Methods: mRBioM initially extracts differentially expressed (DE) RNAs (mRNAs,
miRNAs, and lncRNAs). Next, mRBioM calculates the total information amount of
each DE mRNA based on the coexpression network, including three types of RNAs
and the protein-protein interaction network encoded by DE mRNAs. Finally, PmBs
were identified according to the variation trend of total information amount of all DE
mRNAs. Four PmB-based classifiers without learning and with learning were designed
to discriminate the sample types to confirm the reliability of PmBs identified by mRBioM.
PmB-based survival analysis was performed. Finally, three other cancer datasets were
used to confirm the generalization ability of mRBioM.

Results: mRBioM identified 55 PmBs (41 upregulated and 14 downregulated) related
to GA. The list included thirteen PmBs that have been verified as biomarkers or
potential therapeutic targets of gastric cancer, and some PmBs were newly identified.
Most PmBs were primarily enriched in the pathways closely related to the occurrence
and development of gastric cancer. Cancer-related factors without learning achieved
sensitivity, specificity, and accuracy of 0.90, 1, and 0.90, respectively, in the classification
of the GA and control samples. Average accuracy, sensitivity, and specificity of the
three classifiers with machine learning ranged within 0.94–0.98, 0.94–0.97, and 0.97–
1, respectively. The prognostic risk score model constructed by 4 PmBs was able to
correctly and significantly (∗∗∗p < 0.001) classify 269 GA patients into the high-risk
(n = 134) and low-risk (n = 135) groups. GA equivalent classification performance was
achieved using the complete transcriptomic RNA profiles of colon adenocarcinoma, lung
adenocarcinoma, and hepatocellular carcinoma using PmBs identified by mRBioM.
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Conclusions: GA-related PmBs have high specificity and sensitivity and strong
prognostic risk prediction. MRBioM has also good generalization. These PmBs may
have good application prospects for early diagnosis of GA and may help to elucidate the
mechanism governing the occurrence and development of GA. Additionally, mRBioM is
expected to be applied for the identification of other cancer-related biomarkers.

Keywords: complete transcriptomic profiles, biomarkers, sample classification, prognosis, generalization ability

INTRODUCTION

Gastric cancer is a global health problem, with more than 1
million patients being diagnosed worldwide each year. Gastric
cancer remains the third leading cause of cancer-related death,
despite a worldwide decline in morbidity and mortality over
the past 5 years (Bray et al., 2018; Thrift and El-Serag, 2020).
Gastric adenocarcinoma (GA) is a type of gastric cancer caused
by malignant transformation of gastric gland cells. Incidence
of GA accounts for approximately 95% of gastric malignancies
(Lawrence, 2004), and GA pathogenesis has not been fully
elucidated. Five-year survival rate of early gastric cancer can
reach >90% (Tan, 2019), and 5-year survival rate of patients with
advanced gastric cancer is only 20–40% (Siegel et al., 2016; Song
Z. et al., 2017). Therefore, an improvement in early diagnosis and
treatment of GA can decrease GA incidence and mortality.

Several studies have suggested that molecular biomarkers
are important for early diagnosis, treatment, and evaluation of
prognosis of cancer (Parker et al., 2009; Collins and Varmus,
2015; Pellegrini et al., 2015). According to the central dogma
of biology, RNA carries genetic and regulatory information that
reflects the state of the cells. RNA biomarkers have considerably
higher sensitivity and specificity for the detection of cancer
samples compared with those of protein biomarkers and can
more dynamically reflect cellular states and regulatory processes
to provide additional cellular information compared with that
provided by DNA biomarkers (Xi et al., 2017). Furthermore,
miRNAs can regulate gene expression by binding to mRNAs
or related proteins (Bartel, 2009). LncRNAs can competitively
bind miRNAs as competing endogenous RNAs (ceRNAs) to
regulate gene expression and cellular functions (Xia et al., 2014;
Song Y. X. et al., 2017). Therefore, mRNAs occupy a key
position in the complex regulatory processes involving three
types of biomolecules. Abnormal expression of mRNAs in the
key positions of the regulatory network can easily bias the overall
stability of the network. mRNAs may cause abnormal activation
of one or more signaling pathways, which also leads to abnormal
expression or function of the biomolecules in these signaling
pathways to promote physiological and tissue disorders, such as
cancer (Lu et al., 2016; Duan et al., 2020; Hu et al., 2020; Wei
et al., 2020). mRNAs that occupy the key positions are more likely
to be biomarkers.

Abbreviations: mRBioM, mRNA Biomarkers; GA, gastric adenocarcinoma;
PmBs, potential mRNA biomarkers; DE, differentially expressed; FC, fold change;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RF,
random forest; SVM, support vector machine; NB, naive Bayes; AUC, area under
the ROC curve.

Many mRNA biomarkers associated with occurrence
and development of GA were identified using experimental
and computational methods. Representative studies can be
summarized as follows. Yoon et al. (2019) confirmed that
the activation of KRAS in GA cells stimulates epithelial-to-
mesenchymal transition to form cancer stem-like cells, thereby
promoting metastasis. Huang C. et al. (2020) found that
overexpression of DGKi in GA indicates poor prognosis, and the
MAPK signaling pathway may be one of the key pathways that
regulate occurrence and development of GA by DGKi. Necula
et al. (2020) showed that overexpression of COL10A1 in GA
patients is associated with poor survival and that COL10A1 can
be used as a potential biomarker for early detection of GA. Wang
(2017) identified 446 differentially expressed (DE) mRNAs in
the gene expression profile related to gastric cancer, used these
DE mRNAs to construct a protein-protein interaction network,
and finally identified five key mRNAs in the protein-protein
interaction network (COL5A2, TOP2A, KIF20A, FN1, and
PRC1). However, existing GA-related mRNA biomarkers are
not sufficient to provide accurate GA diagnosis in the clinic
and thoroughly elucidate GA pathogenesis. Identification of
GA-related mRNA markers with high sensitivity and specificity
is of great significance for early diagnosis, targeted therapy,
and analysis of prognosis of GA. Therefore, this study first
proposes an algorithm to identify potential mRNA biomarkers
(PmBs) related to GA based on complete transcriptomic
RNA (including mRNA, lncRNA, and miRNA) profiles of
GA. The proposed algorithm evaluates the potential of an
mRNA with abnormal expression as GA biomarker in the
regulation of transcriptional coexpression and at the protein-
protein interaction level. The integrated analysis of multiple
omics data objectively avoids the problems of signal noise
and high inaccuracy caused by single omics analysis. Then,
the sample classification power and prognostic relevance of
PmBs were analyzed to assess their reliability and value for
assistance with clinical diagnosis. The novelty of this paper are
as follows:

1. An novel algorithm named mRBioM for the identification of
potential mRNA biomarkers from complete transcriptomic
profiles of GA was developed.

2. A cancer-related factor was proposed to distinguish whether
a single sample is cancer or normal, which may have good
application prospects in the personalized diagnosis of cancers.

3. The mRBioM-based prognostic risk score model was
constructed to assess the overall survival rate of cancer
patients.
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TABLE 1 | Statistics of clinical information of included 279 GA patients.

Clinical variables Number of sample (n) n% (%)

Gender Male 171 61.3

Female 108 38.7

Age <40 2 0.7

40–60 86 30.8

60–80 174 62.4

=80 17 6.1

Oncology
classification

Adenocarcinoma,
intestinal type

45 16.1

Adenocarcinoma, NOS 119 42.7

Adenocarcinoma,
diffuse type

55 19.7

Papillary
adenocarcinoma, NOS

5 1.8

Tubular
adenocarcinoma

55 19.7

Pathological
staging

Stage I 33 11.8

Stage II 94 33.7

Stage III 118 42.3

others 34 12.2

Stage I includes I, IA, and IB, Stage II includes II A and II B, and Stage III includes
III A, III B, and III C; NOS, Not Otherwise Specified.

MATERIALS AND METHODS

Data Collection
The complete transcriptome TCGA-STAD dataset of RNAs
(including mRNA, lncRNA, and microRNA) of GA patients
published by various countries was obtained from the Genomic
Data Commons of National Cancer Institute in July, 2019. The
pathological tissue types of the source data were limited to GA.
The dataset included 279 GA patients and the corresponding
clinical information (Table 1). The dataset included 257 cases
that had only GA tissue samples, 20 cases that had GA and
paired paracancerous tissue samples, and 2 cases that had only
paracancerous tissue samples. Detailed information about these
299 samples is shown in Supplementary Table 1.

TCGA-STAD was organized into five subsets for various
studies: dataset 1 for GA-related PmB identification, datasets 2–
4 for evaluation of PmB classification, and dataset 5 for survival
analysis, as shown in Figure 1A. Three other cancer-related RNA
transcriptomic profiles were downloaded from the Genomic Data
Commons database in May of 2020 and were used to verify the
generalization ability of mRBioM: TCGA-COAD, including 478
cases of colon cancer and 41 cases of normal tissues; TCGA-
LUAD, including 533 cases of lung adenocarcinoma and 59 cases
of normal tissues; and TCGA-LIHC, including 371 cases of liver
cancer and 50 cases of normal tissues. The characteristics of the
three datasets are shown Figure 1B.

mRBioM Algorithm
The amount of information for a molecule can determine
whether this molecule is in a key position in the regulatory
network (Teschendorff et al., 2014). Thus, mRBioM identified

PmBs by evaluating the amount of information for each DE
mRNA based on the transcriptional coexpression relationships
between DE mRNAs, miRNAs, and lncRNAs and in the
PPI network. The steps of the mRBioM algorithm are
described below.

DE RNA Analysis
The limma package of R (Ritchie et al., 2015) was used to identify
DE RNAs from dataset 1 containing 20 GA and 20 paracancer
samples (a total of 40 samples) from TCGA-STAD. Dataset 1
was preprocessed by cleaning and standardization; next, the
logarithm of the expression fold change (FC) of each RNA in GA
vs. adjacent normal samples was calculated. The log2FC value and
corresponding corrected p-value (represented by Padj) of each
RNA were used to determine whether an RNA was differentially
expressed. The screening conditions for DE RNAs in this study
were Padj < 0. 05 or 0.01 and | log2FC | 1.

Calculation of the Coexpression Correlation
Coefficient Matrix for RNAs
Suppose that we identified N, J, and K DE mRNAs, DE miRNAs,
and DE lncRNAs, respectively. The expression vector of each
DE RNA in all samples was extracted from dataset 1. Pearson
correlation coefficients Mxy and Lxz between DE mRNA x(x = 1,·,
N) and DE miRNA y(y = 1,·, J) and between DE mRNA x and DE
lncRNA z(z = 1,·, K), respectively, were calculated according to
Eqs. (1) and (2).

Mxy =

∑40
i=1 (xi − x̄)

(
yi − ȳ

)√∑40
i=1 (xi − x̄)2 ∑40

i=1
(
yi − ȳ

)2
(1)

Lxz =

∑40
i=1 (xi − x̄) (zi − z̄)√∑40

i=1 (xi − x̄)2 ∑40
i=1 (zi − z̄)2

(2)

where xi, yi, and zi and x̄, ȳ, and z̄ are the i-th element and
the average value of all elements in the expression vectors of
DE mRNA x, DE miRNA y, and DE lncRNA z, respectively.
Pearson correlation coefficients between all DE mRNAs and DE
miRNAs and between all DE mRNAs and DE lncRNAs constitute
two correlation coefficient matrixes, which are represented by M
(N × J) and L (N × K), respectively.

Calculation of the Amount of Information for DE
mRNA in the Coexpression Network
The connection of each molecule in the regulatory network
is influenced by many factors, such as environment and diet,
and has a degree of uncertainty that accounts for the amount
of information for each molecule (Teschendorff et al., 2014).
In this study, we propose to use the information rate of
a DE mRNA in the transcriptional coexpression networks
to measure the uncertainty of its connection and then use
Shannon’s information entropy theory to estimate the amount of
coexpression information for a DE mRNA.

The information rate for DE mRNA x in the coexpression
network between DE mRNA and DE miRNA was defined as the
ratio of a significant pearson correlation coefficient (p < 0.05) in
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FIGURE 1 | Data organization and utilization. (A) Five subsets from the TCGA-STAD dataset. (B) TCGA-COAD, TCGA-LUAD, and TCGA-LIHC. C, cancer sample;
N, adjacent normal sample; CF, cancer-related factor; CFth, threshold of CF; ML, machine learning.

the x-th line corresponding to DE mRNA x in M to the sum of all
significant pearson correlation coefficients (p < 0.05) in the x-th
line of M, which measures the correlation degree between a DE
mRNA x and a DE miRNA y (y = 1,·, J’). All information rates
for DE mRNA x associated with other DE miRNAs constitute
the information rate vector px defined by Eq. (3). Similarly, the
information rate vector qx for DE mRNA x in the coexpression
network of DE mRNAs and DE lncRNAs is defined according to
Eq. (4).

px =
M
′

x∑J′
y=1 M′

xy

(3)

qx =
L
′

x∑K′
z=1 L′xz

(4)

where M
′′

xnd L’x are the vectors composed of the pearson
correlation coefficients with statistical p values less than 0.05 in

the x-th row of M and L, respectively; M’xy (y = 1, 2,·, J’) and
L’xz (z = 1, 2, ·, K’) are the pearson correlation coefficients with
statistical p-values less than 0.05 in the x-th row of M and L,
respectively; and J’ and K’ are the corresponding numbers.

According to Shannon’s information entropy theory, the
amount of coexpression information for DE mRNA x (expressed
as SRNAx) is estimated by Eq. (5).

SRNAx =

J′∑
y=1

−pxylog2pxy +

K′∑
z=1

−qxzlog2qxz (5)

where pxy is the y-th information rate in px, y = 1, 2, ·,J’; qxz is the
z-th information rate in qx, z = 1, 2,·, K’.

Estimation of the Amount of Information for DE
mRNA in the Protein-Protein Interaction Network
We constructed a protein-protein interaction network based on
the protein interaction information of all DE mRNAs acquired
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from the online STRING database1. Higher protein-protein
connectivity score in the protein-protein interaction network
corresponds to greater amount of interaction information
between two proteins (Szklarczyk et al., 2019). Therefore, we used
cs to measure the amount of protein interaction information
(represented by SPPIx) that corresponds to DE mRNA x according
to Eq. (6).

SPPIx = 1+
∑
j∈N

csxj (6)

where csxj = 1) represents the connection score between a protein
encoded by DE mRNA x and a protein encoded by another DE
mRNA j (j3N, j6=x).

Identification of PmBs Associated With GA
The sum of SRNAx and SPPIx normalized by maximum was used
as the total information amount of DE mRNA x (denoted by Sx)
according to Eq. (7).

Sx =
SRNAx

max {SRNAx}
+

SPPIx

max {SPPIx}
(7)

All DE mRNAs were sorted according to Sx (x = 1, 2 ·, N),
and PmBs were identified based on the change trend of Sx
(x = 1, 2·,N). The number of identified PmBs was recorded as
Q. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses of PmBs were
performed by the clusterProfiler R package to investigate the
functions of PmBs (Yu et al., 2012).

Evaluation of Sample Classification
Power of PmBs
We designed four classifiers based on PmBs to discriminate the
positive GA and negative control samples to illustrate the value of
PmBs identified by mRBioM in auxiliary clinical diagnosis. The
performance of the four classifiers was evaluated by sensitivity,
specificity, and accuracy.

Cancer-Related Factor
The cancer-related factor of a sample was determined by the
expression values of PmBs in the samples and was used to
discriminate the sample types. The cancer-related factor value of
a sample was defined as the ratio of the average logarithm values
of the expression of upregulated and downregulated PmBs in the
sample according to Eq. (8).

CF =
1

nup
×
∑nup

i=1 log2 Exup (i)
1

ndn
×
∑ndn

j=1 log2 Exdn
(
j
) (8)

where CF indicates the value of cancer-related factor. nupnd
Exup(i) are the number of upregulated PmBs and the expression
value of the i-th upregulated PmB in a sample, respectively.
Similarly, ndnnd Exdn(j) are the number of downregulated PmBs
and the expression value of the j-th downregulated PmB.

1http://string-db.org/

We randomly selected n (in this instance, n = 10) GA and
adjacent normal samples from the mRNA expression profile of
dataset 1 to identify the best CF threshold for discrimination
of the positive and negative samples, and only the expression
value of Q PmBs from each sample was used to form dataset 2
(C = 10, N = 10). Next, the expression profiles of 2n samples in
dataset 2 were converted into a new expression profile containing
n samples. The expression value vector Sm (dimension is 1 × n)
of the m-th (m = 1, 2,·,Q) PmB in the synthetic expression profile
was calculated according to Eq. (9).

Sm =
Stm + Snm ×

∑n
i=1 Stm(i)∑n
i=1 Snm(i)

2
(9)

where Stm (dimension is 1 × n) and Snm (dimension is 1 × n)
are the expression value vectors of the GA and control samples
in dataset 2 of m-th (m = 1, 2,·,Q) PmB, respectively. Stm(i) and
Snm(i) are the i-th expression value elements (I = 1, 2,·,n) of Stm
(dimension is 1× n) and Snm (dimension is 1× n), respectively.

Next, Eq. (8) was used to calculate the CF of the i-th sample in
the generated expression profile (denoted as CFi, i = 1, 2,·,n), and
the geometric mean value of the CF values of n samples (Eq. 10)
was used as the threshold of CF (denoted as CFth).

CFth =
n

√√√√ n∏
i=1

CFi (10)

Finally, the samples of dataset 2 were excluded from TCGA-
STAD, and the remaining samples only with the expression values
of Q PmB were used to form dataset 3 (C = 267, N = 12), which
was used to test the ability of cancer-related factor to recognize
the GA samples. If the CF of a sample was greater than CFth, the
sample was identified as GA (positive); otherwise, the sample was
identified as control (negative).

Classifiers With Machine Learning
Three classifiers with machine learning based on random
forest (RF) (Wang H. et al., 2020), support vector machine
(SVM) (Zhang et al., 2017; Zhang and Liu, 2017), and naive
Bayes (NB) (Dou et al., 2015) were constructed using the
normalized expression values of PmBs as the classification
feature implemented by randomForest R package (Liaw and
Wiener, 2002), the svm function of the e1071 R package
(Meyer et al., 2019), and the NaiveBayes function of the
klaR R package (Weihs et al., 2005), respectively. Of course,
there are other improved Bayesian models that can replace
NB classification algorithms (Nagarajan et al., 2013; Thapa
et al., 2018). Since the unbalanced sample size between the
GA and control groups will affect the classification effect
of the three classifiers, we used the downsampling method
to randomly extract 28 samples from 277 GA samples and
retain all 22 adjacent normal samples in TCGA-STAD, which
formed validation dataset 4 (C = 28, N = 22). Finally, the
performance of the three classifiers with machine learning
was confirmed on dataset 4 by using the fivefold cross-
validation method.
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FIGURE 2 | DE RNAs and the screening results of PmBs. (A) Volcano plot of DE RNAs (circles: DE mRNA, squares: DE miRNA, triangles: DE lncRNA); red dots
represent up-regulated DE RNAs, and blue dots represent down-regulated DE RNAs. (B) The total information amount plot of DE mRNAs; the abscissa represents
symbols of mRNA (part of the symbols is displayed), and the ordinate is the total information amount of each DE mRNA. (C) Heatmap of the PmBs of adjacent
normal group vs. GA group. DE, differentially expressed; PmBs, potential mRNA biomarkers; N, adjacent normal sample; C, cancer sample; TIA, total amount of
information.

PmBs-Based Survival Analysis
We excluded 10 patients with missing survival time or less than
30 day survival from the cohort of 279 patients in TCGA-STAD
to exclude patients who died from other factors and finally used
the transcription profiles of 269 GA patients with 55 PmBs to
form dataset 5 for survival analysis. The average survival time of
GA patients in dataset 5 was 21.575 ± 17.506 months, and 105
GA patients died at the end of follow-up, accounting for 39% of
the total cohort.

Clinical information about patients (Supplementary Table 1)
and dataset 5 (C = 269) were integrated, and a univariate Cox
regression model of the survival R package (Peterschmitt et al.,
2018) was used to identify survival-related PmBs that have a
significant impact on survival time (p < 0.05); then, a multivariate
Cox regression model was used to determine T survival-related
PmBs to construct a prognostic risk model (Lossos et al., 2004)

used to calculate the survival-based risk score of a patient
(Eq. 11).

Risk score =
T∑

t=1

ExpPmB(t)×WPmB(t) (11)

where ExpPmB(t) is the expression value of t-th survival-related
PmB in the patient sample, and WPmB(t) is the corresponding
multivariate Cox regression coefficient of t-th survival-related
PmB, t = 1, 2,·, T.

Then, the median of the risk scores of all patients in dataset
5 was used as the cutoff value to divide the patients into
the high- and low-risk groups. Finally, Kaplan–Meier analysis
was used to assess the overall survival rate of patients in
the high- and low-risk groups, and the log-rank test was
used to determine whether there is a significant difference
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TABLE 2 | The identified PmBs and their total information amount.

No. PmB symbol TIA Relevance to cancer No. PmB symbol TIA Relevance to cancer

1 MET 1.485 GA (Ebert et al., 2019) 29 PMEPA1 1.290 PCa (Sharad et al., 2020)

2 KLF4 1.808 GA (Zhao R. et al., 2020) 30 DNMT1 1.277 BRCA (Wang et al., 2021)

3 LPCAT1 1.885 GA (Uehara et al., 2016) 31 MFHAS1 1.264 CRC (Chen et al., 2016)

4 SOX4 1.356 GA (Ding et al., 2019) 32 IRAK1 1.264 BRCA (Li Y. et al., 2020)

5 KPNA2 1.506 GA (Tsai et al., 2016) 33 TIMP1 1.418 PCa (Guccini et al., 2021)

6 GPX3 1.393 GA (Cai et al., 2019) 34 RCC2 1.255 BRCA (Chen et al., 2019)

7 TYMP 1.374 GA (Huang et al., 2016) 35 SLC12A7 1.254 AC (Brown et al., 2018)

8 FKBP10 1.430 GA (Wang R. G. et al., 2020) 36 IFI6 1.239 MM (Cheriyath et al., 2007)

9 CDC25B 1.347 GA (Kudo et al., 1997) 37 BGN 1.231 CRC (Chen et al., 2020)

10 SOX9 1.299 GA (Wang H. et al., 2020) 38 GTPBP4 1.229 LUC (Zhang et al., 2020)

11 GPRC5A 1.260 GA (Liu et al., 2016) 39 RUNX1 1.261 CRC (Li et al., 2019)

12 CITED2 1.250 GA (Gao et al., 2020) 40 MXI1 1.214 LUC (Huang et al., 2018)

13 FHL1 1.214 GA (Xu et al., 2012) 41 TMEM63A 1.751 Not reported

14 DKC1 1.996 CRC (Hou et al., 2020) 42 PDCD11 1.598 Not reported

15 PLOD3 1.464 LUC (Baek et al., 2019) 43 METTL7A 1.467 Not reported

16 KAT2B 1.543 BRCA (Zhang et al., 2017) 44 ATP5PF 1.852 Not reported

17 PARP14 1.433 MM (Barbarulo et al., 2012) 45 UBL3 1.433 Not reported

18 VAV2 1.352 BRCA (Wang P. et al., 2020) 46 HELZ2 1.405 Not reported

19 MTHFD2 1.421 RCC (Lin et al., 2018) 47 SLC25A4 1.321 Not reported

20 RAP1A 1.372 LUC (Huang N. et al., 2020) 48 ARFGEF3 1.328 Not reported

21 LMNB2 1.437 HCC (Kong et al., 2020) 49 NCAPD2 1.298 Not reported

22 PER1 1.339 LUC (Lin et al., 2020) 50 ENTPD6 1.604 Not reported

23 GSN 1.248 CRC (Kim et al., 2018) 51 CAD 1.253 Not reported

24 CHD7 1.310 EC (Lu et al., 2020) 52 THEM6 1.333 Not reported

25 SLC1A5 1.321 CRC (Ma et al., 2018) 53 MKI67 1.247 Not reported

26 PLXNA3 1.306 BRCA (Gabrovska et al., 2011) 54 PINK1 1.232 Not reported

27 BOP1 1.292 CRC (Killian et al., 2006) 55 SH3KBP1 1.232 Not reported

28 MFSD12 1.292 MM (Wei et al., 2019)

GA, gastric adenocarcinoma; PCa, prostate cancer; CRC, colorectal cancer; BRCA, breast cancer; AC, adrenocortical carcinoma; MM, myeloma; LUC, lung cancer;
RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; EC, endometrial cancer; TIA, total information amount.

in the overall survival rate of patients in the high-risk
vs. low-risk groups. In addition, we used the survivalROC
package (Kamarudin et al., 2017) of R to perform ROC
curve analysis to evaluate the sensitivity and specificity of the
prognostic risk model.

RESULTS

DE mRNAs and PmBs in GA
A total of 170 DE mRNAs | log2FC(| 1, Padj < 0.01), 623
DE lncRNAs | log2FC(| 1, Padj < 0.05), and 52 DE miRNAs
| log2FC(| > 1, Padj < 0.01) were obtained. Figure 2A shows
the volcano plots of significantly DE RNAs, the details of all DE
mRNAs are shown in Supplementary Table 2. And the results of
the protein-protein interacti network analysis are shown in the
attached file “string_protein_interactions_170.tsv.”

The total information amount for each DE mRNA was
calculated by mRBioM, and the curve constructed by total
information amount of all DE mRNAs from large to small
is shown in Figure 2B. There is a significant decrease of
curve after the orange area and finally the curve tends
to be stable. Therefore, a total of 55 DE mRNAs with

total information amount corresponding to the orange
region were identified as PmBs for further study (Table 2).
A literature search confirmed that 13 PmBs were related
to GA (23.64%), and 27 PmBs were related to other
cancers (49.09%) (Table 2). The expression distribution
of 55 PmBs is shown in Figure 2C, corresponding to
41 upregulated PmBs (lower right corner vs. lower left
corner) and 14 downregulated PmBs (upper right corner
vs. upper left corner).

Functional Enrichment Analysis of PmBs
in GA
GO and KEGG functional enrichment analyses were performed
by clusterProfiler of R using 55 PmBs to investigate the
potential functions of these biomarkers. As shown in
Figure 3A, the GO terms indicated that these 55 PmBs
were mainly concentrated in chromatin binding (p < 0.05).
The results of KEGG analysis with p < 0.05 suggested that
these 55 PmBs were mainly related to pathways closely
associated with occurrence and development of cancer, such
as mitophagy-animal, ribosome biogenesis in eukaryotes,
MAPK signaling pathway, cAMP signaling pathway, central
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FIGURE 3 | GO and KEGG enrichment analysis of PmBs. (A) GO enrichment analysis. (B) KEGG enrichment analysis. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GA, gastric adenocarcinoma.

carbon metabolism, microRNAs in cancer, and renal cell
carcinoma (Figure 3B).

Sample Classification Power of
Cancer-Related Factor
CFth of dataset 2 was 0.9725, and the remaining samples in
TCGA-STAD formed dataset 3 to test the sample classification
power of cancer-related factor (Table 3). Table 3 shows that
accuracy, sensitivity, and specificity achieved by cancer-related
factor were 0.90, 0.89, and 1, respectively. The ROC curve of
cancer-related factor is shown in Figure 4A, and the area under
the ROC curve (AUC) reached 0.9494. The cancer-related factor
constructed by PmBs has high specificity and sensitivity and low
computational complexity and does not require training; thus, it
has great potential application in auxiliary clinical diagnosis.

Sample Classification Power of
Classifiers With Machine Learning
The results of fivefold cross-validation of RF-based, SVM-based,
and NB-based classifiers using dataset 4 are shown in Table 4.
Average accuracy, sensitivity, and specificity of the RF-based,

TABLE 3 | Performance of cancer-related factor.

Actual

Predicted Positive (GA) Negative (control) Total

True 240 0 240

False 27 12 39

Total 267 12 279

SVM-based, and NB-based classifiers were 0.94, 0.98, and 0.96,
0.94, 0.97, and 0.94, and 1, 1, and 0.97, respectively. The average
ROC curves of the three classifiers are shown in Figure 4B, and all
three AUCs were above 0.99. This finding provides further proof
that PmBs can be potential markers related to GA.

Survival-Related PmBs in GA
Fourteen survival-related PmBs (LMNB2, BGN, IRAK1,
MFSD12, FKBP10, SOX4, SLC12A7, DNMT1, SLC1A5, TIMP1,
ENTPD6, GPX3, HELZ2, and PMEPA1) were identified by
univariate Cox regression analysis, and the detailed results are
shown in Supplementary Table 3. Multivariate Cox regression
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FIGURE 4 | ROC curve analysis for the four classifiers. (A) CF. (B) RF-based, SVM-based and NB-based classifiers. ROC, receiver operating characteristic; CF,
cancer factor; RF, random forest; SVM, support vector machine; NB, naive Bayes.

TABLE 4 | Results of fivefold cross-validation of three classifiers with machine learning.

Model First (%) Second (%) Third (%) Fourth (%) Fifth (%) Average (%)

Accuracy RF 90.910 92.308 100 88.889 100 94.4211

SVM 90.909 100 100 100 100 98.1818

NB 90.909 100 100 88.889 100 95.9596

Sensitive RF 88.889 100 100 83.333 100 94.4444

SVM 88.889 100 100 100 100 97.7778

NB 88.889 100 100 83.333 100 94.4444

Specificity RF 100 85.714 100 100 100 97.1429

SVM 100 100 100 100 100 100

NB 100 100 100 100 100 100

analysis identified LMNB2, BGN, MFSD12, and SOX4 (refer
to Supplementary Table 4), which can be used to construct a
prognostic risk model. The risk score of the i-th (i = 1, 2,·, 269)
GA sample was calculated as follows:

Risk score(i) = −0.5295× ExpLMNB2(i)+ 0.2133×

ExpBGN(i)− 0.6516× ExpMFSD12(i)+ 0.2814×

ExpSOX4(i).

Where Expα(i) (α is LMNB2, BGN, MFSD12, or SOX4) is the
expression value of a survival-related PmB in the i-th GA sample.

The median of the risk scores of all GA samples −(34 in this
case) was used as the cutoff value, and 269 patients were divided
into the high-risk (>−34, n = 134) and low-risk groups (<−8.34,
n = 135). Kaplan-Meier survival analysis of patients in the high-
and low-risk groups showed that the difference between the two
groups was significant (p < 0.0001). As shown in Figure 5A, the

average survival time of patients inhe high-risk group was shorter,
and the number of deaths was higher than those of patients in the
low-risk group. In addition, the results of ROC analysis showed
that the AUC value of the prognostic risk model constructed
using 4 PmBs was 0.7742 (Figure 5B), suggesting good specificity
and sensitivity.

Generalization Ability
Generalization ability of mRBioM was assessed on three
other complete transcriptomic datasets, including TCGA-
COAD (colonic adenocarcinoma), TCGA-LUAD (lung
adenocarcinoma), and TCGA-LIHC (hepatocellular carcinoma),
downloaded from the TCGA database, and the results are shown
in Table 5. Average accuracy and sensitivity of CF were between
0.92 and 0.99, and average specificity was 1. Average accuracy and
sensitivity of the RF-based, SVM-based, and NB-based classifiers
were between 0.94 and 0.99, and average specificity was above
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FIGURE 5 | Survival analysis based on four prognostic PmBs. (A) Kaplan–Meier curves analysis for overall survival of patients between the high- and low-risk
groups; the upper panel represents the Kaplan-Meier curve for the high and low risk groups, the lower panel shows the cumulative number of deaths. (B) ROC
analysis for prognostic risk model with the 4 PmBs.

0.95. Therefore, the classifiers constructed with PmBs have good
sample classification power in 3 other cancer datasets, indicating
that the mRBioM algorithm has good generalization ability and
can effectively identify potential cancer-related mRNA markers
in other cancers.

DISCUSSION

This study proposed the mRBioM algorithm to identify potential
mRNA biomarkers from the complete transcriptomic RNA
profiles of GA. Unlike existing algorithms, mRBioM evaluates
the potential of each DE mRNA as a biomarker by combining
the corresponding amount of information at the transcription
and protein levels based on the information entropy theory.
Fifty-five DE mRNAs were identified as PmBs associated with
GA. These 55 PmBs were used to construct four sample
classifiers, including cancer-related factor, RF-based, SVM-
based, and NB-based classifiers, to illustrate the reliability
of PmBs identified by mRBioM. Good sensitivity, specificity,
and accuracy of classification were achieved by the four
classifiers. Four of fifty-five PmBs had good ability for prognostic
evaluation of the overall survival of GA patients. TCGA-
COAD, TCGA-LUAD, and TCGA-LIHC datasets confirmed the
generalization ability of mRBioM. The classifiers constructed by
the identified PmBs suggested good performance in a variety
of classification algorithms and cancer-related datasets, which
is expected to be used in more researches on cancer-related
biomarker identification.

Thirteen of 55 PmBs (Table 2) were confirmed by the
data of the literature to play certain roles in occurrence
and development of GA and were biomarkers or potential
therapeutic targets of GA. For example, GPRC5A and SOX9

have been shown to be related to occurrence and development
of GA (Liu et al., 2016; Wang H. et al., 2020), and their
expression levels changed more than fourfold in the GA vs.
adjacent control samples according to the result of DE RNA
analysis (log2FC > 2). FCMET has been confirmed as a
resistance factor in GA (Ebert et al., 2019), and Wang R.
G. et al. (2020) demonstrated that FKBP10 may be a crucial
player mediating cell proliferation, invasion, and migration by
regulating the PI3K signaling pathway in GA. Twenty-seven of
55 PmBs (Table 2) were shown to be associated with other
cancers according to the data of the literature. Thus, mRBioM
identified some new GA-related mRNAs. We attempted to
extract additional DE mRNAs as PmBs related to GA. However,
adding PmBs did not improve the classification powers of the
four classifiers, and these extra PmBs were not associated with
prognosis. Thus, our strategy for PmBs screening according
to the change trend of the total information amount for all
PmBs was effective.

Notably, the value ranges of the cancer-related factor
calculated in most cancer and adjacent normal samples of four
cancer-related datasets were 0.9–1.4 and 0.7–0.9, respectively.
Additionally, the thresholds of cancer-related factors (CFth) in
all four datasets were approximately 1. The values of cancer-
related factors and their corresponding thresholds showed good
consistency and robustness in all four datasets. Although the
classification performance of cancer-related factor is slightly
worse than that of three classifiers with machine learning,
the approach does not require training and has considerably
lower computational complexity than that of three classifiers
with machine learning. Importantly, the method requires
only a small number of cancer and adjacent samples to
determine the threshold and evaluates whether a single
sample corresponds to cancer. Thus, the cancer-related factor
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TABLE 5 | Generalization ability verification results.

Dataset ID TCGA-COAD TCGA-LUAD TCGA-LIHC

Disease type Colon adenocarcinoma Lung adenocarcinoma Liver hepatocellular carcinoma

PmBs number 289 200 300

CF ACC 0.9869 0.9709 0.9384

SP 1 1 1

SE 0.9866 0.9688 0.9366

CFth 0.9768 1.001 0.9384

CFC 0.8578–1.1323–1.3027 0.8595–1.2112–1.4593 0.7024–0.9974–1.6711

CFN 0.7603–0.8752–0.9444 0.8159–0.8429–0.9478 0.6199–0.6904–0.8104

RF ACC 0.9716 0.9846 0.9826

SP 0.9667 0.9778 0.975

SE 0.9833 0.975 0.9867

NB ACC 0.975 0.9833 0.9735

SP 0.95 1 0.9568

SE 1 0.9652 0.9833

SVM ACC 0.9833 0.975 0.9913

SP 0.9667 1 1

SE 1 0.9485 0.9833

ACC, accuracy; SP, specificity; SE, sensitivity; CFth, Cancer-related factor value threshold; CFC, Cancer-related factor value of cancer sample; CFN, Cancer-related factor
value of normal sample.

may have good application prospects in the personalized
diagnosis of cancers.

LMNB2, BGN, MFSD12, and SOX4 in 55 GA-related PmBs
were identified and combined into a prognostic risk scoring
model. There is no experimental evidence that LMNB2, BGN,
and MFSD12 in this combination are associated with GA,
and these are new PmBs identified in this study. LMNB2
belongs to the lamin family and is closely related to occurrence,
development, and prognosis of liver cancer (Kong et al., 2020; Li
X. N. et al., 2020). BGN is an important member of the leucine-
rich small proteoglycan family and an important component
of the extracellular matrix. Clinical studies have shown that
upregulation of BGN is related to poor prognosis of patients
with various types of cancer syndromes (Zhao S. F. et al., 2020).
MFSD12, also known as PP3501, is a nuclear protein (Wang
et al., 2012). Bioinformatic analysis revealed that upregulated
expression of MFSD12 is a key promoter of cell proliferation,
potential prognostic biomarker, and therapeutic target for
melanoma (Wei et al., 2019). SOX4 is a key transcription factor
involved in occurrence and development of many cancers (Liu
et al., 2018; Wang et al., 2018; Ding et al., 2019) and was shown
to be related to the proliferation, migration, and invasion of
GA cells and prognosis of GA patients (Fang et al., 2012; Dong
et al., 2018; Shao et al., 2020). Therefore, the model has good
sensitivity and specificity (AUC = 0.7742), and the risk score
calculated by the model can effectively predict the risk of GA
patients (p < 0.0001, hazard ratio = 2.845, 95% CI: 2.033–
3.981).

In conclusion, our study proposes an mRBioM algorithm
to identify PmBs from the complete transcriptomic RNA
profiles of GA by integrating and analyzing the information at
transcriptome and proteome levels. mRBioM identified 55 PmBs
related to the occurrence, development and prognosis of GA,

which may provide potential biomarkers for early diagnosis,
treatment, and prognosis of GA. mRBioM can also be applied in
other cancers for cancer-related biomarker identification. But this
study also has several limitations. mRBioM is a computational
method, and reliability of GA-related PmBs identified by
mRBioM was confirmed only by computational methods; thus,
further experimental studies are needed to verify the clinical value
of identified GA-related PmBs.
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