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Random movement (“molecular diffusion”) of particles 
comes from the thermal energy that they possess at any given 
temperature above absolute zero. A self-diffusion coefficient 
of around 2.3×10−3 mm2/s has been demonstrated earlier 
by a sample that contains small molecules, for example, 
water, at approximately 25 ℃ (room temperature) (1).  
This motion of water molecules can be hampered by the 
presence of cell membranes and macromolecules, and the  
in vivo organ apparent diffusion coefficients (ADCs) 
measured by magnetic resonance imaging (MRI) are 
expected to be smaller than in vitro water phantom 
value. On the other hand, in vivo organ ADC is also 
contributed by tissue perfusion. In body water, such as 
the case of gallbladder, ADC is measured to be around  
3×10−3 mm2/s (2), which is affected by the body temperature, 
composition of bile fluid, as well as the body bulk motion 
due to respiration and cardiovascular pulsating, etc.

ADC values of some in vitro phantom results, in vivo 
muscle, cartilage, intervertebral disc NP and IAF (nucleus 
pulposus and inner annulus fibrosus) (3), and bone marrow 
are listed in Table 1 (4-20). Liver, the largest solid organ in 
the body, has an ADC of around 1.07×10−3 mm2/s (6), and 
also considering free water has an in vitro ADC of around 
2.2×10−3 mm2/s (4,6), we intuitively feel that the ADCs of 

cartilage (around 1.5×10−3 mm2/s) and disc NP and IAF 
(around 1.9×10−3 mm2/s) are ‘unrealistically high’. Compared 
with the liver ADC of 1.07×10−3 mm2/s and spleen 
ADC of 0.8×10−3 mm2/s (6), muscle ADC, being around  
1.55×10−3 mm2/s, also appears to be high. Recently, Wáng 
et al. (21-25) proposed that in vivo ADC measure is strongly 
associated with T2 relaxation time (T2 time) [Table 2,  
Figure 1 (26-44)]. Wáng et al. (24) divide T2 time into short 
T2 time band (<60 ms), intermediate T2 time band (60–80 
ms), and long T2 time band (>80 ms, all 3 T values). For the 
short T2 time band, there is a negative correlation between 
T2 time and ADC. For the long T2 time band, there is a 
positive correlation between T2 time and ADC. A tissue 
likely measures a low ADC if its T2 time is close to 70 ms. 
The phenomenon shown in Figure 1 can help explain the 
counterintuitive ADC values commonly seen in a number 
of musculoskeletal tissues.

In experimental studies, it was suggested that the hepatic 
blood volume including that of the large vessels is about 
25 mL/100 g, whereas this value is 3 mL/100 g in skeletal 
muscle (45). Though we would think that the ADC of 
muscles will not be higher than that of liver with the liver 
more richly perfused by hepatic artery and portal vein and 
with lots of sinusoids and space of Disse, however, muscles 
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Table 1 A list of ADC values of some phantoms, muscle, cartilage, intervertebral disc NP and IAF, and bone marrow

Authors Materials/tissues Mean ADC (×10−3 mm2/s) Magnet# b value (s/mm2)§§

Kalaitzakis et al. (4) Water phantom 2.20 1.5 T 0–1,500, 10 b values

Kalaitzakis et al. (4) 5% sucrose solution phantom 1.88 1.5 T 0–1,500, 10 b values

Gatidis et al. (5) Water phantom 2.15 3.0 T 0–1,000, 10 b values

Gatidis et al. (5) Polyethylene glycol (10 mM) phantom 1.86 3.0 T 0–1,000, 10 b values

Kim et al. (6) Liver## 1.07 3.0 T 0, 800

Kim et al. (6) Spleen 0.79 3.0 T 0, 800

Sandberg et al. (7) Muscles (11.2 years)¶ 1.48 3.0 T 50, 600

Chen et al. (8) Paraspinal muscle (57.0 years)¶ 1.55 3.0 T 50, 800

Padhani et al. (9) Psoas muscle¶ 1.39 1.5 T 50, 800 (or 900)

Raya et al. (10) Muscle (review)¶ 1.60 3.0 T

Zbýň et al. (11) Knee articular cartilage 1.90 3.0 T 50, 500, 100

Ukai et al. (12) Knee articular cartilage (51.5 years) 1.40 3.0 T 0, 600

Raya et al. (10) Articular cartilage (review) 1.50 3.0 T

Hamaguchi et al. (13) Disc NP and IAF (33.4 years)¶¶ 1.78 3.0 T 0, 1,000

Shen et al. (14) Disc NP and IAF (24.3 years)¶¶ 1.99 1.5 T 0, 800

Niu et al. (15) Non-degenerated NP and IAF (20–29 years) 2.16 1.5 T 0, 500

Niinimäki et al. (16) Non-degenerated NP (49 years) 1.65 1.5 T 0, 500

Sandberg et al. (7) Red bone marrow (11.2 years)§ 0.86 3.0 T 50, 600

Padhani et al. (9) Red bone marrow§ 0.68 3.0 T 50, 800 (or 900)

Zbýň et al. (11) Bone marrow (knee)§ 0.53 3.0T 50, 500, 100

Padhani et al. (9) Yellow bone marrow§ 0.38 1.5 T 50, 800 (or 900)

Byun et al. (17) Sacrum yellow bone marrow (70 years)§ 0.21 1.5 T 0, 650

Raya et al. (10) Bone marrow (review)§ 0.45 3.0 T –
#, it is generally considered that diffusion is per se not a nuclear magnetic resonance phenomenon. Magnetic field strength should have 
little impact on ADC values measured (18,19); ##, older age is commonly associated with higher liver iron content and higher fat content, 
both can lead to lower ADC measure (20); ¶, muscle fascia contain fat. In a defined muscle region, fat portion in the fascia may increase 
in older subjects, and this leads to lower muscle ADC measure; ¶¶, discs of mixed degeneration grading; §, bone marrow ADC depends 
on the ratio of red marrow to yellow marrow. The data of Sandberg et al. (7) may be closer to pure red marrow ADC; §§, ADC measure is 
affected by b value selection during data acquisition and the noise levels, however, besides muscle, perfusion contribution to ADC is small 
for most of the skeletal tissues. ADC, apparent diffusion coefficient; NP, nucleus pulposus; IAF, inner annulus fibrosus. 

have a shorter T2 time than the liver (Table 2). In the study 
of Wall et al. (26), muscle measured an ADC of 29 ms 
whereas liver measured an ADC of 45 ms at 0.35 T. In the 
study of de Bazelaire et al. (27), muscle measured an ADC 
of 29 ms whereas liver measured an ADC of 46 ms at 1.5 T. 
The phenomenon as demonstrated in Figure 1 shows, with 
liver data as the reference, the shorter T2 time of muscles 
is associated with an increased ADC value for the muscle 

(relative to the liver). Figure 1 also helps to explain that 
cartilage and disc NP and IAF measure very high ADC not 
because these tissues have true high tissue diffusivity, but 
instead because of their T2 times being both away from the 
intermediate T2 time band of 60–80 ms (at 3 T). Moreover, 
cartilage and disc NP and IAF demonstrate high ADC due 
to the opposite reasons, with cartilage having a relatively 
short T2 time and non-degenerated disc NP and IAF 
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Table 2 A list of T2 time values of some musculoskeletal structure and disorders and tumors of the body and brain

Authors Tissues Mean T2 (ms) Magnet# (T)

Wall et al. (26) Liver 45 0.35 

de Bazelaire et al. (27) Liver (31.5 years) 34¶ 3.0 

de Bazelaire et al. (27) Liver (31.5 years) 46 1.5 

Bogaert et al. (28) Liver (47.1 years) 46 1.5

Wall et al. (26) Muscle 29 0.35 

de Bazelaire et al. (27) Paravertebral muscle (31.5 years) 29 3 

Lang et al. (29) Leg muscle in rat 33 2.0 

Pettersson et al. (30) Muscle 32 0.15 

Gold et al. (31) Muscle (27–38 years) 32 3.0 

Gold et al. (31) Muscle (27–38 years) 35 1.5 

Raya et al. (10) Muscle (review) 32 3.0 

Gold et al. (31) Knee articular cartilage (27–38 years) 37 3 

Gold et al. (31) Knee articular cartilage (27–38 years) 42 1.5 

Roth et al. (32) Knee articular cartilage (16 years) 38 3.0 

Ukai et al. (12) Knee articular cartilage (51.5 years) 40 3.0 

Ruiz Santiago et al. (33) Patellar cartilage (16–45 years) 41 1.5 

Raya et al. (10) Articular cartilage (review) 37 3.0 

Niu et al. (15) Non-degenerated discs NP and IAF (20–29 years) 164 1.5 

Wang et al. (34) Non-degenerated discs NP and IAF (32 years) 130 3.0  

Yang et al. (35) Non-degenerated discs NP and IAF (44 years) 138 3.0 

Stelzeneder et al. (36) Non-degenerated discs NP (19 years) 238 3.0 

Bouhsina et al. (37) Non-degenerated discs NP and IAF in dog 249 1.5 

Wall et al. (26) Abscess various body sites 81 0.35  

Pettersson et al. (30) Chondrosarcoma 120 0.15 

Pettersson et al. (30) Malignant fibrous histiocytoma 92 0.15 

Pettersson et al. (30) Osteogenic sarcoma 75 0.15 

Lang et al. (29) Osteogenic sarcoma—rat model 73 2.0  

Arita et al. (38) Active prostate cancer bone metastasis 82 3.0 

Jung et al. (39) Breast cancer 90 3.0 

Baohong et al. (40) Parotid gland cancer 97 3.0 

Hepp et al. (41) Prostate cancer 80 3.0 

Gu et al. (42) Grade II glioma 164 3.0 

Gu et al. (42) High-grade glioma 127 3.0 

Oh et al. (43) Gliomas 160 1.5 

Oh et al. (43) Meningiomas/metastases 125 1.5 

Data from tumors of the body and brain represent a few random selections for illustration only. #, there is a notion that T2 time does not 
change much over the range of field strengths used for routine clinical MR imaging (0.2 to 3.0 T) (44); ¶, the value of 34 ms for liver at 
3.0 T is likely underestimated, i.e., liver T2 time at 3.0 T may be longer. NP, nucleus pulposus; IAF, inner annulus fibrosus; MR, magnetic 
resonance.
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having a long T2 time (Table 2).
A few musculoskeletal lesions also demonstrate unusual 

ADC values. Pyogenic abscess fluid (i.e., pus) tends to 
demonstrate a very low ADC (e.g., 0.63×10−3 mm2/s)  
regardless of the location of the abscess (46-49). It is 
counterintuitive that abscess pus, being fluid or semi-fluid, 
has a very low ADC measure. Recently Wáng noted that (25),  
abscess pus having a T2 time of about half that of body water 
(around 80 ms) contributes to very low ADC measured by 
MRI [Figure 1, Table 3 (9,17,41,43,48-59)]. Abscess pus may 
not have truly restricted diffusion compared with many 
other in vivo solid tissues. Morán et al. (50) and Einarsdóttir 

et al. (51) reported myxoma ADC values of 2.38×10−3 
and 2.80×10−3 mm2/s respectively, which are quite high. 
Quantitative data on T2 time for musculoskeletal myxoid 
remain limited, however, it is known that myxoid substance 
has a long T2 time (as noted with bright signal on T2 
weighted images). Myxoma has a high ADC likely due to 
myxoid substance’s long T2 time. Another disease type 
is chondrosarcoma. Chondrosarcoma has a long T2 time 
(e.g., 120 ms) and high ADC measure [e.g., 2.3×10−3 mm2,  
Table 3 (53)]. It is unlikely that chondrosarcoma has a true 
high tissue diffusivity. T2 shine-through refers to high signal 
on diffusion weighted images that is not due to restricted 
diffusion, but rather to long T2 time in some tissue or 
body fluid (52). It is considered that this T2 shine-through 
error can be avoided with assessment of the high b value 
images and the corresponding ADC map. The ADC map 
is considered to have corrected the T2 shine-through (52).  
Thus, the ADC measure of lesions such as myxoma cannot 
be explained by the T2 shine-through effect.

The analyses above further support that T2 time is 
a dominant contributor to ADC measure (24), and call 
for re-consideration on whether cellularity or high cell 
density contributes to tumor ADC. It has been perceived 
that malignant tissues’ ADC is associated with malignant 
tissues’ being generally more cellular than benign tissues 
and extra-cellular water molecule diffusion in these tissues 
is lower with anarchic cellular proliferation. While it is 
possible that a more malignant tumor will deviate more 
from the native tissue in composition, thus show more 
deviation in T2 time from native tissue, and thus so does 
ADC measure, some studies did not report a correlation 
between ADC measure and cellularity (59-63). For 
example, Sadeghi et al. (60) noted that ‘This study, which 
takes into account the regional heterogeneity of gliomas, does not 
confirm the inverse correlation between ADC and cell density 
reported in previous studies. This finding underlines the impact 
of other determinants of water diffusivity within the complex 
microenvironment encountered in gliomas. As previously 
reported, edema, necrosis, and extracellular matrix components 
constitute some of such parameters that may influence ADC 
values within gliomas.’ The study of Rosenkrantz et al. (61) 
on pancreatic cancer showed no associations between 
ADCs of pancreatic adenocarcinoma and tumour grade or 
other adverse pathological features. Nonomura et al. (62) 
reported that there was no ADC difference between normal 
hematopoietic cell bone marrow without fat infiltration 
and lymphoma-related hypercellular bone marrow, despite 
lymphoma tissue had more compacted cells. Table 3 shows 
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Figure 1 Relationship between T2 time and ADC at 3 T. The 
graph is initially from Wáng and Ma (24). Data sources for liver, 
spleen, parotid gland tumors, and prostate also see Wáng and  
Ma (24). T2 time for the liver is assumed to be 42 ms (Table 2). 
Data points for muscle, cartilage, and intervertebral disc are newly 
added (values based on Tables 1,2). There are large variations 
for reported intervertebral disc T2 time and ADC values, thus 
mean values for the discs are presented simplistically (the data 
from dog not counted). For data with T2 time <60 ms, there is a 
negative correlation between T2 time and ADC. For data with T2 
time >80 ms, there is a positive correlation between T2 time and 
ADC. Dotted arrow denotes susceptibility T2* black-out, which 
is observed with structures having a very short intrinsic T2 signal 
due to very short T2*. In this graph, dotted arrow is for illustration 
only, and does not reflect true quantitative values for susceptibility 
T2* black-out. ADC, apparent diffusion coefficient. 
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ADCs of myeloma or metastatic malignancies in the bone 
do not demonstrate major ADC difference with other 
cancerous tissues such as liver malignancies, colon/rectum 
malignancies, uterus/ovaries malignancies, and prostate 
cancer. Brain tumors tend to have a relatively higher T2 
time and a relatively higher ADC measure. For most of the 
tumors originated in the liver or pancreas, with increased 
T2 time which shifts toward 70 ms, these tumors have 
a reduced ADC relative to native tissues. For prostate 

cancer with a decreased T2 time which shifts toward  
70 ms, prostate cancer also has a reduced ADC relative to 
the native tissue. With T2 time shifting away from 70 ms, 
brain tumors mostly are associated with increased ADC (24). 
For soft tissue tumours, Einarsdóttir et al. (51) reported 
ADC values of benign soft tissue tumours and sarcomas 
overlapped and could not be used to differentiate between 
the bulk of benign and malignant tumours. Maeda et al. (64)  
also reported that ADCs of benign and malignant soft-tissue 

Table 3 A list of ADC values of some musculoskeletal disorders and tumors of the body and brain

Authors Materials/tissues Mean ADC (×10−3 mm2/s) Magnet# b value (s/mm2)§§§

Subhawong et al. (48) Abscess in musculoskeletal soft tissue§ 0.63 3.0 T 50, 400, 800

Erdogan et al. (49) Abscess in brain 0.69 1.5 T 0, 1,000

Morán et al. (50) Myxoma 2.38 1.5 T 0,300, 600, 1,000

Einarsdóttir et al. (51) Myxoma 2.80 1.5 T 0, 600 

Subhawong et al. (52) Myxoid liposarcoma§ 2.31 Unknown Unknown 

Hayashida et al. (53) Chondrosarcoma 2.29 1.5 T 0, 500, 1,000

Ahlawat et al. (54) Enchondroma§§ 1.80 3.0 T 50, 400, 800

Subhawong et al. (48) Ewings sarcoma§ 0.80 3.0 T 50, 400, 800

Ahlawat et al. (54) Osteosarcoma## 0.80 3.0 T 50, 400, 800

Feuerlein et al. (55) Soft-tissue tumors (mixed)## 0.85 1.5 T 0, 150, 500, 1,000

Padhani et al. (9) Multiple myeloma 0.88 1.5 T 50, 800 (or 900)

Padhani et al. (9) Breast cancer bone marrow Met 0.94 1.5 T 50, 800 (or 900)

Byun et al. (17) Sacrum Met (mixed) 0.78 1.5 T 0, 650

Balliu et al. (56) Vertebral malignancies (mixed) 0.92 1.5 T 0, 500

Feuerlein et al. (55) Liver malignancies (mixed)## 0.81 1.5 T 0, 150, 500, 1,000

Feuerlein et al. (55) Colon/rectum malignancies (mixed)## 0.92 1.5 T 0, 150, 500, 1,000

Feuerlein et al. (55) Uterus/ovaries malignancies (mixed)## 0.77 1.5 T 0, 150, 500, 1,000

Feuerlein et al. (55) Skeletal Met (mixed)## 0.81 1.5 T 0, 150, 500, 1,000

Hepp et al. (41) Prostate cancer 0.76 3.0 T 50, 500, 1,000, 2,000

Surov et al. (57) Breast cancer liver Met 0.86 1.5 T 0, 600

Thormann et al. (58) Hepatocellular carcinoma 0.93 1.5 T 0, 500 

Oh et al. (43) Gliomas 1.28 1.5 T 0, 1,000

Oh et al. (43) Meningiomas/Met 1.10 1.5 T 0, 1,000

Stadnik et al. (59) Gliomas 1.14 1.5 T 0, 300, 1,200

Data from tumors of the body and brain represent a few random selections for illustration only. #, it is generally considered that diffusion is 
per se not a nuclear magnetic resonance phenomenon. Magnetic field strength should have little impact on ADC values measured (18,19); §, 
result of a single case only; §§, mineralization leading to lower ADC measures; ##, with limited case number; §§§, ADC measure is affected by 
b value selection during data acquisition and the noise levels, however, besides muscle, perfusion contribution to ADC is small for most of 
the skeletal tissues. ADC, apparent diffusion coefficient; Met, metastasis. 
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tumors were not significantly different. Balliu et al. (56)  
reported that ADC does not help differentiate spine 
malignancy from spine infection. Razek et al. (65) reported 
that soft-tissue malignant tumors tend to have a lower mean 
ADC value than soft-tissue benign tumors. However, there 
was huge variation among individual cases depending on 
the histopathological types. An injection of gadolinium 
contrast agent, which will shorten T2 time of the tissues, 
has also been reported to be associated with a lower ADC 
measure (66,67) without the gadolinium contrast agent 
actually changing the diffusivity of the tissues. For the cases 
of prostate cancer and breast cancer, gadolinium agent will 
slightly shift the T2 times of these tissues toward 70 ms. 
It is also likely that the in vivo measurement of ADC is 
contaminated by bulk motion due to physiological motion 
(such as respiration and cardiovascular pulsing) and the 
vibration of MR scanner gradients during diffusion data 
acquisition. The contribution of cellularity to ADC may be 
of only minor importance in practice.

Another  phenomenon of  note  i s  the  so-ca l led 
susceptibility T2* ‘black-out’, which is seen with structures 
having a very short intrinsic T2 signal due to very short T2* 
associated with iron or calcium content (68,69). It is known 
that hematomas can have a low ADC value. Susceptibility 
artifacts such as hemorrhage containing deoxyhemoglobin or 
hemosiderin result in unreliable ADC value calculations with 
pseudo-low ADC values (68,70,71). Assessing osteosarcoma 
or osteoblastic bone metastases can also be challenging 
sometimes due to the presence of this phenomenon (72).

The analyses in this article re-emphasize the notion 
that, for interpretation of ADC value of any tissue, this 
tissue’s T2 time should be always referred (24). Moreover, 
some authors reported that ADC does not offer superiority 
over T2 time in a number of diagnostic analyses. For 
intracerebral tumors, Oh et al. (43) reported T2 values 
were more useful than ADC for characterizing contrast 
enhancing tumor and immediate-edema regions of glioma, 
meningiomas and metastases. Stadnik et al. (59) reported 
that the diffusion-weighted images and ADC maps of 
gliomas were less useful than the T2-weighted and contrast-
enhanced T1-weighted images in definition of tumor 
boundaries. The ADC values of solid gliomas, metastases, 
and meningioma were in the same range. In a study of 
glioma patients, Kinoshita et al. (73) reported that ADC was 
unable to show a significant correlation with 11C-methionine 
uptake (as shown on positron emission tomography) or with 
tumor cell density; however, a combination of T1 and T2 
relaxation time correlated both with methionine uptake 

and tumor cell density. Cieszanowski et al. (74) reported 
significantly higher sensitivity and accuracy of T2 time than 
ADC for diagnosing hepatic malignancy. ADC maps may 
suffer from alignment errors between images of different 
b values and also low signal-to-noise ratio from diffusion-
weighted imaging. Within the framework of diffusion 
weighted imaging, a number of pitfalls have also been noted 
with intravoxel incoherent (IVIM) analysis (21,75-77). The 
additional benefits of ADC over T2 time or signal intensity 
on properly T2 weighted images should be carefully studied 
further for musculoskeletal application.
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