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scales permits rapid recalibration of
speech sound categories
Itsaso Olasagasti*, Anne-Lise Giraud

Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland

Abstract Speech perception presumably arises from internal models of how specific sensory

features are associated with speech sounds. These features change constantly (e.g. different

speakers, articulation modes etc.), and listeners need to recalibrate their internal models by

appropriately weighing new versus old evidence. Models of speech recalibration classically ignore

this volatility. The effect of volatility in tasks where sensory cues were associated with arbitrary

experimenter-defined categories were well described by models that continuously adapt the

learning rate while keeping a single representation of the category. Using neurocomputational

modelling we show that recalibration of natural speech sound categories is better described by

representing the latter at different time scales. We illustrate our proposal by modeling fast

recalibration of speech sounds after experiencing the McGurk effect. We propose that working

representations of speech categories are driven both by their current environment and their long-

term memory representations.

Introduction
The way the brain processes sensory information to represent the perceived world is flexible and

varies depending on changes in the stimulus landscape. Neurocognitive adaptation to varying stimuli

can be driven by an explicit external feedback signal, but might also take place with simple passive

exposure to a changing stimulus environment via implicit statistical learning (Saffran et al., 1996;

Gilbert et al., 2001; Barascud et al., 2016; Schwiedrzik et al., 2014). In the domain of speech per-

ception, neural representations of sound categories are susceptible to stimulus-driven recalibration.

Typically, the perception of unclear or ambiguous speech stimuli that have previously been disam-

biguated by context (McQueen et al., 2006; Clarke and Luce, 2005) or by a concurrent visual stim-

ulus (Bertelson et al., 2003; Vroomen et al., 2007) is biased by the disambiguating percept. Even

simple exposure to novel statistics e.g., a variation in the spread of sensory features characteristic of

stop consonants, quickly results in a modified slope in psychometric functions, and changes the way

listeners classify stimuli (Clayards et al., 2008). Interestingly, acoustic representations are also modi-

fied after altered auditory feedback during production (Nasir and Ostry, 2009; Lametti et al.,

2014; Patri et al., 2018). These observations illustrate that speech sound categories remain largely

plastic in adulthood.

Using two-alternative forced choice tasks, studies have shown that changes in acoustic speech

categories can be induced by input from the visual modality (e.g. Bertelson et al., 2003). Recipro-

cally, acoustic information can also disambiguate lipreading (Baart and Vroomen, 2010), resulting

in measurable categorization aftereffects. While such effects can be observed after repeated expo-

sure to the adapting stimuli, recalibration can also occur very rapidly, with effects being observable

after a single exposure (Vroomen et al., 2007). This fast and dynamic process has been modelled as

incremental Bayesian updating (Kleinschmidt and Jaeger, 2015) where internal perceptual catego-

ries track the stimulus statistics. According to this model, when listeners are confronted with altered
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versions of known speech categories, the perceived category representation is updated to become

more consistent with the actual features of the stimulus. The resulting recalibration weighs all evi-

dence equally, disregarding their recency. The model hence successfully describes perceptual

changes observed when listeners are confronted with repeated presentations of a single modified

version of a speech sound. However, it cannot appropriately deal with intrinsically changing environ-

ments, in which sensory cues quickly become obsolete. Real moment to moment physical changes in

the environment are referred to as ‘volatility’ to distinguish them from the trial-by-trial response vari-

ability observed in a fixed environment. Inference in volatile environments has been studied mostly

in relation to decision making tasks in which participants can use an explicit feedback to keep track

of the varying statistics of arbitrary cue-reward associations (e.g. Behrens et al., 2007) or arbitrarily

defined categories (e.g. Summerfield et al., 2011). These studies suggest that humans are able to

adjust their learning rate to the volatility in the stimulus set, with faster learning rates (implying a

stronger devaluation of recent past evidence) in more volatile environments. This has led to norma-

tive models focussing on the online estimation of volatility, in which task-relevant features are repre-

sented at a single variable time scale (Behrens et al., 2007; Mathys et al., 2011).

The notion of variable learning rates likely also applies to speech processing. However, we pro-

pose that when recalibrating natural speech categories, a normative model should additionally take

into account that these categories may themselves change at different time scales. For example,

transient acoustic changes within a given speech sound category, such as those coming from a new

speaker, must not interfere with the long-term representation of that category that should be invari-

ant for example to speakers. We therefore hypothesize that speech sound categories could be rep-

resented by more than a single varying timescale.

Although speech category recalibration has not been systematically studied in variable environ-

ments, Lüttke and collaborators (Lüttke et al., 2016a; Lüttke et al., 2018) found evidence for recali-

bration in an experiment that included audio-visual McGurk stimuli shown without an explicit

adapting condition. The first study involved six different vowel/consonant/vowel stimuli presented in

random order, and recalibration was observed even when acoustic stimuli were not ambiguous (e.g.

the /aba/ sound in the McGurk trials). The McGurk effect (the fact that an acoustic stimulus /aba/is

mostly perceived as an illusory/ada/ when presented with the video of a speaker producing /aga/)

was powerful enough to yield observable adaptive effects across consecutive trials. Specifically, the

probability of an acoustic/aba/ to be categorized as/ada/, was higher when the trial was preceded

by an audio-visual McGurk fusion. Recalibration effects do not generalize to all phonetic contrasts/

categories (Reinisch et al., 2014). After participants had recalibrated acoustic sounds in the /aba /- /

ada/continuum (on the basis of acoustic formant transitions), recalibration was neither present for /

eLife digest People can distinguish words or syllables even though they may sound different

with every speaker. This striking ability reflects the fact that our brain is continually modifying the

way we recognise and interpret the spoken word based on what we have heard before, by

comparing past experience with the most recent one to update expectations. This phenomenon also

occurs in the McGurk effect: an auditory illusion in which someone hears one syllable but sees a

person saying another syllable and ends up perceiving a third distinct sound.

Abstract models, which provide a functional rather than a mechanistic description of what the

brain does, can test how humans use expectations and prior knowledge to interpret the information

delivered by the senses at any given moment. Olasagasti and Giraud have now built an abstract

model of how brains recalibrate perception of natural speech sounds. By fitting the model with

existing experimental data using the McGurk effect, the results suggest that, rather than using a

single sound representation that is adjusted with each sensory experience, the brain recalibrates

sounds at two different timescales.

Over and above slow “procedural” learning, the findings show that there is also rapid

recalibration of how different sounds are interpreted. This working representation of speech enables

adaptation to changing or noisy environments and illustrates that the process is far more dynamic

and flexible than previously thought.
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ibi /- /idi/ (cued by burst and frication), nor for /ama/- /ana/or to /ubu/- /udu/continua (both cued by

formant transitions). Likewise, in a word recognition task, participants were able to keep different

F0/VOT (fundamental frequency/voice onset time) correlation statistics for different places of articu-

lation (Idemaru and Holt, 2014). Based on this failure to generalize, we hypothesized that very

short-term changes can modify the internal mapping between sensory features and sublexical

speech categories rather than phonemic categories.

To test this hypothesis, we simulated Lüttke et al.’s experiment (Lüttke et al., 2016a), using an

audiovisual integration model based on hierarchical Bayesian inference. The model was a version of

a previous model of the McGurk effect (Olasagasti et al., 2015) that further included an adaptation

mechanism using residual prediction errors to update internal representations associated with the

perceived category. The model divides the process in two steps: perceptual inference and internal

model recalibration. During perceptual inference the model takes the sensory input and infers a per-

ceived speech category, by choosing the category that minimizes sensory prediction error. However,

‘residual’ prediction errors might remain following perceptual inference. This is typically the case

after McGurk fusion; since the best explanation for the multisensory input, ‘ada’, is neither the audio /

aba/ nor the visual /aga/, ‘residual’ prediction errors remain in both acoustic and visual modalities.

The best match to the experimental results described above (Lüttke et al., 2016a) was obtained

when we considered that adaptation included two different time scales, resulting in 1) a transient

effect leading to recalibration towards the most recently presented stimulus features, decaying

towards 2) a longer-lasting representation corresponding to a mapping between category and stim-

ulus features determined within a longer time span.

Overall, these findings are consistent with theories that posit that the brain continuously recali-

brates generative (forward) models to maintain self-consistency (e.g., Friston et al., 2010), and

offers a neuro-computationally plausible implementation to resolve cognitive conflicts, which can

sometimes appear as irrational behaviors, such as in post-choice re-evaluation of alternatives

(Coppin et al., 2010; Izuma et al., 2010; Colosio et al., 2017; Otten et al., 2017).

Results

Simulation of the perceptual decision process
In a re-assessment of an existing dataset (Lüttke et al., 2016a) selected participants with high per-

centage of fused percepts for McGurk stimuli. When presented with acoustic /aba/ together with a

video of a speaker articulating /aga/ the most frequent percept was /ada/; we refer to these as fused

McGurk trials. These listeners were combining information from acoustic (A) and visual (V) modalities

since the same /aba/ acoustic token was correctly categorized as /aba/ when presented alone. After

a fused McGurk trial, participants showed recalibration. They classified acoustic only /aba/ stimuli as

‘ada’ more frequently (29% ‘ada’ percepts) than when the acoustic only /aba/was presented after

any other stimulus (16% ‘ada’ percepts).

Our goal was to compare generative models that interpret sensory input and continuously recali-

brate themselves to best match the incoming input. Unlike many other studies of speech recalibra-

tion, the stimulus generating recalibration in Lüttke et al. (the McGurk stimulus) was not presented

alone, but as part of a set of six stimuli that were presented in random order, thus making transient

effects detectable. The assessment involved three acoustic only stimuli with sounds corresponding

to /aba/, /ada/ or/aga/; and three audiovisual stimuli – congruent /aba/, congruent /ada/, and the

McGurk stimulus (acoustic /aba/with video of /aga/).

We simulated Lüttke et al.’s experiment by using a generative model relating the three possible

speech categories (/aba/, /ada/ and /aga/) to the sensory input. We characterized sensory input with

a visual feature, the amplitude of lip closure during the transition between the two vowels (sV); and

an acoustic feature, the amplitude of the 2nd formant transition (sA). We use ‘A’ to refer to quantities

related to the acoustic feature and ‘V’ to quantities related to the visual feature.

The internal generative model that characterizes the participant, described in detail in the meth-

ods section, generates sensory inputs (sA and sV) for the congruent versions of each of the three pos-

sible categories (k = /aba/, /ada/, /aga/). The model has a representation for each congruent

category based on a Gaussian distribution in a two-dimensional feature space, itself a product of

two univariate Gaussian distributions centered at (qk,V qk,A) and with standard deviations (sk,V, sk,A)
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for tokens k = {/aba/,/ada/,/aga/} (Figure 1, right panel). The model assumes that given a speech

token k, 2nd formant amplitude CA and lip closure amplitude CV for each individual trial are chosen

from the corresponding Gaussian distribution (Figure 1, right panel). Once values for CA and CV

have been determined, sensory lip closure and 2nd formant transitions are obtained by adding sen-

sory noise (parameterized by sV and sA), to obtain the sensory input: sA and sV. During inference,

the model is inverted and provides the posterior probability of a token given the noisy sensory input

p(k|sV,sA).

In both acoustic and audio-visual trials the listener was asked to report the perceived acoustic

stimulus in a three-alternative forced choice task. To simulate the listener’s choice, we calculated the

probability of the acoustic token given the stimulus. In our notation, this probability is expressed by

p(kA|sV,sA) for audiovisual stimuli and by p(kA|sA) for unimodal acoustic stimuli (see Materials and

Methods for details). The percept at a single trial was determined by choosing the category that

maximizes the posterior.

The model qualitatively reproduces the average performance across participants in the task. We

chose parameters that elicit a very high rate of McGurk percepts (Figure 2, middle panel of the bot-

tom row) and assumed that listeners were always integrating the two sensory streams.

Simulation of the recalibration process
After the model has made the perceptual decision, it is recalibrated. After each trial, we changed

the generative model’s location parameters associated with the perceived category (qk,V qk,A), which

represent the categories through their expected sensory feature values in each modality. This was

done for both the acoustic and visual parameters after an audio-visual trial, and for the acoustic

parameter after an acoustic trial. We assumed that this happens for every trial as part of a monitor-

ing process that assesses how well the internal model matches sensory inputs. The changes are thus

driven by residual sensory prediction error, the difference between the expected and observed val-

ues for the modulation amplitudes in each modality.

When listeners consistently reported the fused percept ’ada’ when confronted with a video of /aga/

and the sound of /aba/, the presence of the visual stream modified the acoustic percept from ’aba’ to

‘ada’. Given that the acoustic input did not correspond to the one that was most expected from the

perceived token, there was a systematic residual sensory prediction error. Since this residual predic-

tion error was used as a signal to drive the model’s adaptation, the /ada/ representation moved

towards the McGurk stimulus parameters after a fused percept (Figure 3A).

Figure 1. Schematics of the generative model. In a given trial, a speech token ‘k’ determines the amplitudes of

degree of lip closure (CV) and magnitude of second formant deflection (CA) by sampling from the appropriate

Gaussian distribution. The distributions corresponding to each speech token ‘k’ are represented in the two-

dimensional feature space on the right panel. The model also includes sensory noise to account for how these

features appear at the sensory periphery (sV and sA).
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In the model, the residual prediction error occurs in the transformation from token identity to pre-

dicted modulation of the acoustic feature (CA). Sensory evidence drives estimated CA towards the

experimentally presented value: /aba/ for McGurk stimuli. Thus, when the percept is /ada/, there is a

mismatch between the top-down prediction as determined by the top-down component p(CA|k) that

drives CA towards q/ada/,A, and the actual value determined by the bottom-up component. This is

evident in the following expression

Ck;A ¼
s
2

A

s
2

Aþs
2

k;A

�k;Aþ
s
2

k;A

s
2

Aþs
2

k;A

SA (1)

with the first term reflecting the prior expectation for category ‘k’ and the second reflecting the sen-

sory evidence.

The expression can be rewritten to make the prediction error explicit.

Ck;A ¼ �k;Aþ
s
2

k;A

s
2

Aþs
2

k;A

ðSA� �k;AÞ (2)

This highlights how the listener’s estimate of the modulation comes from combining the predic-

tion from the category (first term) and the weighted residual prediction error (in the second term).

To minimize residual prediction error we consider that the participant recalibrates its generative

model, which changes qk,V and qk,A towards sV and sA. If the stimuli are chosen with parameters

‘adapted’ to the listener, as we do, sV ~ qstim,V and sA ~ qstim,A.

To drive recalibration we considered three different update rules; one derived from the Bayesian

model used by Kleinschmidt and Jaeger (2015), which assumes a stable environment and two

empirically motivated rules. As a control we also simulated the experiment with no parameter

Figure 2. Model’s overall performance. Simulation of the Lüttke et al. (2016a) experiment. Model classification

across all trials. Each subpanel shows the percentage of /aba/, /ada/ and /aga/ percepts corresponding to each of

the six conditions (Ab: acoustic only /aba/; Ad: acoustic only /ada/; Ag: acoustic only /aga/; VbAb: congruent

audiovisual /aba/; VgAb incongruent McGurk stimuli with visual /aga/ and acoustic /aba/; VgAg: congruent /aga/).

Congruent and acoustic only stimuli are categorized with a high degree of accuracy and McGurk trials are

consistently fused, that is, perceived as /ada/. We reproduce the experimental paradigm consisting of six types of

stimuli presented in pseudo-random order; three non-ambiguous acoustic only tokens:/aba/, /ada/ and /aga/, and

three audiovisual stimuli: congruent /aba/, incongruent visual /aga/with acoustic /aba/(McGurk stimuli), and

congruent /aga/.
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updates. For each recalibration model and parameter value set, we run the experiment 100 times,

therefore simulating 100 different listeners that share the same perceptual model. Each of the 100

simulated listeners was presented with a different random presentation of the six stimulus types;

each presented 69 times (as in the original paper). This gives a total of 414 trials per listener.

To compare with the results from Lüttke et al., who considered 27 participants, we randomly sam-

pled groups of 27 from the 100 simulated listeners to obtain an empirical sampling distribution for

the quantities of interest. We focus on the ‘McGurk contrast’: proportion of /aba/ sounds reported

as ‘ada’ 29% when preceded by a fused McGurk trial versus 16% when preceded by other stimuli.

We will also consider the ‘/ada/ contrast’: the difference in the proportion of purely acoustic /aba/

categorized as ‘ada’ when the preceding trial was a correctly categorized /ada/ sound (17%) versus

other stimuli (15%) (percentages correspond to the values reported in Lüttke et al., 2016a).

Figure 3. Internal model adaptation. (A) Speech tokens are represented in a multimodal feature space here

represented by two main dimensions. Each ellipse stands for the internal representation of each congruent

category (‘aba’ in blue, ‘ada’ in red, ‘aga’ in yellow). The red squares show the location of the audiovisual stimuli in

the 2D feature space. They represent congruent /aba/(top left), congruent /aga/(bottom right), and McGurk stimuli

(bottom left). When McGurk stimuli are repeatedly perceived as /ada/, the /ada/ representation (in solid red) is

modified in such a way that it ‘moves’ (dashed red) towards the presented McGurk stimulus (visual /aga/ with

acoustic /aba/) and therefore should affect the processing of subsequent sensory input. The right panel illustrates

how the acoustic representation for /ada/ has shifted towards that of /aba/. (B) The effects of the shift in the

internal representation on the categorization of the purely acoustic /aba/(Ab), /ada/(Ad) and /aga/(Ag) sounds.

Each panel shows the percentage of /aba/, /ada/ and /aga/ percepts for the ‘control’ representations (solid lines)

and the representations with the recalibrated /ada/(dashed line). As in Lüttke et al. (2016a), the biggest effect is

observed when categorizing the /aba/ sounds.
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Although we did not perform an exhaustive parameter search, we did repeat the simulations for

20 different values of perceptual model parameters and we also varied recalibration parameter val-

ues for each update rule (details in Methods).

Below, for each recalibration model, we report results based on the parameter values that led to

the best fit to the ‘McGurk contrast’.

Model without recalibration
As a control we simulated the experiment with no recalibration. For the simulation with the closest

fit to the McGurk contrast, the percentage of acoustic /aba/ categorized as ‘ada’ was 14% after

fused McGurk stimuli and 15% after the control stimuli (Wilcoxon signed-rank test p=0.6,

Figure 4A). The 95% CI for the difference between trials preceded or not by a fused McGurk stimu-

lus was [�6.48, 5.25]%. For the /ada/ contrast, the percentage of acoustic /aba/ categorized as ‘ada’

was 14% after correctly identified /ada/ sounds and 19% after the control stimuli (Wilcoxon signed-

rank test p=0.5). The 95% CI for the difference between the two conditions was [�8.24, 4.21]%.

Bayesian updating
We first considered the same updating principle as in Kleinschmidt and Jaeger (2015) to model

changes in speech sound categorization after exposure to adapting stimuli. After each trial the

Figure 4. Cumulative and transient update rules. ‘ada’ percepts in response to acoustic /aba/ stimulation. We

show two contrasts. The McGurk contrast compares the percentage of ‘ada’ responses when acoustic /aba/ is

preceded by control stimuli (acoustic /aba/ and /aga/, congruent /aba/ and /aga/) versus by fused McGurk trials.

The /ada/ contrast refers to acoustic /aba/ preceded by control stimuli (acoustic /aba/ and /aga/) versus acoustic

trials correctly perceived as ‘ada’. The four panels show the simulation results for the parameters that led to the

closest fit to the McGurk contrast reported by Lüttke et al. (2016a) for four different update rules as indicated in

the insets: (A) control, no update, (B) the standard Bayesian updates, (C) the constant delta rule, and (D) Decay,

the update rule that assumes that recalibration occurs at two time scales. Both the standard Bayes (B) and the

constant delta rule (C) lead to changes in internal representations that are reflected in the overall increase in ‘ada’

percepts (with respect to the control, no update model on panel A) however, it did not translate into significant

effects specific to the next trial. The model assuming two time scales does reproduce the effect of a fused McGurk

on the next trial (McGurk contrast). Only the McGurk contrast for the two time scale recalibration model (D, left)

was significant (**p=0.0003). All other p values were greater than 0.05, except (*, p=0.03, C right).
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generative model updates the parameters by considering their probability given the sensory input

and the categorization p(q|k sV sA), leading to sequential Bayesian updating (Equation 6 in the meth-

ods section). The closest fit to the McGurk contrast was obtained for simulations with kk,f,0 = 1 and

nk,f,0 = 1. The percentage of /ada/ responses to acoustic only /aba/ stimuli was 23% after fused

McGurk stimuli and 22% after control stimuli. This difference was not significant (Wilcoxon signed-

rank test p=0.7, Figure 4B). The 95% confidence interval for the difference in medians between the

two conditions was [�6.14, 7.97]%, thus failing to reproduce the effect of interest. This might be due

to the fact that Bayesian update rules have the form of a delta rule with a decreasing learning rate.

As a consequence, the magnitude of changes in the categories diminishes as the experiment pro-

gresses and all stimuli end up being related to the same internal model. The updates did lead to

observable effects; there was an overall increase of /ada/ responses to acoustic /aba/(24% vs. the

14% of the control experiment without parameter updates). The resulting changes in model parame-

ters are expected to induce an after-effect, that is, the point of subjective equivalence in an /aba /- /

ada/ acoustic continuum should be shifted in the direction of /aba/.

Constant delta rule
The Bayesian update rule used above assumes that the parameters are constant in time and that

therefore all samples have equal value, whether they are old or recent. This is equivalent to a delta

rule with a learning rate tending to zero. We therefore considered a rule with a constant learning

rate, which allows for updates of similar magnitude over the whole experiment. The model’s

expected modulation for the perceived category was recalibrated according to:

D�k;f ¼ 0:2ðsf � �kÞpðkjsA; sVÞ only fork ¼ percept

where f indexes the feature (f = A, acoustic feature; f = V, visual feature). As Figure 4C shows, the

percentage of acoustic /aba/ categorized as ‘ada’ was not significantly higher when the preceding

trial was a fused McGurk trial compared with any other stimulus (27% vs. 24%, Wilcoxon signed-rank

test, p = 0.08 Figure 4C; median difference at 95% CI [�0.14 12]%). Note that in this case too, the

proportion of /ada/ responses for acoustic /aba/ inputs is increased compared with simulations run

without any adaptation (Figure 4A).

Although the learning rate is constant, which means that recalibration magnitude does not neces-

sarily decrease during the experiment, recalibration does not decay across trials. As a result, for trials

between consecutive /ada/ percepts, stimuli experience a similar /ada/ category and the simulations

do not lead to a significant difference in the classification of acoustic /aba/ whether preceded or not

by a fused McGurk trial.

Hierarchical updates with intrinsic decay
We also tested an alternative update rule that was expected to better reflect how changes occur in

the environment. We considered that they might occur hierarchically, with just two levels in a first

approximation, corresponding to keeping ‘running averages’ over different time scales, enabling

sensitivity to fast changes without erasing longer-lasting trends.

We considered two sets of hierarchically related variables associated with a single category: qk,f
(fast) and mk,f (slow). The faster decaying one, qk,f, is driven by both sensory prediction error and the

more slowly changing variable, mk,f (more details can be found in Materials and Methods). This slowly

changing and decaying variable, mk,f, keeps a representation based on a longer term ‘average’ over

sensory evidence. In the limit, mk,f is constant; and this is what we consider here for illustrative pur-

poses. Thus the update rules include an instant change in the fast variable due to the sensory predic-

tion error in the perceived category plus a decay term toward the slower variable for every category.

The instant change corresponds to the traditional update after an observation; the decay reflects the

transient character of this update.

The results in Figure 4D were run with the following parameters:

D�k;f ¼ 0:4ðsf � �kÞpðkjsA; sVÞ only fork ¼ percept

D�k;f ¼ 0:14ð�k;f � �k;fÞ forallk
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D�k;f ¼ 0 forallk

where subscript f indexes the feature (f = A for acoustic, f = V for visual). All categories decay toward

the corresponding long-term stable values (mk,A, mk,V) in the inter-trial interval. By comparing the

decay contribution Dqk,f = 0.14 (mk,f - qk,f) with the update expression for a quantity with decay time

constant t in an interval Dt (here Dt = 5 s, the interval between consecutive trials) Dqk,f = Dt/t (mk,f -

qk,f), we can derive a rough estimate for the decay time constant t ~5/0.14 s ~ 35 s.

The percentage of acoustic /aba/categorized as ‘ada’ after control trials was 18% vs. 29% after

fused McGurk (Wilcoxon ranked-signed test, p=0.0004), the median difference being 95% CI: [5.8,

18.0]%. Therefore two effects can be observed; the overall increase in acoustic /aba/ categorized

as /ada/ and the rapid recalibration effect reflected in the specific increase observed when acoustic /

aba/ was preceded by a fused McGurk trial.

Update rule comparison
We have modelled recalibration as the continuous updating of the model parameters that represent

each of the speech categories used to guide perceptual decisions, in particular the expected values

of sensory features associated with each category qk,V, qk,A (k indexing the category). With this

approach, the ideal adapter Bayesian account turned out to be incompatible with the experimental

findings, due to the erroneous underlying assumption of a stable environment. Because the model

assumes that all the sensory observations are derived from exactly the same non-changing distribu-

tions, past observations do not lose validity with time. As a result, the location estimate corresponds

to the running average of the feature values in the stimuli that have been associated with each cate-

gory in the course of the experiment. As the occurrence of a perceived category increases, the size

of recalibration decreases, until categorization differences across successive trials are no longer

observable (Figure 5A).

The ‘delta rule’ and the ‘hierarchical update with decay’ both involve a constant learning rate

implying that the parameter changes following each perceptual decision do not decrease as the

experiment progresses (Figure 5B–C). Although both models were able to qualitatively reproduce

the main result, namely that the rate of acoustic /aba/ categorized as ‘ada’ was higher immediately

after a fused McGurk trial, the delta rule without decay did not provide a good fit. The ‘hierarchical

update with decay’ provided the best explanation for the experimental results. Specifically, its

advantage over the ‘delta rule’ is that the update decays across trials after a perceptual decision

towards a less volatile representation of the category, providing an effective empirical prior

(Figure 5C).

Discussion
Speech sound categories are constantly revised as a function of the most recently presented stimuli

(Samuel and Kraljic, 2009; Kleinschmidt and Jaeger, 2015; Heald et al., 2017). The proposed

model provides a possible account for fast and transient changes in speech sound categories when

Figure 5. Category parameters across an experiment. q/aba/,A, q/ada/,A and q/aga/,A after each of the 414 trials (69

repetitions of 6 different stimuli) in a sample simulated experimental run. (A) For the standard Bayesian model,

category parameter updates become smaller as the experiment progresses. (B) For the constant delta rule

updates of similar size occur throughout the experiment but are constant across trials. (C) Updates for the

hierarchical delta rule with decay don’t drift but decay to a long-term less volatile component.
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confronted to a volatile sensory environment, involving the constant recalibration of internal models

of speech.

The model was motivated by experimental results showing that /aba/ sounds were more fre-

quently mis-categorized as ‘ada’ when they were preceded by a fused McGurk (Lüttke et al.,

2016a). Since the reported effect was distinct from other well-documented across-trial dependency

effects, such as perceptual priming or selective adaptation (Heald et al., 2017; Gabay and Holt,

2018), we sought to model it considering only changes in perceived speech categories without

external feedback. Like previous approaches, ours builds on the idea that the brain achieves percep-

tion by inverting a generative model (e.g., Rao and Ballard, 1999; Knill and Pouget, 2004; Fris-

ton, 2005) and by continuously monitoring its performance to adapt it to changing stimulus

landscapes. One way the brain can alter its internal models without external feedback is by using the

perceptual outcome as a teaching signal or ground truth (Luu and Stocker, 2018) to induce model

recalibration, such that the outcome better explains the sensory features that produced it.

Such auto-recalibration of speech sound categories has been described within an ‘ideal adapter’

framework (Kleinschmidt and Jaeger, 2015). In this framework, perceptual categories are subject

to trial-by-trial changes well described by a Bayesian approach that implicitly assumes sound catego-

ries to be stable within an experimental session, and hence uses update/learning rules giving equal

weight to recent and past evidence. While this makes sense in a stable environment where informa-

tion remains equally relevant independent of its recency and the adaptation rule can describe the

adaptation dynamics in sublexical speech categories in experiments with blocks of repeated stimuli

(Bertelson et al., 2003; Vroomen et al., 2007), it failed here to account for the specific transient

effect in Lüttke et al. (2016b).

By comparing neurocomputational models with and without decay in their update rules, we show

that recalibration occurs at least at two levels, characterized by two different decaying timescales: a

fast decaying/short-term process (estimated to operate on the order of tens of seconds) that weighs

recent versus immediate past sensory evidence, and a slow decaying/long-term process that keeps a

longer trace of past sensory evidence to stabilize invariant representations. Such a dual process is

critical because speech sounds have both variable (e.g. speakers) and stable components (e.g. pho-

nemic categories).

The model was able to successfully reproduce transient speech category recalibration using

empirically motivated update equations that include two hierarchically related parameters with dif-

ferent learning and decaying timescales. The fast changing variable is driven by current sensory pre-

diction errors, and the more slowly changing one also driven by prediction errors but with a slower

learning rate and hence acting as a longer-span buffer (Figure 5; Equation (8)). As a result, the

parameter controlling the model expectations decays toward the longer-term parameter after a

transient change driven by the current sensory prediction error. After a fused McGurk trial, the

acoustic representation of /ada/ is shifted towards that of acoustic/aba/(Figure 3A), which increases

the chances of an acoustic /aba/ to be mis-categorized as ‘ada’ (Figure 3B). Since the recalibration

decays over time, the mis-categorization is most prominent for the acoustic /aba/ immediately fol-

lowing the McGurk fusion. On the other hand, because the decay drifts towards a more slowly

changing ‘version’ of the /ada/ category, the model can also accommodate a more persistent accu-

mulated adaptation as experimentally observed (Bertelson et al., 2003; Vroomen et al., 2007).

The model, which encompasses both the perceptual decision and the recalibration processes, is

also consistent with activity observed in auditory cortex (Lüttke et al., 2016a). When the acoustic-

only /aba/ was presented after a fused McGurk, fMRI activity in auditory cortex is more frequently

classified as ‘ada’ by a learning algorithm trained to distinguish correctly identified acoustic /aba/, /

ada/ and /aga/. The intermediate level in our perceptual model corresponds to the representation

of acoustic features in auditory cortex and visual features in extrastriate visual cortex. In our model

the amplitude of the 2nd formant transition (the acoustic feature that is most important for the aba/

ada contrast) results from a combination of bottom-up sensory information and top-down predic-

tions (Equations 1, 2). Since there are more /aba/ sounds perceived as ‘ada’ after a fused McGurk,

the top-down predictions during the perceptual process are dominated by the /ada/ category, that

is, our generative model predicts that activity in auditory cortex should be closer to /ada/ for acous-

tic /aba/ following fused McGurk trials, as shown by the fMRI data.

In summary, during audiovisual speech integration, and in McGurk stimuli in particular, the brain

tends to find the most parsimonious account of the input, merging the acoustic and visual sensory
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streams even at the expense of residual prediction errors at brain areas that encode unisensory stim-

ulus features, represented in the model by the acoustic 2nd formant and lip amplitude modulation.

Different participants may value differently this parsimony/accuracy trade-off. Those who consistently

fuse the two streams presumably recalibrate their category representations (e.g. /ada/ after fused

McGurk) thereby reducing residual prediction errors at the feature level. That is, we suggest that

recalibration does not happen primarily at the areas encoding the stimulus features, but at higher

order areas that encode sub-lexical speech categories, in a process that updates categories at least

with two time scales.

Non-Bayesian models of speech category learning and recalibration
As our interest lies at the computational level, we have not tested other, non-Bayesian models of

speech category learning and recalibration (reviewed in Heald et al., 2017). Some existing models

involve processes that are similar to ours; for example, non-Bayesian abstract models of new speech

category learning use Gaussian distributions with parameters that are updated with delta rules simi-

lar to that of Equation 7 (Vallabha et al., 2007a; McMurray et al., 2009). On the other hand, con-

nectionist models of speech category learning posit a first layer of units with a topographic

representation of the sound feature space and a second layer representing individual speech catego-

ries. Learning or recalibration is modelled by changing the connection weights between the two

layers. In this way, Mirman et al. (2006), modelled the recalibration of established prelexical catego-

ries that arises when an ambiguous sound is disambiguated by the lexical context as in the Ganong

effect – a sound between /g/ and /k/ that tends to be classified as /g/ when preceding ‘ift’ or as /k/

when preceding ‘iss’ (Ganong, 1980). This effect shares some similarities with the McGurk effect,

although the latter is stronger as it changes the perception of a non-ambiguous sound. The benefit

of having two timescales is also illustrated by a connectionist model of the acquisition of non-native

speech sound categories in the presence of well-established native ones (Vallabha and McClelland,

2007b). Interference between new and existing categories was avoided by positing a fast learning

pathway applied to the novel categories, and a slower learning pathway to the native ones. Finally,

connectionist models can also reproduce short-term effects such as perceptual bias and habituation

(Lancia and Winter, 2013). These examples suggest that a connectionist model could provide a

physiologically plausible instantiation of our abstract Bayesian model as long as one incorporates

two pathways with two different timescales or a single pathway that uses metastable synapses

(Benna and Fusi, 2016).

Advantages of a dual time-scale representation
Parallel learning systems working at different temporal scales have previously been proposed in rela-

tion to speech; one able to produce fast mappings and heavily relying on working memory, while

the other relies on procedural learning structures that eventually results in effortless, implicit, associ-

ations (Myers and Mesite, 2014; Zeithamova et al., 2008; Maddox and Chandrasekaran, 2014).

Our proposal can theoretically be motivated on similar grounds. We argue that the brain implements

at least two representations of natural categories; one more flexible than the other. The more flexi-

ble one might be used to achieve the agent’s current goal, while the more stable and less precise

representation keeps general knowledge about sound categories. We propose the term ‘working’

representation for the more flexible sound category representation, to distinguish it from its more

stable ‘episodic’ form.

Behaviourally, this can be advantageous when specific instances of a unique category, for exam-

ple from a single speaker, have less associated uncertainty than the overall prior distribution across

all possible instances across speakers. The ‘working representation’ corresponds to an ‘intermediate’

representation that has lower uncertainty and therefore makes the sensory integration process more

precise, leading to more confident perceptual decisions at the single trial level. This strategy allows

the agent to use a precise ‘working’ category that can quickly change from trial to trial.

In this view, the agent needs to infer the distribution (mean and covariance) that defines the work-

ing representation, and combine sensory evidence with the prior, that is, with the corresponding

long-term ‘episodic’ representation. Based on these Bayesian principles we wrote the hierarchical

recalibration rule (Equation 8), which appears whenever there are three quantities informing the cur-

rent estimate of a variable (under Gaussian conditions). In our model, the current expected value for
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the working representation is informed by the value derived from the observation in the previous

and current trials, and from the episodic representation as schematized in the right panel of Figure 6.

Bayesian inference assuming known volatilities for the two levels in Figure 6, and under the mean-

field approximation, can be calculated analytically resulting in update equations that take the form

written at the bottom of the diagram. The coefficients, which determine what is referred to as ‘learn-

ing rates’ in the reinforcement learning literature, are functions of the parameters of the model

related to the different sources of uncertainty: volatilities at both hierarchical levels, sensory noise

and the width of the episodic representation. Our proposed update equation therefore assumes

that agents have already estimated the volatilities at the two levels (as in Behrens et al., 2007;

Nassar et al., 2010; Mathys et al., 2014).

Finally, from the optimal agent’s perspective, the internal model used for a given trial is the pre-

dictive working representation built from 1) updated representations after the last observation and

2) their expected change in the intervening time. The latter component denotes the uncertainty

associated with the representations, for example more volatile representations becoming more

uncertain more quickly. This last point is important as it means that, across trials, increased uncer-

tainty associated with the previous estimate of the working representation implies more reliance on

the long-term representation. In other words, across trials, the expected sound feature modulation

encoded by the working representation ‘decays’ back towards that of the long-term representation.

This reflects a form of ‘optimal forgetting’, that is, the expected loss of relevance of a past observa-

tion for the current trial.

Functional neuroanatomy of transient category shifts
Whether the two time scales that were needed to explain simultaneous tracking of long and short-

term category representations are hierarchically organized or implemented in parallel, and what

brain regions or mechanisms might be implicated is an open question.

Figure 6. Statistical models underlying the two classes of update rules used in the paper. Here Q stands for the model parameters that determine the

speech categories used by the perceptual model (See Figure 3) and ‘k’ for the trial index. On the standard Bayesian approach (left), model parameters

are considered constant in time leading to update rules that give the same weight to all prediction errors, which in turn leads to a ‘learning rate’ ak that

becomes smaller with the number of trials. On the right, we show a hierarchical Markov model implementation that would lead to the kind of update

rules that we introduced empirically to accommodate the rapid recalibration effect. This alternative view implicitly assumes that model parameters can

change in time and therefore lead to update rules with learning rates (a, b and l) that under certain assumptions, settle to non-zero constant values.
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There are at least three scenarios that could support recalibration at different time scales. First, a

hierarchy of time scales might exist at the single synapse level. Hierarchically related variables with

increasing time scales (dynamics described by equations as in Figure 6B) have been used in a

modelling study to increase the capacity of memory systems and improve the stability of synaptic

modifications (Benna and Fusi, 2016), and a model of synapses with a cascade of metastable states

with increasing stability was able to learn more flexibly under uncertainty (Iigaya, 2016). In the latter

model, the intrinsic decay of synaptic modifications was faster for the more labile memory states, i.e.

those that are more sensitive to new evidence. In contrast, the deeper, more stable memory states,

showed slower decay, which overall nicely concurs with our proposal. It is thereforepossible that the

representations are encoded at synapses with the transient recalibration corresponding to synaptic

modification at the more labile states and the long-term component residing in the less labile states.

A second option involves prefrontal cortex working in tandem with other brain regions. In percep-

tual classification tasks under volatile conditions, prefrontal cortex can flexibly combine alternative

strategies, such as optimal Bayesian-like learning in stable environments and a working memory

model in volatile environments (Summerfield et al., 2011). In our setting, to guide the speech classi-

fication process, it could conceivably combine a ‘working’ short time scale representation of the

speech categories with a long-term ‘episodic’ representation, which might reside in different brain

networks. Several fronto-parietal regions have indeed been implicated in controlling the effect of

sensory and choice history on perceptual decisions: ‘Sensory evidence, choice and outcome’ could

be decoded from ventrolateral prefrontal cortex and predicted choice biases (Tsunada et al., 2019).

Neuronal responses in fronto-parietal circuits could provide a basis for flexible timescales

(Scott et al., 2017), as dissociated effects of working memory and past sensory history have been

found to involve the prefrontal cortex and posterior parietal cortices respectively (Akrami et al.,

2018). The observed sensitivity to sensory choice history and sensory evidence is consistent with our

model, which uses internal category representations to interpret sensory evidence, with category

representations being recalibrated based on choice (i.e., the perceived category).

Finally, the hierarchical nature of perception and action (Kiebel et al., 2008; Friston, 2008) might

be paralleled in the brain, by hierarchical processing in prefrontal cortex (Badre, 2008;

Koechlin and Jubault, 2006; Summerfield et al., 2006) and sensory areas (Felleman and Van

Essen, 1991; Chevillet et al., 2011). It is hence conceivable that the relation between the two time-

scales is hierarchical with higher-level representations becoming increasingly abstract and time

insensitive. This could happen, for example, if the brain used representations at a speaker level that

are drawn from more general representations of speech categories at the population level. Recali-

bration might work at every level of the temporal hierarchy, with higher levels integrating update

information within increasingly longer time windows (longer timescales), making them less and less

sensitive to new observations.

Revised ‘ideal adapter’
While the ‘ideal adapter’ account focused on cumulative recalibration (Kleinschmidt and Jaeger,

2015), our results suggest that shorter-lived effects are also behaviorally relevant. The ideal adapter

could be formalized as a simple incremental optimal Bayesian inference in a non-volatile environment

(Figure 6, left panel), whereas our update rule could be cast in a normative framework that explicitly

accounts for environmental volatility. A hierarchical model with constant volatility at two levels (Fig-

ure 6, right panel) could lead to hierarchical update equations (Wilson et al., 2013) that can be

approximated by constant learning rates (with higher learning rates - faster ‘forgetting’- being

related to stronger volatility). The right panel of Figure 6 assumes that the higher level (m) has lower

volatility than the intermediate level (q), hence combining volatility with hierarchy. This combination

departs from models used to explain decision making in changing environments (Behrens et al.,

2007; Summerfield et al., 2011; Mathys et al., 2014), which are not hierarchical, and focus on the

nontrivial task of inferring the environment volatility. These studies show that human participants

adapt their learning rates to the changing volatility, which could be modelled without keeping repre-

sentations across several time scales. In these tasks, participants need to keep track of short-lived

changes in arbitrary cue-reward associations or in arbitrarily defined sensory categories

(Summerfield et al., 2011), whereas we model overlearned and behaviourally relevant categories,

which also requires to maintain long-term estimates as empirical priors.
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Relevance to speech and language pathologies
Our modelling results are relevant to continuous speech processing, in particular to account for audi-

tory processing anomalies in dyslexia. Evidence from a two-tone frequency discrimination task sug-

gests that participants’ choices are driven not only by the tones presented at a given trial, but also

by the recent history of tone frequencies in the experiment, with recent tones having more weight

than earlier ones (Jaffe-Dax et al., 2017). It turns out that, when compared with controls, subjects

with dyslexia show a decreased reliance on temporally distant tones, suggesting a shorter time con-

stant (Jaffe-Dax et al., 2017). Translating this result to the current model, we could hypothesize that

in dyslexia the long-term component (m in Figure 6B) has either a shorter time span, or is coupled to

the lower representation with a lower weight. In both cases, we would expect a deficit in building

long-term stable speech category representations since they would be overly driven by the current

context. ASD individuals on the other hand, are optimally biased by long-term tones, but do not

show the bias by short-term tones of neurotypical participants (Lieder et al., 2019), which suggests

a faster decay or an absence of the short-term component in Figure 6B. This would predict a failure

of ASD individuals to show the specific effect after McGurk trials in the experiment simulated here.

Conclusion
We present a revised ‘ideal adapter’ model for speech sound recalibration that has both transient

and cumulative components organized hierarchically. This new model provides evidence for a hierar-

chy of processes in the recalibration of speech categories, and highlights that after experiencing the

McGurk effect, it is not the acoustic features related to the sensory input that are modified, but

higher-level syllabic representations. The model implies that the activity changes in sensory cortices

are not locally generated but reflect the interaction of bottom-up peripheral sensory inputs and top-

down expectations from regions where categorical perception takes place. Considering natural

speech processing as the inversion of a continuously monitored and recalibrated internal model can

unveil the potential operations and strategies that listeners use when they are confronted with the

acoustic volatility associated with speech categories, which by their nature have both rapidly chang-

ing (e.g. speaker specific) and slowly changing (e.g. speaker general) components. Such a model can

be implemented by a hierarchy of empirical priors that are subject to changes at different time

scales. Although developed in the context of speech processing, our proposal may also apply to

other cognitive domains requiring perhaps more nested timescales, such as action planning

(Badre, 2008; Koechlin and Summerfield, 2007; Koechlin et al., 2003).

Materials and methods

Generative model
The goal of inference is to establish which is the speech token that gave rise to the incoming sensory

input. We restrict ourselves to three possible tokens: /aba/, /ada/ and /aga/ (as in Lüttke et al.,

2016a). Although several acoustic and visual features can distinguish between them, we choose to

model the 2nd formant transition, which is minimal for /aba/ but increases for /ada/ and /aga/, and

the degree of lip closure, which is maximal for /aba/ and less prominent for /ada/ and /aga/(lip clo-

sure /aba/>/ada/>/aga/). This choice is based on the fact that what distinguishes between the three

speech sounds is the place of articulation. Acoustically the 2nd formant transition is an important cue

for place of articulation, particularly within the ‘a’ vowel context (Liberman et al., 1957); visually it is

the degree of lip aperture at the time of the vocal cavity occlusion depending on its location (com-

plete lip closure for the bilabial (/aba/), and decreasing lip closure for the alveolar (/ada/) and velar (/

aga/) (Campbell, 2008; Varnet et al., 2013).

The generative model has three levels; the higher level encodes the speech token, the speech

token in turn determines the expected values for the audiovisual cues, as represented in Figure 1A.

The model includes the three possible tokens, each determining the expected distribution of its

associated audiovisual features. We also introduce sensory noise to account for sensory variability.

The parameters, location and spread of features associated with each token, as well as the parame-

ter associated with the level of sensory noise, define an individual listener’s internal model. That is,

the listener models both the variability due to different articulations of the same speech category as

well as the variability due to noise in the sensory system.
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We use ‘k’ as the speech token index k = {/aba/,/ada/,/aga/}, ‘f’ as feature index f = {V,A}, where

‘V’ stands for the visual feature (lip aperture) and ‘A’ for the acoustic feature (2nd formant transition).

The idea is that the amplitudes of the lip aperture and 2nd formant modulations vary according to

the identity of the speech token (‘k’). ‘CV’ or ‘CA’ denote hidden states associated with these ampli-

tudes. Finally, ‘sV’ or ‘sA’ stand for the actual features in the audiovisual sensory input. The internal

generative model considers ‘sV’ and ‘sA’ the versions of ‘CV’ or ‘CA’ corrupted by sensory noise (sV,

sA).

There are two sources of variability, one related to sensory noise (sV, sA) and the variability of

modulation amplitudes across different articulations of the same speech token (sk,V, sk,A), k = {/aba/

,/ada/,/aga/}.

The hierarchical generative model is defined by the following relations:

pðsf jCf Þ / exp �ðsf �Cf Þ2
2s2

f

 !

; f ¼ A;V (3)

pðCf jkÞ / exp �ðCf � �k;f Þ2
2s2

k;f

 !

; f ¼ A;V ; k¼ speechtoken (4)

While the above defines the generative (top-down model) p(sf|Cf,k), our interest lies in its inver-

sion p(k|sA,sV), where sA,sV represents the sensory input in a single trial.

From the inversion of the model defined by the relations above one obtains:
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which results from marginalizing over ‘CV’ and ‘CA’-the intermediate stages that encode the visual

and acoustic features, explicitly:
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We assume that initial variance and prior probabilities are equal across categories (p(k)=1/3).

Alternatively, marginalization over ‘k’ gives the probabilities over the hidden variables ‘CV’ and

‘CA’, which we associate with encoding of stimulus features (lip aperture, 2nd formant transition) in

visual and auditory cortex respectively.
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This shows explicitly how internal estimates of sensory features (lip aperture ‘CV’ and 2nd formant

‘CA’) are driven by bottom up sensory evidence (sV, sA) and top-down expectations related with

each category ‘k’ contributing according to its internal expectations (qk,V qk,A). When there is strong

evidence for a given category ‘k’, the sum can be approximated by a single Gaussian centered at a

compromise between qk,V and sV for the visual feature and between qk,A and sA for the acoustic

feature.

In principle the model could also be made to perform causal inference (Magnotti and Beau-

champ, 2017), that is, decide whether the two sensory streams belong to the same source and

therefore should be integrated, or whether the two sensory streams do not belong to the same

source, in which case the participant should ignore the visual stream. Since Lüttke et al. explicitly

selected the participants that consistently reported /ada/ for the McGurk stimulus, these subjects
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were fusing the two streams. We hence assume that integration is happening at every audio-visual

trial.

The model’s percept corresponds to the category that maximizes the posterior distribution: p(k|

sA, sV).

Recalibration model
The previous section presented how the model does inference in a single trial. We now turn to how

the model updates the parameters that encode the internal representation of the three speech cate-

gories. This happens after every trial, thus simulating an internal model that continuously tries to

minimize the difference between its predictions and the actual observations; we assume that in this

process, in which the model tries to make itself more consistent with the input just received, it will

only update the category corresponding to its choice. We will present three updating rules. The nor-

mative incremental Bayesian update model used by Kleinschmidt and Jaeger (2015), and the

empirically motivated constant delta rule and hierarchical delta rule with intrinsic decay.

Bayesian updating
The internal representation of the speech categories is determined by six location parameters (qk,V
qk,A) and six width parameters (sk,V, sk,A). We follow Gelman et al. (2003) and define the following

prior distributions for the internal model parameters (qk,V, sk,V; qk,A, sk,A). For each of the six (q, s)

pairs (2 sensory features � 3 categories) the prior is written as:

pð�k;f ;sk;f Þ ¼ pð�k;f jsk;f Þpðsk;f Þ
/ s

2

k;f s
2

k;f
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2s

2
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� �

As above, f refers to the sensory feature, either V or A, and k to the speech category, either /aba/

, /ada/ or /aga/.

After a new trial with sensory input (sV, sA) the updated prior has the following parameters:
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ðsf ��k;f ;0Þ

vk;f ;0  vk;f ;0þ 1

vk;f ;0s
2

k;f ;0  vk;f ;0s
2

k;f ;0þ
kk;f ;0

kk;f ;0þ 1
ðsf ��k;f ;0Þ2

After each trial the inference process described in the previous section determines the percept

from the posterior probability p(k|sV sA). Only the feature parameters of the representation corre-

sponding to the percept are subsequently updated.

We use the values that maximize the posterior over the parameters given the input and the cur-

rent estimated category ‘k’ to determine the point estimates that will define the updated model

parameters for the next trial (Equation 6). The updates for the location and spread parameters then

take the form:

D�k;f ¼ 1

kk;f ;0þnðkÞ ðsf � �k;f Þ

Ds2

k;f ¼ 1

vk;f ;0þnðkÞþ1
kk;f ;0þnðkÞ�1
kk;f ;0þnðkÞ ðsf � �k;f Þ2�s

2

k;f

h i (6)

Where ‘k’ is the perceived category, n(k) the number of times the category has been perceived,

f = V,A designates the sensory feature and nk,f,0 and kk,f,0 are parameters from the prior distribution.

The larger nk,f,0 and kk,f,0 are, the more k ‘perceptions’ it takes for the parameter values of category

‘k’ to plateau but also the smaller the updates after each trial.
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Constant delta rule
The above update equations implicitly assume that the environment is stable and therefore updated

parameters keep information from all previous trials. This is the result of the generative model, which

did not include a model for environmental parameter changes. Introducing expectations about envi-

ronmental changes led us to consider rules with constant learning rates. We restrict ourselves here

to updates for the six location parameters (qk,V qk,A) of Equation 6.

We first considered a constant delta rule scaled by the evidence in favor of the selected category

p(k|sV, sA),

D�k;f ¼ Aðsf � �k;f ÞpðkjsV ; sAÞ (7)

As in the Bayesian case, updates accumulate without decay between trials. The main difference is

that qk,f is driven more strongly by recent evidence than by past evidence, implicitly acknowledging

the presence of volatility.

Hierarchical delta rule with decay
Finally we consider updates that decay with time. We reasoned that the decay should be towards

parameter estimates that are more stable, which we denote by mk,f. We propose a hierarchical rela-

tion, with updates in mk,f being driven by qk,f, while updates in qk,f are driven by sensory evidence. At

each trial all categories (k’) decay toward their long-term estimates and only the perceived category

(k) updates both mk,f and qk,f:

D�k0;f ¼ Dð�k
0 ;f � �k0 ;f Þ

D�k;f ¼ R1ðsf � �k;f ÞpðkjsV ; sAÞ
D�k;f ¼ R2ð�k;f ��k;f ÞpðkjsV ; sAÞ

(8)

The first equation reflects the decay while the last two equations apply to the perceived category

‘k’. ‘D’, ‘R1’ and ‘R2’ are constant parameters. R2 was set to zero since we do not expect the long-

term component to change significantly within the experimental session.

Model simulations
We simulate the experimental paradigm in Lüttke et al. (2016a), in which human participants were

asked about what they heard when presented with auditory syllables or auditory syllables accompa-

nied with a video of the corresponding speaker’s lip movements. There were six stimulus types:

three acoustic only stimuli: /aba/, /ada/ and /aga/ and three audiovisual stimuli, congruent /aba/,

congruent /ada/ and McGurk stimuli, that is, acoustic /aba/ accompanied by the video of a speaker

articulating /aga/. Each stimulus type was presented 69 times to each participant. In the original

experiment three different realizations of each of the six types were used. In our simulations we use

a single realization per stimulus that is corrupted by sensory noise.

As described above, our model proposes that syllables are encoded in terms of the expected

amplitudes and variances of audiovisual features. The expected amplitudes were taken from the

mean values across 10 productions from a single male speaker (Olasagasti et al., 2015), the ampli-

tudes were then normalized by dividing by the highest value for each feature resulting in the values:

(q/aba/,A = 0.1, q/ada/,A = 0.4, q/aga/,A = 1), (q/aba/,V = 1, q/ada/,V = 0.6, q/aga/,V = 0.37).

For the other parameters defining the perceptual model, variances and sensory noise levels, we

explored 20 different combinations. Five possible values for the pair (sV sA): (0.1, 0.1), (0.12, 0.12),

(0.12, 0.15), (0.15, 0.12), (0.15, 0.15). For each, we used four possible (sk,A sk,V) pairs: (0.1, 0.1), (0.1,

0.2), (0.2, 0.1) and (0.2, 0.2). Parameters outside this range typically led to categorization accuracy

worse than that from the participants in Lüttke et al. (2016a).

For each of the 20 parameter sets defining the perceptual model, we tested a set of values for

the parameters that define each recalibration model. Standard Bayes has two free parameters per

category and feature: kk,f,0 and nk,f,0 (Equation 6). We tested the same values for all categories and

features and therefore we drop the ‘k’ (category) and ‘f’ (feature) subscripts; kk,f,0 = k0, nk,f,0 = n0.

(k0, n0) = (1, 5, 10) ˜ (1, 5, 10) (where ˜ denotes the tensor product).

For the constant delta rule, there is a single parameter per category and feature; we use the

same for all categories but tested different values for different features. The learning rates for the
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visual feature (RV) and acoustic feature RA tested were (Equation 7) (RV, RA) = {(0.05, 0.1) ˜ (0.02,

0.04, 0.06, 0.08), (0.1, 0.2) ˜ (0.1, 0.2, 0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0. 6) ˜ (0.4, 0.5, 0. 6), (0.7, 0.8) ˜

(0.7, 0.8)}. In this case, we tested different values for visual and acoustic to increase the chances of

the delta rule to reproduce the experimental results.

The hierarchical delta rule with decay has three parameters per category and feature (Equation 8).

For all the simulation we set R2,V and R2,A = 0. For the other two parameters D and R1 (common

across categories and features) we tested 35 pairs: (R1, D) = (0.05, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2) ˜

(0.05, 0.1, 0.2, 0.3, 0.4).

Although we did not perform an exhaustive exploration of parameter space, the ranges tested

were determined by the informal observation that parameters outside the ranges tested led to

excessive recalibration—too many /aba/s categorized as ‘ada’ overall.

The stimuli presented to the modelled participant corresponded to the expected acoustic and

visual features of their internal model. Thus if the internal model for /aba/ is centered at q/aba/,A for

the acoustic feature and at q/aba/,V for the visual feature, those are the amplitudes chosen for the

input stimuli. In other words, stimuli were tailored to the modelled participant. It is worth emphasiz-

ing that the modelled agent does not have a fused ‘McGurk’ category; their model only includes

congruent expectations.

The six stimuli were defined by:

. Acoustic /aba/: (CV CA) = ( ;, q/aba/,A)

. Acoustic /ada/: (CV CA) = ( ;, q/ada/,A)

. Acoustic /aga/: (CV CA) = ( ;, q/aga/,A)

. Congruent /aba/: (CV CA) = (q/aba/,V q/aba/,A)

. McGurk: (CV CA) = (q/aga/,V q/aba/,A)

. Congruent /aga/: (CV CA) = (q/aga/,V q/aga/,A)

Even if the underlying parameters for a given stimulus type were the same for every trial, sensory

noise created variability. The input to the model was the pair sV, sA defined by:

sV ¼ CV þsV hV

sA ¼ CAþsAhA

where hV and hA are sampled from independent Gaussian distributions with zero mean and unit vari-

ance. That is, sV sA are noisy versions of the true amplitude modulations in the visual and auditory

modality.

The six stimulus types were presented to the model in random order with 69 repetitions for each.

At the end of the presentation, the model chose a percept based on the posterior distribution over

syllable identity ‘k’ given the stimulus. The perceived syllable was then recalibrated by updating its

defining parameters (either both mean and variance or mean alone depending on the specific

update rule).

In the model recalibration step, sometimes q/ada/,A became smaller than q/aba/,A. This happened

mostly for the constant delta rule as we increased the learning rate parameter, which also lead to

increases in the McGurk contrast. Despite this modification, the observed McGurk contrast for the

constant delta rule was not statistically significant. q/ada/,A becoming smaller than q/aba/,A constitutes

a reversal of the initial relation between these parameters; empirically one finds that 2nd formant

modulation is larger for /ada/ than for /aba/ (q/ada/,A > q/aba/,A). We included a line in our code that

made sure that this did not occur. If after recalibration q/ada/,A was smaller than q/aba/,A, the two were

interchanged. This can be interpreted as a prior that incorporates information about the relations

between categories. If reversals were accepted, subsequent acoustic /aba/ would be systematically

classified as /ada/.

Update rule evaluation
To evaluate the performance of the models, we used the following data from the original experi-

ment. 1) The McGurk contrast, defined by two values: pada,Mc the proportion of acoustic only /aba/

categorized as ‘ada’ when preceded by a fused McGurk; (29%) or by other stimuli pada,oth, acoustic /

aba/ and /aga/ and congruent /aba/ and /aga/, (16%). 2) Overall performance: the proportion of the

most frequent category for each of the six stimulus types: 80% of ‘aba’ percepts for acoustic only /

aba/, 83% of ‘ada’ percepts for acoustic only /ada/, 98% of ‘aga’ percepts for acoustic only /aga/;

Olasagasti and Giraud. eLife 2020;9:e44516. DOI: https://doi.org/10.7554/eLife.44516 18 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.44516


98% of ‘aba’ percepts for congruent audiovisual /aba/, 87% of ‘ada’ percepts for incongruent

McGurk (acoustic /aba/ and visual /aga/), and 98% of ‘aga’ percepts for congruent /aga/. We will

represent these values as the six entries of the vector cstim.

While the original experiment had 27 participants, we run the experiment 100 times. By drawing

6000 random samples of 27 from the 100 runs, we estimated appropriate sampling distributions. For

the quantities of interest listed in the previous paragraph we calculated the medians over the 6000

samples.

In a first step, for each update rule, we selected the model with the parameters that lead to the

minimum mean squared error for the McGurk contrast 2D2
Mc = (pada,Mc - 29)2 +(pada,oth - 16)2. The

coefficients in the update rules appearing in the Results section correspond to those that lead to the

minimum DMc for each update rule.

In a second step, we concentrated on the model with the best parameters for each update rule.

The 6000 random samples of size 27 were used to build a sampling distribution for DMc and a mea-

sure of overall performance also based on a mean squared error: 6D2
overall = (cAb - 80)2 +(cAd - 83)2

+ (cAg - 98)2 + (cVbAb - 98)2 + (cMcGurk - 87)
2 + (cVgAg - 98)2. Additionaly we calculated the 95% confi-

dence intervals for the size of the McGurk contrast (the difference pada,Mc - pada,oth). We choose as

representative for the 6000 samples, the sample with the median value for 6D2
overall+2D

2
Mc.

For each of the 6000 random samples we tested whether the McGurk contrast paired values pada,

Mc and pada,oth were significantly different (Wilcoxon signed rank test). In the results section we

report the 95% confidence intervals for the difference pada,Mc - pada,oth, as well as the Wilcoxon

signed rank test for the sample with the median value for 6D2
overall+2D

2
Mc, (the representative sam-

ple from the 6000).

Figure 4,includes the control or ‘/ada/ contrast’ for the representative sample. This contrast is

defined by the proportion of acoustic only /aba/ sounds categorized as ‘ada’ when preceded by an

acoustic only /ada/ correctly categorized as ‘ada’ or by other stimuli (acoustic only /aba/ or /aga/).

All simulations and statistical tests were performed using custom scripts written in MATLAB

(Release R2014b, The MathWorks, Inc, Natick, Massachusetts, United States). The original MATLAB

scripts used to run the simulations are available online (https://gitlab.unige.ch/Miren.Olasagasti/

recalibration-of-speech-categories; copy archived at https://github.com/elifesciences-publications/

recalibration-of-speech-categories; Olasagasti, 2020).
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