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Development and validation 
of a prognostic model for early 
triage of patients diagnosed 
with COVID‑19
Chansik An1,2, Hyun Cheol Oh3*, Jung Hyun Chang4, Seung‑Jin Oh5, Jung Mo Lee6, 
Chang Hoon Han6 & Seong Woo Kim7

We developed a tool to guide decision‑making for early triage of COVID‑19 patients based on a 
predicted prognosis, using a Korean national cohort of 5,596 patients, and validated the developed 
tool with an external cohort of 445 patients treated in a single institution. Predictors chosen for our 
model were older age, male sex, subjective fever, dyspnea, altered consciousness, temperature 
≥ 37.5 °C, heart rate ≥ 100 bpm, systolic blood pressure ≥ 160 mmHg, diabetes mellitus, heart 
disease, chronic kidney disease, cancer, dementia, anemia, leukocytosis, lymphocytopenia, and 
thrombocytopenia. In the external validation, when age, sex, symptoms, and underlying disease 
were used as predictors, the AUC used as an evaluation metric for our model’s performance was 
0.850 in predicting whether a patient will require at least oxygen therapy and 0.833 in predicting 
whether a patient will need critical care or die from COVID‑19. The AUCs improved to 0.871 and 
0.864, respectively, when additional information on vital signs and blood test results were also 
used. In contrast, the protocols currently recommended in Korea showed AUCs less than 0.75. An 
application for calculating the prognostic score in COVID‑19 patients based on the results of this study 
is presented on our website (https:// nhimc. shiny apps. io/ ih‑ psc/), where the results of the validation 
ongoing in our institution are periodically updated.

Since the World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) a pandemic 
in March 2020, it has been raging on, taking the lives of many people (over 4.4 million as of Aug 24, 2021)1. 
Since effective vaccines were recently developed, more than 5 billion doses have been administered worldwide. 
Still, however, more than 5 million people are being diagnosed with COVID-19 every  week1. The treatment of 
COVID-19 mainly relies on symptomatic relief and supportive care, oxygen therapy, and critical care, depend-
ing on the disease severity. Thus, it is crucial to triage COVID-19 patients rapidly and efficiently so that limited 
medical resources, including quarantine facilities, hospital beds, and critical care equipment, can be allocated 
appropriately.

The current protocols recommended for triage and referral of COVID-19 patients in many countries or by 
WHO are based on known risk factors and expert opinion but have not been validated on the actual patient 
 data2–5. Furthermore, since sudden disease progression in initially mild or asymptomatic COVID-19 patients is 
not rare with reported incidences of 6–12%6–9, we should base the triage and referral of COVID-19 patients on 
the worst severity expected during the disease course, rather than the severity at the time of diagnosis.

Data about the pandemic has now accumulated sufficiently to enable development of a data-driven prediction 
model for patient triage decision-making. Several prediction models for disease severity in COVID-19 patients 
have been  proposed10–20. There may be limitations, however, to applying these models for COVID-19 patient 
triage under some real-world circumstances. Most of these models require patients’ information obtained from 
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a blood test or imaging study. However, we often need to triage and refer COVID-19 patients immediately after 
the diagnosis with limited information depending on the situation.

Therefore, we aimed to develop and validate an easy-to-use tool for COVID-19 patient triage based on a pre-
dicted prognosis, with the flexibility to adapt to variable availability. We categorized variables into four groups—
demographics and symptoms, underlying diseases, vital signs, and laboratory findings—and develop separate 
algorithms for different combinations of the variable groups. We compared the performance of our models 
with the currently used triage protocols. Lastly, we validated the final model in an independent external cohort.

Results
Patients. Of the total 5,596 COVID-19 patients in the model development cohort, approximately half of 
the patients (52.1%) were 50 years or older, while people aged younger than 20 years accounted for only 4.9% 
(Table 1). The two most common age groups were 20–29 years (19.8%) and 50–59 years (20.4%). The ratio of 
males to females was 5.9:4.1. Most (85.4%) recovered without particular therapy, 9.1% of the patients required 
oxygen therapy, and the remaining 5.4% fell into severe conditions such as respiratory or multi-organ failure 
and required critical care such as mechanical ventilation or extracorporeal membrane oxygenation (ECMO). 
The overall mortality from COVID-19 infection was 1.1% (63/5,596). The mean time between diagnosis and 
recovery or death was 25.6 days, with a standard deviation (SD) of 11.0 days. Patients who were older, male, 
under-weight or obese, or with symptoms (except for diarrhea), underlying diseases (except for autoimmune 
disease), abnormal vital signs (except for diastolic blood pressure), or abnormal blood test results tended to fall 
into more severe conditions (Table 1). The training and internal validation subcohorts comprised 3940 and 1656 
patients, respectively. There was no significant difference in variables between the two subcohorts (Supplemen-
tary Table S1).

In the external validation cohort of 445 patients, the mean age was 59 years (SD, 20 years) with the ratio 
of males to females of 4.7:5.3. Of these, 8.8% (39/445) required intensive treatment or died of COVID-19. The 
detailed characteristics are summarized in Supplementary Table S2.

Selected predictors for each model. The full results of predictor selection are in Supplementary Table S3.

Model 1: from history taking. The predictors selected from Tier 1 variables for Model 1 were age, sex, and 
symptoms of subjective fever, rhinorrhea, dyspnea, and altered consciousness. As opposed to other selected 
predictors, rhinorrhea was associated with a better prognosis.

Model 2A: from history taking with known underlying disease status. The predictors chosen for Model2A were 
age, sex, subjective fever, dyspnea, and altered consciousness from Tier 1 (rhinorrhea excluded), and underly-
ing diseases of hypertension, diabetes mellitus (DM), heart disease, chronic kidney disease (CKD), cancer, and 
dementia from Tier 2 variables.

Model 2B: from history taking and physical examination with uncertain underlying disease. The predictors were 
age, sex, subjective fever, rhinorrhea, dyspnea, and altered consciousness from Tier 1, and high body tempera-
ture and tachycardia from Tier 3 variables.

Model 3: from history taking and physical examination with known underlying disease status. The predictors 
were age, sex, subjective fever, dyspnea, and altered consciousness from Tier 1 (rhinorrhea not included), severe 
hypertension (systolic blood pressure ≥ 160 mmHg), DM, heart disease, CKD, cancer, and dementia from Tier 2, 
and high body temperature and tachycardia from Tier 3.

Model 4: on admission. The predictors were age, sex, subjective fever, dyspnea, and altered consciousness from 
Tier 1, severe hypertension, DM, heart disease, CKD, cancer, and dementia from Tier 2, and high body tempera-
ture from Tier 3 (tachycardia excluded), and anemia, leukocytosis, lymphocytopenia, and thrombocytopenia 
from Tier 4 variables.

Variable effect size. Older age, altered consciousness, dyspnea, lymphocytopenia, leukocytosis, CKD, 
temperature of ≥ 38.5  °C, dementia, thrombocytopenia, cancer, subjective fever, male sex, anemia, DM were 
associated independently with prognosis, in decreasing order of odds ratio (OR) from the multivariable ordinal 
logistic regression (OLR) in the entire cohort (Fig. 1 and Supplementary Table S4).

Model performance. Conventional protocols. In predicting whether a patient will require more than sup-
portive care, the Korea Medical Association (KMA) model showed an area under the curve (AUC) of 0.723 (95% 
confidence interval [CI], 0.693–0.753) with a sensitivity of 54.9 (48.3–61.4)% and a specificity of 7.6 (6.3–9.1)%, 
and the AUC, sensitivity, and specificity of the Modified Early Warning Score (MEWS) were 0.598 (0.563–0.633), 
56.8 (50.1–63.4)%, and 23.5 (21.2–25.9)%, respectively, in the internal validation cohort (Table 2).

Development and internal validation of machine learning model. Machine learning models showed better per-
formances than the conventional protocols (Table 2 and Supplementary Table S5). In the internal validation, 
with the OLR algorithm, the AUCs of Models 1, 2A, 2B, 3, and 4 were 0.880 (95% CI, 0.855–0.904), 0.889 (0.865–
0.912), 0.866 (0.841–0.892), 0.894 (0.871–0.917), and 0.907 (0.884–0.929) in predicting whether a patient will 
require at least oxygen therapy, and 0.903 (0.869–0.937), 0.905 (0.869–0.940), 0.922 (0.892–0.953), and 0.927 
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Variable Supportive care O2 therapy Critical care Mortality p value Total

Number of patients 4780 (85.4%) 512 (9.1%) 241 (4.3%) 63 (1.1%) < 0.001 5596 (100%)

Days to recovery or death, mean (SD) 25.5 (10.3) 30.0 (12.1) 36.3 (16.1) 15.2 (13.4) < 0.001 25.6 (11.0)

Age

0–9 years 66 (100%) 0 (0%) 0 (0%) 0 (0%) < 0.001 66 (100%)

10–19 years 203 (99%) 1 (0.5%) 0 (0%) 1 (0.5%) 205 (100%)

20–29 years 1087 (98%) 20 (1.8%) 0 (0%) 2 (0.2%) 1109 (100%)

30–39 years 546 (97.2%) 11 (2%) 2 (0.4%) 3 (0.5%) 562 (100%)

40–49 years 703 (95.1%) 34 (4.6%) 2 (0.3%) 0 (0%) 739 (100%)

50–59 years 999 (87.6%) 114 (10%) 15 (1.3%) 12 (1.1%) 1140 (100%)

60–69 years 713 (78.7%) 135 (14.9%) 34 (3.8%) 24 (2.6%) 906 (100%)

70–79 years 331 (60.7%) 125 (22.9%) 73 (13.4%) 16 (2.9%) 545 (100%)

 ≥ 80 years 132 (40.7%) 72 (22.2%) 115 (35.5%) 5 (1.5%) 324 (100%)

Sex

Female 2858 (86.9%) 288 (8.8%) 114 (3.5%) 29 (0.9%) < 0.001 3289 (100%)

Male 1922 (83.3%) 224 (9.7%) 127 (5.5%) 34 (1.5%) 2307 (100%)

Pregnancy

No 4752 (85.3%) 512 (9.2%) 241 (4.3%) 63 (1.1%) 0.353 5568 (100%)

Yes 19 (100%) 0 (0%) 0 (0%) 0 (0%) 19 (100%)

Missing 9 (100%) 0 (0%) 0 (0%) 0 (0%) 9 (100%)

Body mass index (kg/cm2)

 < 18.5 225 (86.9%) 16 (6.2%) 16 (6.2%) 2 (0.8%) < 0.001 259 (100%)

18.5–23 1660 (89.5%) 127 (6.9%) 46 (2.5%) 21 (1.1%) 1854 (100%)

23–25 893 (86.4%) 108 (10.5%) 20 (1.9%) 12 (1.2%) 1033 (100%)

25–30 865 (82.8%) 125 (12%) 39 (3.7%) 16 (1.5%) 1045 (100%)

 > 30 178 (86%) 20 (9.7%) 5 (2.4%) 4 (1.9%) 207 (100%)

Missing 959 (80.1%) 116 (9.7%) 115 (9.6%) 8 (0.7%) 1198 (100%)

Subjective fever

Absent 3818 (88.9%) 296 (6.9%) 148 (3.4%) 32 (0.7%) < 0.001 4294 (100%)

Present 962 (73.9%) 216 (16.6%) 93 (7.1%) 31 (2.4%) 1302 (100%)

Cough

Absent 2836 (86.9%) 239 (7.3%) 160 (4.9%) 30 (0.9%) < 0.001 3265 (100%)

Present 1944 (83.4%) 273 (11.7%) 81 (3.5%) 33 (1.4%) 2331 (100%)

Sputum

Absent 3456 (86.7%) 319 (8%) 169 (4.2%) 41 (1%) < 0.001 3985 (100%)

Present 1324 (82.2%) 193 (12%) 72 (4.5%) 22 (1.4%) 1611 (100%)

Dyspnea

Absent 4445 (90.1%) 332 (6.7%) 128 (2.6%) 26 (0.5%) < 0.001 4931 (100%)

Present 335 (50.4%) 180 (27.1%) 113 (17%) 37 (5.6%) 665 (100%)

Sore throat

Absent 3989 (84.4%) 446 (9.4%) 228 (4.8%) 61 (1.3%) < 0.001 4724 (100%)

Present 791 (90.7%) 66 (7.6%) 13 (1.5%) 2 (0.2%) 872 (100%)

Rhinorrhea

Absent 4216 (84.7%) 468 (9.4%) 235 (4.7%) 60 (1.2%) < 0.001 4979 (100%)

Present 564 (91.4%) 44 (7.1%) 6 (1%) 3 (0.5%) 617 (100%)

Myalgia

Absent 4005 (85.6%) 400 (8.6%) 220 (4.7%) 52 (1.1%) < 0.001 4677 (100%)

Present 775 (84.3%) 112 (12.2%) 21 (2.3%) 11 (1.2%) 919 (100%)

Fatigue

Absent 4606 (85.9%) 475 (8.9%) 224 (4.2%) 58 (1.1%) < 0.001 5363 (100%)

Present 174 (74.7%) 37 (15.9%) 17 (7.3%) 5 (2.1%) 233 (100%)

Headache

Absent 3931 (84.8%) 421 (9.1%) 228 (4.9%) 53 (1.1%) < 0.001 4633 (100%)

Present 849 (88.2%) 91 (9.4%) 13 (1.3%) 10 (1%) 963 (100%)

Nausea or vomiting

Absent 4598 (85.9%) 470 (8.8%) 225 (4.2%) 59 (1.1%) < 0.001 5352 (100%)

Present 182 (74.6%) 42 (17.2%) 16 (6.6%) 4 (1.6%) 244 (100%)

Continued
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Variable Supportive care O2 therapy Critical care Mortality p value Total

Diarrhea

Absent 4354 (85.7%) 446 (8.8%) 223 (4.4%) 57 (1.1%) 0.022 5080 (100%)

Present 426 (82.6%) 66 (12.8%) 18 (3.5%) 6 (1.2%) 516 (100%)

Altered consciousness

Absent 4772 (85.8%) 512 (9.2%) 218 (3.9%) 59 (1.1%) < 0.001 5561 (100%)

Present 8 (22.9%) 0 (0%) 23 (65.7%) 4 (11.4%) 35 (100%)

Diabetes mellitus

Absent 4322 (88%) 397 (8.1%) 143 (2.9%) 47 (1%) < 0.001 4909 (100%)

Present 458 (66.7%) 115 (16.7%) 98 (14.3%) 16 (2.3%) 687 (100%)

Hypertension

Absent 3966 (90.2%) 304 (6.9%) 97 (2.2%) 31 (0.7%) < 0.001 4398 (100%)

Present 814 (67.9%) 208 (17.4%) 144 (12%) 32 (2.7%) 1198 (100%)

Heart disease

Absent 4756 (85.9%) 497 (9%) 223 (4%) 61 (1.1%) < 0.001 5537 (100%)

Present 24 (40.7%) 15 (25.4%) 18 (30.5%) 2 (3.4%) 59 (100%)

Asthma

Absent 4682 (85.6%) 495 (9.1%) 228 (4.2%) 63 (1.2%) 0.001 5468 (100%)

Present 98 (76.6%) 17 (13.3%) 13 (10.2%) 0 (0%) 128 (100%)

Chronic obstructive pulmonary disease

Absent 4760 (85.7%) 502 (9%) 233 (4.2%) 61 (1.1%) < 0.001 5556 (100%)

Present 20 (50%) 10 (25%) 8 (20%) 2 (5%) 40 (100%)

Chronic kidney disease

Absent 4757 (85.9%) 498 (9%) 225 (4.1%) 61 (1.1%) < 0.001 5541 (100%)

Present 23 (41.8%) 14 (25.5%) 16 (29.1%) 2 (3.6%) 55 (100%)

Cancer

Absent 4679 (85.8%) 490 (9%) 219 (4%) 63 (1.2%) < 0.001 5451 (100%)

Present 101 (69.7%) 22 (15.2%) 22 (15.2%) 0 (0%) 145 (100%)

Chronic liver disease

Absent 4404 (84.9%) 490 (9.4%) 234 (4.5%) 62 (1.2%) 0.033 5190 (100%)

Present 61 (73.5%) 14 (16.9%) 7 (8.4%) 1 (1.2%) 83 (100%)

missing 315 (97.5%) 8 (2.5%) 0 (0%) 0 (0%) 323 (100%)

Autoimmune disease

Absent 4430 (84.7%) 498 (9.5%) 238 (4.6%) 63 (1.2%) 0.356 5229 (100%)

Present 29 (76.3%) 6 (15.8%) 3 (7.9%) 0 (0%) 38 (100%)

missing 321 (97.6%) 8 (2.4%) 0 (0%) 0 (0%) 329 (100%)

Dementia

Absent 4355 (86.3%) 463 (9.2%) 166 (3.3%) 62 (1.2%) < 0.001 5046 (100%)

Present 107 (47.8%) 41 (18.3%) 75 (33.5%) 1 (0.4%) 224 (100%)

missing 318 (97.5%) 8 (2.5%) 0 (0%) 0 (0%) 326 (100%)

Heart rate (beat/min)

Bradycardia (< 60) 87 (80.6%) 15 (13.9%) 6 (5.6%) 0 (0%) 0.001 108 (100%)

Normal (60–100) 3799 (86.3%) 394 (8.9%) 160 (3.6%) 50 (1.1%) 4403 (100%)

Tachycardia (> 100) 784 (81.8%) 102 (10.6%) 61 (6.4%) 12 (1.3%) 959 (100%)

Missing 110 (87.3%) 1 (0.8%) 14 (11.1%) 1 (0.8%) 126 (100%)

Body temperature (°C)

 < 37.5 4300 (88.0%) 380 (7.8%) 166 (3.4%) 39 (0.8%) < 0.001 4885 (100%)

37.5–38 349 (75.4%) 70 (15.1%) 36 (7.8%) 8 (1.7%) 463 (100%)

38–38.5 74 (54.4%) 31 (22.8%) 21 (15.4%) 10 (7.4%) 136 (100%)

38.5 ≥ 38.5 32 (43.8%) 29 (39.7%) 6 (8.2%) 6 (8.2%) 73 (100%)

Missing 25 (64.1%) 2 (5.1%) 12 (30.8%) 0 (0%) 39 (100%)

Systolic blood pressure (mmHg)

 < 120 1140 (87.3%) 95 (7.3%) 58 (4.4%) 13 (1%) < 0.001 1306 (100%)

120–129 988 (86.8%) 110 (9.7%) 28 (2.5%) 12 (1.1%) 1138 (100%)

130–139 939 (86.7%) 101 (9.3%) 32 (3%) 11 (1%) 1083 (100%)

140–159 1190 (84%) 141 (10%) 68 (4.8%) 18 (1.3%) 1417 (100%)

 ≥ 160 402 (78.4%) 65 (12.7%) 37 (7.2%) 9 (1.8%) 513 (100%)

Continued
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(0.894–0.960) in predicting whether a patient will need critical care or die, respectively (Table 2). The other 
machine learning algorithms—random forest (RF), linear support vector machine (L-SVM), and SVM with a 
radial basis function kernel (R-SVC)—did not show superior performances to the OLR model (Supplementary 
Table S5).

The sensitivity, specificity, accuracy, precision, and negative predictive value (NPV) at different cutoff prob-
abilities for the OLR models are presented in Supplementary Table S6. The models showed good calibration in 
the training and testing, especially in the probability range of < 50% (Fig. 2). Figure 3 shows the nomogram of 
OLR Model 4 to predict the probability of recovering without particular treatment and the probability of requir-
ing critical care or death from COVID-19 (see Supplementary Fig. S1 for the nomograms of all the five models).

External validation. In the external validation, the AUCs of Models 1, 2A, 2B, 3, and 4 were 0.829 (95% CI, 
0.786–0.869), 0.850 (0.809–0.895), 0.838 (0.796–0.879), 0.861 (0.822–0.902), and 0.871 (0.834–0.910) in predict-
ing whether a patient will require at least oxygen therapy, and 0.827 (0.754–0.901), 0.833 (0.759–0.907), 0.833 
(0.759–0.907), 0.851 (0.786–0.912), and 0.864 (0.802–0.916) in predicting whether a patient will need critical 
care or die, respectively (Table 3). The sensitivity, specificity, accuracy, precision, and NPV at the optimal cutoff 
probability for each model are presented in Table 3, and those at different cutoff probabilities can be interactively 
viewed on our website (https:// nhimc. shiny apps. io/ ih- psc/), where the results of validation ongoing in our insti-
tution are periodically updated; the results on the website will be different from those in this study after updates.

Variable Supportive care O2 therapy Critical care Mortality p value Total

Missing 121 (87.1%) 0 (0%) 18 (12.9%) 0 (0%) 139 (100%)

Diastolic blood pressure (mmHg)

 < 80 1763 (83.9%) 208 (9.9%) 104 (4.9%) 27 (1.3%) 0.266 2102 (100%)

80–89 1557 (86.7%) 156 (8.7%) 61 (3.4%) 22 (1.2%) 1796 (100%)

90–99 907 (86%) 102 (9.7%) 36 (3.4%) 10 (0.9%) 1055 (100%)

 ≥ 100 432 (85.7%) 46 (9.1%) 22 (4.4%) 4 (0.8%) 504 (100%)

Missing 121 (87.1%) 0 (0%) 18 (12.9%) 0 (0%) 139 (100%)

Hemoglobin (g/dL)

Anemia 715 (69.8%) 162 (15.8%) 128 (12.5%) 20 (2%) < 0.001 1025 (100%)

Normal* 2137 (84.7%) 267 (10.6%) 87 (3.4%) 32 (1.3%) 2523 (100%)

Elevated 471 (88.5%) 40 (7.5%) 14 (2.6%) 7 (1.3%) 532 (100%)

Missing 1457 (96.1%) 43 (2.8%) 12 (0.8%) 4 (0.3%) 1516 (100%)

Hematocrit (%)

Anemia 576 (66.1%) 151 (17.3%) 124 (14.2%) 21 (2.4%) < 0.001 872 (100%)

Normal** 2235 (85%) 274 (10.4%) 90 (3.4%) 31 (1.2%) 2630 (100%)

Elevated 505 (88.1%) 45 (7.9%) 16 (2.8%) 7 (1.2%) 573 (100%)

Missing 1464 (96.3%) 42 (2.8%) 11 (0.7%) 4 (0.3%) 1521 (100%)

White blood cell count (× 103/µL)

Leukocytopenia (< 4) 555 (80.6%) 99 (14.4%) 27 (3.9%) 8 (1.2%) < 0.001 689 (100%)

Normal (4–11) 2628 (83.3%) 336 (10.7%) 149 (4.7%) 41 (1.3%) 3154 (100%)

Leukocytosis (≥ 11) 141 (59.2%) 35 (14.7%) 53 (22.3%) 9 (3.8%) 238 (100%)

Missing 1456 (96.1%) 42 (2.8%) 12 (0.8%) 5 (0.3%) 1515 (100%)

Lymphocyte count (× 103/µL)

Lymphocytopenia (< 1) 407 (51.8%) 196 (25%) 147 (18.7%) 35 (4.5%) < 0.001 785 (100%)

Normal (1–4.8) 2871 (88.7%) 267 (8.2%) 77 (2.4%) 23 (0.7%) 3238 (100%)

Lymphocytosis (> 4.8) 33 (100%) 0 (0%) 0 (0%) 0 (0%) 33 (100%)

Missing 1469 (95.4%) 49 (3.2%) 17 (1.1%) 5 (0.3%) 1540 (100%)

Platelet count (× 103/µL)

Thrombocytopenia (< 150) 294 (58.8%) 106 (21.2%) 85 (17%) 15 (3%) < 0.001 500 (100%)

Normal (150–450) 2971 (84.7%) 352 (10%) 142 (4%) 44 (1.3%) 3509 (100%)

Thrombocytosis (> 450) 59 (81.9%) 11 (15.3%) 2 (2.8%) 0 (0%) 72 (100%)

Missing 1456 (96.1%) 43 (2.8%) 12 (0.8%) 4 (0.3%) 1515 (100%)

Table 1.  Patient characteristics in the model development cohort by the worst severity during the disease 
course. Values in cells and parentheses are the number and percentage of patients, respectively, except for 
the days to recovery or death. Patient characteristics in the external validation cohort is summarized in 
Supplementary Table S2. *Male, 13.8–17.2 g/dL; Female, 12.1–15.1 g/dL. **Male, 41–50%; Female, 36–48%.
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Discussion
Our results demonstrate that a data-driven model to predict prognosis can be a good tool for early triage of 
COVID-19 patients. A significant shortcoming of the triage protocols that are not based on data is that risk fac-
tors are not weighted appropriately based on their effects on the outcome. For example, the WHO algorithm for 
COVID-19 triage and referral regards age > 60 years and the presence of relevant symptoms or co-morbidities 

Figure 1.  Forest plot showing the odds ratios of final predictors from multivariable ordinal logistic regression. 
The horizontal error bars indicated 95% confidence intervals. Note that the upper limit of 95% confidence 
interval is truncated for altered consciousness and age > 80. Detailed results are presented in Supplementary 
Table S4, including the odds ratios with confidence intervals from univariable and multivariable regression 
analyses.

Table 2.  Model performance in early prediction of prognosis in COVID19 patients in the internal validation 
cohort. The results of other machine learning algorithms can be found in Supplementary Table S5. Values 
in parentheses are 95% confidence intervals. OLR ordinal logistic regression, AUC  area under the receiver 
operator characteristics curve, TP true positive, TN true negative, FP false positive, FN false negative, NPV 
negative predictive value, KMA Korean Medical Association, MEWS modified Early Warning Score. *The use 
of a ventilator or extracorporeal membrane oxygenation machine.

Model

No significant treatment versus  O2 therapy or more No critical care required versus critical care* or death

AUC TP/TN/FP/FN Sensitivity Specificity Accuracy Precision NPV AUC TP/TN/FP/FN Sensitivity Specificity Accuracy Precision NPV

OLR

Model1
0.880 
(0.855–0.904)

193/1199/236/48 80.1% (74.5–84.9) 83.6% (81.5–85.4) 83.1% (81.2–84.8) 45% (40.2–49.8)
96.2% 
(94.9–97.1)

0.903 
(0.869–0.937)

75/1336/251/14 84.3% (75–91.1) 84.2% (82.3–85.9) 84.2% (82.4–85.9) 23% (18.5–28)
99% 
(98.3–99.4)

Model2A
0.889 
(0.865–0.912)

195/1119/209/43 81.9% (76.4–86.6) 84.3% (82.2–86.2) 83.9% (82–85.7) 48.3% (43.3–53.3)
96.3% 
(95–97.3)

0.905 
(0.869–0.940)

81/1164/313/8 91% (83.1–96) 78.8% (76.6–80.9) 79.5% (77.4–81.5) 20.6% (16.7–24.9)
99.3% 
(98.7–99.7)

Model2B
0.866 
(0.841–0.892)

181/1147/261/53 77.4% (71.4–82.5) 81.5% (79.3–83.5) 80.9% (78.9–82.8) 41% (36.3–45.7)
95.6% 
(94.3–96.7)

0.914 
(0.884–0.944)

72/1312/247/11 86.7% (77.5–93.2) 84.2% (82.2–85.9) 84.3% (82.4–86) 22.6% (18.1–27.6)
99.2% 
(98.5–99.6)

Model3
0.894 
(0.871–0.917)

192/1082/210/40 82.8% (77.3–87.4) 83.7% (81.6–85.7) 83.6% (81.6–85.4) 47.8% (42.8–52.8)
96.4% 
(95.2–97.4)

0.922 
(0.892–0.953)

76/1199/242/7 91.6% (83.4–96.5) 83.2% (81.2–85.1) 83.7% (81.7–85.5) 23.9% (19.3–29)
99.4% 
(98.8–99.8)

Model4
0.907 
(0.884–0.929)

189/835/172/31 85.9% (80.6–90.2) 82.9% (80.5–85.2) 83.5% (81.3–85.5) 52.4% (47.1–57.6)
96.4% 
(95–97.6)

0.927 
(0.894–0.96)

68/1046/100/13 84% (74.1–91.2) 91.3% (89.5–92.8) 90.8% (89–92.3) 40.5% (33–48.3)
98.8% 
(97.9–99.3)

KMA model
0.723 
(0.693–0.753)

129/108/1308/106 54.9% (61.4) 7.6% (6.3–9.148.3-) 14.4% (12.7–16.1) 9% (7.5–10.6)
50.5% 
(43.6–57.4)

0.728 
(0.678–0.778)

43/1395/171/42 50.6% (39.5–61.6) 89.1% (87.4–90.6) 87.1% (85.4–88.7) 20.1% (14.9–26.1)
97.1% 
(96.1–97.9)

MEWS
0.598 
(0.563–0.633)

129/314/1023/98 56.8% (50.1–63.4) 23.5% (21.2–25.9) 28.3% (26.1–30.6) 11.2% (9.4–13.2)
76.2% 
(71.8–80.2)

0.631 
(0.574–0.689)

41/1112/371/40 50.6% (39.3–61.9) 75% (72.7–77.2) 73.7% (71.5–75.9) 10% (7.2–13.3)
96.5% 
(95.3–97.5)
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as risk factors, but it does not put different weights on  them2. However, if not treated as a continuous variable, 
age should be divided into multiple categories with appropriate weights because the risk continues to increase 
with age even after 60 years. Different symptoms or co-morbidities must also be weighted according to their 
importance when assessing the patients’ status for triage. For example, in the current study, subjective fever, 
dyspnea, and altered consciousness were independent risk factors for severe illness, while other symptoms such 
as cough, sputum production, sore throat, myalgia, and diarrhea were not.

Our final prediction model used the OLR algorithm. We chose the OLR over the other machine learning 
algorithms (i.e., RF, L-SVM, and R-SVM) because it showed comparable performances to the other algorithms 
in the final evaluation. Furthermore, a linear model like the OLR is more interpretable and easier to use even 
without a computer device, as nomograms can be used instead. We also observed the linear model’s superiority 
in predicting COVID-19 prognosis in our previous study in which we developed a model to predict the risk of 
COVID-19 mortality based on demographics and medical claim  data15.

Our current model has a few differences compared to other proposed models. Above all, our main purpose 
was to develop an easy-to-use prediction model that can be used widely in various real-world fields. This was 
another reason that we preferred a linear prediction model to other complex machine learning algorithms; 
simply by knowing the coefficients of the linear model, anyone can calculate the predicted risk using various 
methods: the nomogram or web-based application we developed, or even paper-and-pencil calculation. Several 
published prognostic models have also used linear logistic regression and proposed nomograms possibly for 
the same  reason10,13,16,17,20. However, those models were designed to be used for hospitalized patients, requiring 
information that is usually obtained after hospitalization such as laboratory test results or imaging studies. In 
contrast, our model is intended to be used in various situations, not only for hospitalized patients but also for 
early triage immediately after the diagnosis. Therefore, our model uses different algorithms depending on the 
available variable subsets. Health workers sometimes need to triage newly diagnosed COVID-19 patients even 
by a phone call alone, and patients commonly do not know their underlying disease exactly. Therefore, we expect 
that our model’s flexibility may make our model distinct from previous models and lead to a more widespread 
use. Lastly, we divided disease severity into three categories. This is more helpful than the binary categorization 
(i.e., recovery vs. mortality), because not all medical facilities capable of oxygen therapy can also provide critical 
care, such as mechanical ventilation or ECMO.

The predictors chosen in this study are not much different from the known risk factors of developing into 
critical conditions from COVID-1921. However, it was unexpected that chronic obstructive pulmonary disease 
(COPD), a known strong risk factor, was not selected as a predictor. We assume that this is because there were 
only 40 patients with COPD in the entire cohort, of whom 65% had dyspnea, and the disease severity of COPD 
might have varied widely. Thus, it is likely that the number of COPD cases was too small (became even smaller 
after the training-validation set split) to play a significant role independently from the other strong predictors.

There are limitations to our current model. First, since we trained and validated our model on Koreans’ data, 
it is unsure whether it can be generalizable to patient cohorts in other countries or races. We hope to be able to 
develop a triage model that can be used globally through collaboration. Second, we converted continuous vari-
ables such as blood test results into categorical variables, which may have resulted in some loss of information. 
Our intention was, however, to prevent small differences in continuous variables (which could be more of a noise 
than a true signal in terms of prediction) from overfitting models. Furthermore, all the variables categorized in 
this study have well-established cutoff values classifying them into categories (e.g., normal vs, abnormal). Third, 

Figure 2.  Calibration plot.
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Figure 3.  Nomogram of ordinal logistic regression model using all the predictors (Model 4). The nomogram is 
used by first giving each variable a score on the ‘Point’ scale. The points for all variables are then added to obtain 
the total points and a vertical line is drawn from the ‘Total points’ row to estimate the probability of requiring 
treatment and that of requiring critical care or death. The nomograms of the other models can be found in 
Supplementary Fig. S1.

Table 3.  Model performance in early prediction of prognosis in COVID19 patients in the external 
validation cohort. Values in parentheses are 95% confidence intervals. AUC  area under the receiver operator 
characteristics curve, TP true positive, TN true negative, FP false positive, FN false negative, NPV negative 
predictive value. *The use of a ventilator or extracorporeal membrane oxygenation machine.

Model

No significant treatment versus  O2 therapy or more No critical care required versus critical care* or death

AUC Cutoff (%) TP/TN/FP/FN Sensitivity Specificity Accuracy Precision NPV AUC Cutoff (%) TP/TN/FP/FN Sensitivity Specificity Accuracy Precision NPV

1
0.829 
(0.786–0.869)

30 82/260/46/38 68.3% (59.2–76.5) 85% (80.5–88.8) 80.3% (76.2–84)
64.1% 
(55.1–72.3)

87.2% 
(82.9–90.8)

0.827 
(0.754–0.901)

11 29/304/84/9 76.3% (59.8–88.6)
78.4% 
(73.9–82.3)

78.2% (73.9–82)
25.7% 
(17.9–34.7)

97.1% 
(94.6–98.7)

2A
0.850 
(0.809–0.895)

30 93/245/61/27 77.5% (69–84.6)
80.1% 
(75.1–84.4)

79.3% 
(75.2–83.1)

60.4% 
(52.2–68.2)

90.1% 
(85.9–93.4)

0.833 
(0.759–0.907)

23 24/350/38/14 63.2% (46–78.2) 90.2% (86.8–93)
87.8% 
(84.3–90.7)

38.7% 
(26.6–51.9)

96.2% 
(93.6–97.9)

2B
0.838 
(0.796–0.879)

20 93/235/71/27 77.5% (69–84.6)
76.8% 
(71.7–81.4)

77% (72.7–80.9)
56.7% 
(48.8–64.4)

89.7% 
(85.4–93.1)

0.833 
(0.759–0.907)

60 24/350/38/14 63.2% (46–78.2) 90.2% (86.8–93)
87.8% 
(84.3–90.7)

38.7% 
(26.6–51.9)

96.2% 
(93.6–97.9)

3
0.861 
(0.822–0.902)

29 92/250/56/28 76.7% (68.1–83.9)
81.7% 
(76.9–85.9)

80.3% (76.2–84)
62.2% 
(53.8–70.0)

89.9% 
(85.8–93.2)

0.851 
(0.786–0.912)

14 26/333/55/12 68.4% (51.3–82.5) 85.8% (82–89.1)
84.3% 
(80.5–87.6)

32.1% 
(22.2–43.4)

96.5% 
(94–98.2)

4
0.871 
(0.834–0.910)

39 95/254/46/25 79.2% (70.8–86.0)
84.7% 
(80.1–88.6)

83.1% 
(79.2–86.6)

67.4% 
(59.0–75.0)

91% 
(87.1–94.1)

0.864 
(0.802–0.916)

12 31/290/92/7 81.6% (65.7–92.3)
75.9% 
(71.3–80.1)

76.4% 
(72.1–80.4)

25.2% 
(17.8–33.8)

97.6% 
(95.2–99)
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our data lacked some important variables, such as smoking, respiratory rate, and oxygen saturation, and had 
missing values in some of the Tiers-2/3/4 variables, which may have affected the training and performance of 
the algorithms using those variables. We did not perform imputation for missing values because we did not want 
the uncertainty and potential bias from imputation, and imputation for missing values did not make significant 
differences in our preliminary analysis. Lastly, we did not experiment more machine learning algorithms such as 
extreme gradient boost. Thus, we cannot conclude that OLR is superior to all other machine learning algorithms.

In conclusion, we developed and validated a set of models that can be used for disease severity prediction 
and triage or referral of COVID-19 patients. Our prediction model showed a good performance with age, sex, 
symptoms, and the information on underlying disease used as predictors. The model performance was enhanced 
when further information on vital signs and blood test results were also used.

Materials and methods
Ethical approval. The Institutional Review Board of National Health Insurance Service Ilsan Hospital 
(NHIMC 2020-08-018 and 2021-02-023) approved this retrospective Health Insurance Portability and Account-
ability Act-compliant cohort study and waived the informed consent from the participants. We performed all 
methods in accordance with relevant guidelines and regulations.

Data source and patients. This study used two datasets. For model development and internal validation, 
we used a dataset containing the epidemiologic and clinical information of patients diagnosed with COVID-19 
in South Korea, which the Korea Disease Control and Prevention Agency collected, anonymized, and provided 
to researchers for the public interest. The data included 5,628 patients who either were cured or died from 
COVID-19 infection by April 30, 2020. After excluding 32 patients who lacked the information on disease sever-
ity or the presence or absence of symptoms, a total of 5,596 patients comprised the model development cohort. 
The dataset was randomly divided into training and internal validation cohorts with a ratio of 7:3 while preserv-
ing the disease severity distribution. We trained and optimized models using the training cohort and validation 
them on the internal validation cohort.

For external validation, we used a cohort of COVID-19 patients treated in National Health Insurance Service, 
Korea, between December 19, 2020 and March 16, 2021. After excluding 59 patients who were referred with 
severe conditions requiring oxygen therapy or mechanical ventilation at the time of admission, a total of 445 
patients comprised this external validation cohort (Fig. 4).

The outcome variable was the worst severity during the disease course, determined by the type of treatment 
required: (1) none or supportive treatment, (2) oxygen therapy, (3) critical care such as mechanical ventilation 
or ECMO, or death from COVID-19 infection.

Variables in four different tiers based on accessibility. We intended to develop a model that can be 
used flexibly in real-world circumstances where some of the variables may not be available. Therefore, we cat-
egorized variables into four tiers based on their accessibility (Table 1 and Fig. 4).

Tier 1: basic demographics and symptoms. Tier 1 variables can be obtained by simply asking a patient questions: 
age, sex, body mass index, pregnancy, and symptoms. The symptoms included were subjective fever, cough, 
sputum, dyspnea, altered consciousness, headache, rhinorrhea, myalgia, sore throat, fatigue, nausea or vomiting, 
and diarrhea. We separated this group of variables from others because there could be times when we need to 
triage a patient quickly without physical contact.

Tier 2: underlying diseases. Tier 2 variables are underlying medical conditions: hypertension, DM, heart dis-
ease, asthma, COPD, CKD, chronic liver disease, cancer, autoimmune disease, and dementia. We categorized 
these variables into a separate group because sometimes patients may not know exactly their underlying medical 
conditions. In this case, further actions may be required, including reviewing medical records or other examina-
tions.

Tier 3: vital signs. Tier 3 variables are blood pressure, body temperature, and heart rate. Our data lacked infor-
mation on breathing rate. We separated these variables from the first two tiers because these can be obtained 
only when a patient visits a medical facility or can measure their vital signs on their own. Blood pressure and 
heart rate were transformed into binary categorical variables by merging categories that were not significantly 
associated with disease severity based on the preliminary results in the training cohort: severe hypertension (sys-
tolic blood pressure ≥ 160 mmHg) and tachycardia (heart rate ≥ 100 bpm). We assumed that many patients had 
their body temperature measured while taking antipyretics, although our data did not contain the information 
on such patients’ proportion.

Tier 4: Blood test results. Tier 4 variables are hemoglobin, hematocrit, white blood cell (WBC) count, lympho-
cyte count, and platelet count, which are available only after a blood test. As with Tier 3, these variables were 
also transformed into binary categorical variables: anemia (hematocrit < 40%), leukocytosis (WBC ≥ 11 ×  103/
µL), lymphocytopenia (lymphocyte < 1,000/µL), and thrombocytopenia (platelet < 150,000/µL).

Predictor selection. To identify robust and stable predictors, we repeated tenfold cross-validation (CV) 
100 times with shuffling and choose variables that were selected more than 900 times out of 1,000 trials (> 90%) 
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based on two algorithms: Least Absolute Selection and Shrinkage Operator (LASSO) and RF. A variable was 
selected if its coefficient was non-zero on LASSO, and its variable importance on RF was  positive22,23.

Development of prediction models. We used four machine learning algorithms: OLR, multivariate RF, 
L-SVM, and R-SVM. For each algorithm, five models were created using one of the following five predictor sets: 
predictors chosen from the Tier 1 variables (Model 1), Tiers 1/2 variables (Model 2A), Tiers 1/3 variables (Model 
2B), Tiers 1/2/3 variables (Model 3), and Tiers 1/2/3/4 variables (Model 4). We optimized the hyperparameters 
for RF and SVM through a tenfold CV with a grid search in the training cohort, using AUC as an evaluation 
metric.

OLR is a general term for logistic regression with (usually more than 2) ordinal outcomes. Among different 
OLR models, we used proportional odds model which assumes that the effects of input variables are proportional 
across the different outcomes, as interpretation under this model deemed logical and meaningful in our case. 
In case of the current study, as the outcome of each patient, denoted as Y here, is classified into one of three 
categories: supportive treatment (y1), oxygen therapy (y2), and critical care or death (y3), the dependency of Y 
on X (a vector of input variables of x1, x2, …, xp) can be expressed as:

log

[

Pr(Y ≥ yj|X)

1− Pr(Y ≥ yj|X)

]

= αj +

p
∑

i=1

xiβi
(

i = 1, 2, . . . , p; j = 2, 3
)

Figure 4.  Study flow.
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 where Pr(Y ≥ yj) is the cumulative probability of the outcome; αj is a respective intercept; and βi is a coefficient 
corresponding to the xi variable. Readers interested in more detailed explanation are referred to the paper by 
Singh et al.24.

In this study, the number of outcomes were more than two (not binary), which is considered multiclass or 
multinomial classification in machine learning. OLR and RF can perform multiclass classification inherently. 
With SVM, we performed multiclass classification using the one-vs.-rest  scheme25.

Validation of prediction models in comparison with current protocols. We validated the opti-
mized models in the internal validation cohort after fitting them onto the entire training dataset. Based on the 
probabilities for each outcome category, we assessed the diagnostic performance of each model for whether or 
not a patient will require treatment (Outcome 1 vs. 2/3), and whether or not a patient will require critical care 
or die (Outcome 1/2 vs. 3). Sensitivity, specificity, accuracy, precision, and NPV according to different probabil-
ity cutoffs were calculated, in addition to AUC. We also drew calibration curves to compare the predicted and 
observed probabilities visually.

As a baseline for comparison, we also tested two protocols used to triage a newly diagnosed COVID-19 
patient: a protocol proposed by the KMA and  MEWS5,26. These are two of the protocols that the Korean govern-
ment currently recommends using with some modifications depending on the  situation5. Since we did not have 
information on smoking status, oxygen saturation, and respiratory rate, these variables were considered normal 
when applying the protocols. These protocols are described in detail in Supplementary Tables S7 and S8.

We tested the final model in the external validation cohort in the same manner as the internal validation. We 
also developed a web-based application for calculating the probability of requiring oxygen therapy or critical 
care based on the results of this study, where users also can view the ongoing validation results in our institution 
(https:// nhimc. shiny apps. io/ ih- psc/).
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