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Mitigating belief projection 
in explainable artificial intelligence 
via Bayesian teaching
Scott Cheng‑Hsin Yang1,4*, Wai Keen Vong2,4, Ravi B. Sojitra3,4, Tomas Folke1 & 
Patrick Shafto1

State-of-the-art deep-learning systems use decision rules that are challenging for humans to model. 
Explainable AI (XAI) attempts to improve human understanding but rarely accounts for how people 
typically reason about unfamiliar agents. We propose explicitly modelling the human explainee via 
Bayesian teaching, which evaluates explanations by how much they shift explainees’ inferences 
toward a desired goal. We assess Bayesian teaching in a binary image classification task across a 
variety of contexts. Absent intervention, participants predict that the AI’s classifications will match 
their own, but explanations generated by Bayesian teaching improve their ability to predict the AI’s 
judgements by moving them away from this prior belief. Bayesian teaching further allows each case 
to be broken down into sub-examples (here saliency maps). These sub-examples complement whole 
examples by improving error detection for familiar categories, whereas whole examples help predict 
correct AI judgements of unfamiliar cases.

While Artificial Intelligence (AI) can help address socially-relevant problems1–3, it is important for humans to 
be able to scrutinize AI decisions so we may audit, understand, and improve performance; indeed, this is legally 
mandated in certain contexts4,5. The best performing AI algorithms rely on complex decision rules based on 
features that feel alien to most humans6. The abstruseness of these AI models impedes their adaptation in high-
leverage contexts, emphasizing the need for successful explanations that facilitate human understanding and 
prediction of the AI’s behavior.

A popular class of methods to explain AI systems is explanation-by-examples. Explanation-by-examples takes 
as input an AI model to be explained and the data that it has been trained on and produces as output a small sub-
set of training data that exert high impact on the inference of the explainee. For example, if the aim is to explain 
whether a deep-learning model would classify a given image as a cat or a dog, explanation-by-examples selects 
the cat and dog images that are most representative of those categories. The utility of explanation-by-examples 
is supported by research that confirms humans’ ability to induce principles from a few examples7–10 as well as the 
extensive use of examples in education11–13. The explanation-by-examples approach has many desirable proper-
ties: It is fully model-agnostic and applicable to all types of machine learning14–16; it is domain- and modality-
general17,18; and it can be used to generate both global explanation19–23 and local explanation24–26. Although the 
technology of explanation-by-examples for XAI has been developed for at least two decades27,28, empirical tests 
and connections to its ecological roots in the social sciences have been limited.

Explanation-by-examples can be considered a social teaching act, which can be formally captured by Bayesian 
teaching29. In Bayesian teaching, there are two parties, a teacher (explainer) who selects examples and an explainee 
(learner) who draws inferences. The teacher selects examples intended to maximize the explainee’s probability of a 
correct inference based on the teacher’s model of the explainee’s current beliefs and their inductive biases30–32; the 
explainee uses Bayesian updating to make predictions given these examples15,33–35. Existing work on explanation-
by-examples has demonstrated explanation effectiveness relative to several baseline conditions14,20,36,37; however, 
there is rarely a principled, apriori rationale as to why the proposed improvements should work. By explicating 
the computations used to model the explainer, the explainee, and the explanation selection process, Bayesian 
teaching provides testable predictions on the effectiveness of explanatory examples in different contexts.

We use image classification on the ImageNet 1K dataset38 as the testbed. The model to be explained is 
ResNet-5039. Following an ideal-observer approach40,41, we instantiate Bayesian teaching by selecting examples 
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with differing degrees of helpfulness as judged by the fidelity between the explainee model and the target model. 
For the explainee model, we used a ResNet-50-PLDA model, which is a ResNet-50 model where the last softmax 
layer is replaced by a probabilistic linear discriminate analysis (PLDA) model. This alteration introduces the 
probabilistic training required by Bayesian teaching while keeping the architecture of ResNet-50, which is known 
to accurately fit human labels39. In the context of image classification, Bayesian teaching can be expressed as

where d∗ is a target image; y∗ is the label predicted by the model to be explained, hence the target decision; {τ } 
is a set of explanatory examples; fL is the explainee model; the probability produced by fL(·) is the simulated 
explainee fidelity; and PT (·) determines the probability of selecting a set explanatory examples. See Fig. 1 for 
an overview and the “Methods” section for further details. Bayesian teaching also allows for selection of exam-
ples at different levels of granularity. For the current task, we consider the selection of entire images as well as 
pixels in an image as explanations. The latter pixel-selection process derived from Bayesian teaching turns out 
to be mathematically equivalent to a type of feature attribution method called Randomized Input Sampling for 
Explanations42. Thus the two levels of example granularity evaluated in this paper coincide with two popular 
methods of explanation—explanation-by-examples and saliency maps.

To give a concrete example, consider a trial where a participant tries to predict whether the target AI classi-
fier will classify a certain image as a barn or a flagpole (see Fig. 2). Bayesian teaching operates by selecting the 
four example images—two of a barn and two of a flagpole—from the training set that are most likely to make 
the explainee model reach the same judgement as the target model, i.e., high simulated explainee fidelity. The 
target image and the examples are overlaid with saliency maps where each pixel is weighted by the probability 
that showing it will guide the explainee model to the same conclusion as the target model.

Bayesian teaching contributes to the literature on XAI by formalizing the role of the explainee. Explicitly 
considering the explainee highlights how XAI methods can be validated, and how explanations informed by the 
explainee model can mitigate human prior beliefs about the AI system. We showcase three criteria to validate 
explainable AI from the Bayesian teaching perspective: (1) Explanations selected by Bayesian teaching improve 
the fidelity between human prediction of AI classification and actual AI classification; (2) the Bayesian Teacher 
can correctly infer which explanations humans will prefer; and (3) the Bayesian Teacher can accurately predict 
both which explanation will improve fidelity and which explanations will decrease it. Additionally, we show how 
the prior beliefs of human participants can be mitigated by appropriate explanations. Consistent with existing 
work from psychology44,45, we find that human participants project their own beliefs onto the AI system. This 
belief-projection manifests as (4) fidelity being higher when the AI is correct relative to when it is wrong, (5) this 
impact of AI correctness on fidelity being particularly pronounced for familiar categories, and (6) these effects 
being mitigated by appropriate explanations. We provide justifications and intuitions for these six points in the 
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Figure 1.   Overview of Bayesian teaching. Green section: Bayesian teaching selects a few examples from the 
training data as explanatory examples. The explanatory examples are selected such that when the explainee 
model is trained on those examples, the fidelity between the model decision and the target decision (simulated 
explainee fidelity) matches a desired value. The same logic is applied to generate the saliency maps, where pixels 
are treated as examples at a finer granularity. Purple section: The explanatory examples and saliency maps are 
also shown to human participants. Explanation effectiveness is evaluated by how the examples influence the 
fidelity between participants’ decisions and the target decisions. Symbols correspond to those in Eq.  (1); arrows 
indicate input-output relationship; and dotted line indicate comparison. The models and data used are indicated 
in parenthesis. This figure was created using Adobe Illustrator CS6 (v. 16.0.0)43.
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following paragraphs. To the best of our knowledge, this is the first paper to empirically explore the implications 
of human belief-projection for explainable AI.

The core prediction of Bayesian teaching is that explanations which lead the explainee model to correct pre-
dictions will help humans to better understand the AI. We test this by evaluating whether participants exposed 
to helpful examples and saliency maps are better able to predict the AI system’s classifications than participants 
who do not view any explanations. Returning to our example in Fig. 2, this means that a participant who is shown 
the example images and saliency maps are more likely to correctly predict that the AI classified the image as a 
flagpole rather than a barn, relative to a participant who is only shown the target image without any explana-
tion. This is a generous test of Bayesian teaching, but a necessary one, because failing this test would make all 
subsequent results moot. Provided that the explainee model match human users reasonably well, we expect that 
examples selected to be helpful by the Bayesian Teacher will be preferred over examples that are selected to be 
unhelpful or at random. A stricter test of the appropriateness of the Bayesian teaching is whether it can predict 
both explanations that improve the fidelity of human predictions and those that lead to reduced fidelity. Such 
calibration implies that it is not every explanation improves fidelity, but that explanations need to be curated to 
reach a desired result. In our experimental setup this would manifest in examples that are judged to be helpful 
or detrimental by the Bayesian Teacher increasing or reducing the fidelity of the participants’ predictions to the 
AI judgments, respectively.

If human participants project their beliefs onto the AI system, they will expect the AI classifier to be highly 
accurate because they themselves perform well at image classification38. In our experiment this translates to 
humans who predict AI classifications achieving higher sensitivity (correctly predicting AI’s correct classifica-
tions) than specificity (correctly predicting AI’s mistakes), absent explanation. In the context of our example: 
since the target image is showing a barn, a participant not given any explanation should typically (incorrectly) 
predict that the AI will classify the image as a barn rather than a flagpole. However, this effect should not be 
uniform across trials because some categories are easier to distinguish than others. Since more familiar categories 
should be easier to distinguish, and since participants expect the model to get the right answer for trials they 
themselves find easy, belief projection implies that familiarity should increase fidelity for model hits. Conversely, 
familiarity should decrease fidelity for model errors. Introducing a different example, a participant who is familiar 
with dogs will find the discrimination between yorkshire terrier and silky terrier easy, whereas someone less 
familiar with dogs might struggle with the first-order categorization, and consequently be more willing to con-
sider the AI classifier making a mistake.

If explanations generated by Bayesian teaching operates by mitigating belief-projection, we would expect 
them to reduce the gap between sensitivity and specificity by increasing the latter (improving error detection). 
Additionally, the belief-projection implies that examples improve fidelity the most for unfamiliar categories, 
whereas saliency maps improve fidelity most for familiar categories. The reason why examples are most benefi-
cial for unfamiliar categories is that they could strengthen category distinctions for unfamiliar categories with 
fuzzier mental representations. In the context of the two breeds of terrier: someone who is unfamiliar with dogs 
can leverage the examples to better understand what features distinguish the two breed, and compare that to 
the features of the target image. Saliency maps, on the other hand, might be most diagnostic for familiar cases 
because they highlight features that were consequential to the AI system, and determining the appropriateness 
of these features requires familiarity with the categories. In the context of the barn versus flagpole example: most 
people can reliably distinguish between them, so can notice that the saliency map of the target indicates that the 
AI classifier pays less attention to the house relative to the whethervane, suggesting a potential misclassification.

Results
Methodological overview.  User understanding in the context of classification can be captured by how 
well the user can predict the model’s judgement. Throughout this paper we will refer to this predictive capacity 
as fidelity, referring to the agreement between an agent’s prediction (either a participant or theexplainee model) 
and the judgement of the classifier. A natural measure of explanation effectiveness is how much the explana-
tions increase such fidelity, relative to a control condition. We designed a two-alternative forced choice (2AFC) 
task in which participants were asked to predict the model’s classification of a target image between two given 
categories. No trial-by-trial feedback was provided to participants. It is important to note that in this task high 
fidelity does not imply that participants’ judgements match the ground truth of the image, which we refer to as 
first-order accuracy or simply accuracy. It is possible for a participant to have high accuracy (in that their judge-
ments often match the ground-truth category of the image) but poor fidelity (in that their judgements rarely 
match the AI’s).

We designed a total of 15 conditions that vary along three dimensions: (1) presence of informative labels (two 
levels: [generic labels] or ([specific labels]), (2) types of examples (three levels: [no examples], [help-
ful] or [random]), and types of saliency maps (three levels: [no map], [jet] or [blur]). The labels dimension 
indicate whether the images shown where given informative labels (e.g. “Border terrier” or “Norwich terrier”) or 
generic labels (Category A or Category B). The examples dimension indicate whether examples of the two image 
categories were shown, and if so, if they were selected to be helpful or were drawn from a uniform distribution of 
helpfulness as determined by Bayesian teaching. The saliency map dimension indicates if the images were overlaid 
with saliency maps that highlighted which pixels the AI classifier focused on to make its classification. If saliency 
maps were included, they were either visualized as a semi-transparent jet color map or as an image filter where 
unimportant pixels where blurred. We found no significant difference between the [blur] and [jet] conditions; 
thus, for increased clarity we use the [map] condition, which contains both variants, in the main text. See Sup-
plementary Discussion D2 for the main analyses in the paper repeated with [blur] and [jet] coded separately. 
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Table 1 shows the sample size of each condition. Figure 2 shows a trial where the categories are represented with 
informative label, helpful examples, and blur saliency maps.

Each trial has three more distinct features beyond the condition it belongs to: the category accuracy, the 
simulated explainee fidelity, and a familiarity score. Category accuracy refers to the classification accuracy on 
the category which the target ResNet-50 model predicts that the target image belongs to (see Supplementary 
Table T1). Note that in contrast to the category accuracy which is an accuracy on the category-level, we use the 

Table 1.   Naming convention of conditions and the number of participants in each condition. In the main 
text, conditions are referred to with brackets and the “&” logical operation. For example, [no examples] & 
[no map] refers to the condition with 76 participants (see “Experimental conditions” in “Methods” section for 
more detail).

specific labels generic labels

no examples

examples

helpful random helpful random

no map N = 76 N = 35 N = 34 N = 38 N = 36

map
blur N = 65 N = 33 N = 36 N = 35 N = 34

jet N = 71 N = 33 N = 35 N = 35 N = 35

Figure 2.   A snapshot of the experiment. See “Methods” section and Table 1 for the naming conventions of 
the conditions used below. The experimental condition above the black line is [specific labels] & [helpful] 
& [blur]. Under the black line is the [jet] equivalent of the second row, which is obtained by replacing the 
blurring maps with the jet color maps. Experimental conditions with generic labels are obtained by replacing 
specific labels—‘Flagpole” and “Barn” in this case—with generic category names—“Category A” and “Category 
B.” Experimental conditions without the saliency maps, i.e., [no map], show only the first row of images. 
Conditions without examples, i.e., [no examples], show only the first column of image (s). All images and 
saliency maps shown were 224-by-224 pixels. The prediction of the model to be explained on the target image 
is “Flagpole” in this case. All photographs are obtained from the open-source ImageNet 1K dataset38. This figure 
was created using Adobe Illustrator CS6 (v. 16.0.0)43.
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term model correctness to refer to whether the target model made a correct judgement on a specific trial. The 
simulated explainee fidelity of a trial (only available in the [examples] conditions) is an estimate of the prob-
ability that the explainee model’s classification would match the target ResNet-50 model’s classification, given 
the categories and examples presented. Finally, in a separate study seven raters indicated their familiarity with 
each category pairing by stating whether they thought they could correctly match images of the two categories 
presented to their respective labels. The familiarity score is the mean value across all seven raters. See the “Meth-
ods” section for a more technical explanation of these features.

Bayesian teaching improves fidelity.  To evaluate whether the XAI interventions improved fidelity we 
compared participants who obtained a full explanation ([specific labels] & [helpful] & [map]) with a con-
trol group that received no explanations ([specific labels] & [no examples] & [no map]). When interpreting 
these results in relation to belief projection it is instructive to consider three idealized scenarios. An agent who 
picked categories at random would have 50% fidelity, sensitivity (correctly predicting AI classifications when 
the AI classifier is correct), and specificity (correctly predicting the AI’s mistakes). An agent who modelled the 
AI classifier perfectly would have 100% fidelity, sensitivity, and specificity. Finally, an agent with perfect first-
order accuracy who projected their own beliefs onto the AI classifier would have 100% sensitivity, 0% specificity, 
and 33% overall fidelity because the experiment contains twice as many AI errors as AI correct classifications 
(see “Methods” section). Absent intervention, participants behave most like the third, belief-projecting, agent 
(Fig. 3).

The explanation interventions increase overall fidelity by increasing specificity (participants are better able 
to spot the AI’s mistakes), at the cost of some sensitivity. Participants in the control condition have a mean 
fidelity of 49.83% [95% CI 48.83–50.84%], significantly lower than the 55.04% [95% CI 52.58–57.48%] fidelity 
of the experimental group ( β = 0.21(0.03) , z = 6.99, p < 0.0001). This is primarily driven by higher specific-
ity in the experimental group (43.98% [95% CI 39.68–48.37%] relative to the control group’s 32.54% [95% CI 
30.96–34.13%]; β = 0.49(0.05) , z = 9.20, p < 0.0001). The greater vigilance of the experimental group came with 
a minor cost to sensitivity for the experimental group (78.90% [95% CI 71.59–84.80%]) and for the control 
group (85.26% [95% CI 83.12–87.22%]); β = − 0.43(0.12) , z = − 3.68, p = 0.0002), but not enough to offset the 
specificity gains. Collectively, these results imply that participants attempt to predict the AI by projecting their 
own beliefs, and that the explanations improve fidelity by mitigating this belief projection.

Figure 3.   Bayesian teaching improves fidelity by mitigating belief projection. The effectiveness of examples 
generated by Bayesian teaching, evaluated by comparing the fidelity of the participants who obtained a full 
explanation ([specific labels] & [helpful] & [map]; 66 participants; 9899 observations) with a control group 
([specific labels] & [no examples] & [no map]; 76 participants; 11,394 observations). (A) Three idealised 
fidelity profiles, showing the fidelity of: a random agent, a perfect agent, and an agent with perfect access to 
the ground truth who assumes that the AI classifier always mirror their own predictions (belief projection). 
(B) Human fidelity most closely match the belief projection profile, but the interventions increase specificity 
(and slightly reduce sensitivity) by making participants better at spotting the AI’s errors. The violinplots show 
the distribution of fidelity within conditions. Black dots show the group mean with error bars signifying 
95% bootstrapped confidence intervals. (C) Individual participants’ sensitivity and specificity. The vertices 
of the triangle show the fidelity of a belief-projecting agent with perfect access to the ground truth (upper 
left), an agent with a perfect model of the AI classifier (upper right), and an agent choosing at random (lower 
middle). The control group is clustered at high sensitivity and low specificity towards the upper left, whereas 
the experimental group is shifted to the right. However, the experimental group also shows greater variance, 
signifying inter-individual differences in the intervention effectiveness. This figure was created using the ggplot2 
package (v. 3.3.2)46 in R (v. 4.0.3)47.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:9863  | https://doi.org/10.1038/s41598-021-89267-4

www.nature.com/scientificreports/

Participants prefer examples that are helpful according to Bayesian teaching.  Having estab-
lished that examples generated by Bayesian teaching improved participants’ ability to predict AI judgements, we 
want to evaluate whether participants preferred helpful to random and misleading examples. To test this, we ran 
a second study where participants chose between helpful examples versus random examples or versus mislead-
ing examples, where helpfulness was determined by Bayesian teaching. Participants showed a small but reliable 
preference for helpful relative to random examples and a substantial preference for helpful versus misleading 
examples. Consistent with our hypothesis that helpful examples are most beneficial for unfamiliar categories, our 
results show that the preference for helpful examples was particularly pronounced when the image categories 
were unfamiliar (see Supplementary Discussion D1 for all the details).

Bayesian teaching can predict which explanations improve and reduce fidelity.  Bayesian teach-
ing makes explicit the existence of an explainee and suggests that a sound explainee model should have the 
capacity to track the inference of actual explainees. In our experiment the calibration between the explainee 
model and the participants is captured by the relationship between category accuracy and participant accuracy. 
We estimate participant accuracy (their first-order belief about the ground truth) by using their fidelity in the 
control trials (their second-order belief about the AI classifier with no exposure to explanation). The assumption 
that their attempt to predict the AI classifier may serve as a proxy of their first-order accuracy is justified given 
the tendency to belief-project observed in previous sections. We found that participant fidelity (interpreted as 
accuracy for the control trials) was positively correlated with category accuracy for trials where the model was 
correct ( β = 1.74(0.20) , z = 8.67, p < 0.0001), indicating good calibration between the model and participants in 
this situation (see Supplementary Fig. F1). We also found a negative interaction between category accuracy and 
model correctness ( β = − 2.57(0.23) , z = − 11.03, p < 0.0001). This suggests the poor calibration in the special 
case in which the model’s overall accuracy on the predicted category is high but it misclassifies the particular 
trial. In sum, these results imply that category accuracy is a good proxy of human ground truth judgements at the 
aggregate level, which in turn suggests that our explainee model is appropriate for our participants.

Bayesian teaching should be able to modify participant fidelity by selecting explanations of varying helpful-
ness. To test this in practice, we ran three nested hierarchical logistic regression models of increasing complexity. 
Each regression model predicted participant fidelity (whether the participant correctly predicted the AI classifier 
on a given trial) from the [examples] trials only, as these are the only trials impacted by the simulated explainee 
fidelity, which measures the degree to which the examples would lead the explainee model to the targeted infer-
ence. The first regression model served as a null-model, not using simulated explainee fidelity as a predictor, 
only including category accuracy and a dummy variable encoding AI correctness (whether the AI prediction 
for that trial matched the ground truth or not). The second regression model added simulated explainee fidelity 
as a predictor, capturing the hypothesis that the helpfulness of the examples as determined by Bayesian teaching 
covaries with participant fidelity. The third regression model added two two-way interactions between model 
correctness (model hit and error) and category accuracy, and model correctness and simulated explainee fidel-
ity, capturing the hypothesis that helpful examples had differential impact on error detection relative to hit 
confirmation. We found that the second regression model fitted the fidelity data better than the first regression 
model ( χ2(1, 4) = 71.68 , p < 0.0001). This means that the Bayesian Teacher’s perception of the helpfulness of the 
presented examples predict participant fidelity above and beyond category accuracy. The third regression model 
outperformed the second regression model ( χ2(3, 7) = 7371.28 , p < 0.0001). This indicates that how well the 
category accuracy and/or the modelled helpfulness of the examples shown predicted fidelity differed for trials 
with correct or incorrect AI judgements.

To explore how model correctness interacted with category accuracy and simulated explainee fidelity, we 
explored the parameters of the third regression model. Participants are typically better at predicting the AI clas-
sifier when it is correct relative to when it is wrong ( β = 0.53(0.06) , z = 9.15, p < 0.0001). This aligns with our 
previous results, which suggest that participants have a sense of the ground truth for most trials, and assume 
that the AI classifier would make the same judgement that they would make. Category accuracy is positively 
associated with participant fidelity when the AI is wrong ( β = 0.59(0.05) , z = 12.30, p < 0.0001), and even more 
strongly associated with fidelity when the AI classifier is correct ( β = 0.93(0.09) , z = 10.68, p < 0.0001; see Fig. 4). 
Because there was a significant positive relationship between ResNet accuracy and participant fidelity for both 
the control trials and the example trials, it seems plausible that the calibration between model and participant 
observed in the control condition survives the introduction of explanatory examples, at least partially. Finally, 
while statistically controlling for category accuracy, simulated explainee fidelity did not predict fidelity on trials 
when the AI classifier was wrong ( β = −0.01(0.03) , z = − 0.16, p = 0.89) but did so for trials when the AI clas-
sifier was correct ( β = 0.77(0.05) , z = 14.19, p < 0.0001). Because the simulated explainee fidelity determined 
which examples were shown, the fact that this variable could accurately predict human fidelity above and beyond 
ResNet accuracy implies that the Bayesian Teacher can successfully predict which explanations improve or impair 
the fidelity of participant judgements.

Bayesian teaching improves fidelity through belief‑mitigation.  The previous results indicate that 
examples deemed helpful by the Bayesian Teacher improve participant predictions of the AI classifier’s judge-
ments. Additionally, participants prefer examples that are helpful according to the Bayesian Teacher, and this 
preference is particularly pronounced for unfamiliar categories. Next, we will explore how explanatory examples 
improve fidelity, and evaluate the relative importance of the different explanation features employed. The pre-
ceding results imply that people belief-project by default: that is, they use their own beliefs as priors for the AI 
classifier’s beliefs. The interventions shift these priors, allowing the participants to distinguish their first-order 
beliefs about the correct classification from their second-order beliefs about the decisions of the AI classifier.
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To further evaluate whether explanations improve fidelity by mitigating belief-projection, we compared 
how the interventions impacted fidelity and first-order accuracy in the complete data set. Specifically we con-
trasted [specific labels] vs [generic labels], [map] vs [no map], and [examples] vs [no examples], while 
controlling for category accuracy and familiarity score. We ran separate analyses for when the AI classifier was 
correct and when the AI classifier was wrong, corresponding to the distinction between sensitivity and specific-
ity in previous sections. We will treat the ground truth as a proxy of participant first-order beliefs, a defensible 
assumption given the reported human accuracy on ImageNet in previous works38. Based on this assumption, 
interventions increasing fidelity while also increasing mismatches to the ground-truth, would shift participant 
predictions of the AI classifier away from their first-order judgements. The [specific labels] are associated 
with higher fidelity than the [generic labels] regardless of whether the AI classifier is correct ( β = 0.24(0.08) , 
z = 3.06, p = 0.002) or not ( β = 0.07(0.03) , z = 2.13, p = 0.03). Because these effects are small and orthogonal to 
belief projection, they will not be discussed further.

The presence of the saliency maps in the [map] condition improves fidelity when the AI classifier is wrong 
( β = 0.43(0.03) , z = 14.24, p < 0.0001), but reduces fidelity (to a lesser extent) when the AI classifier is correct 
( β = − 0.56(0.07) , z = − 7.98, p < 0.0001; see Fig. 5). In both cases, saliency maps reduced the first order-accuracy 
of the participants (model hit: β = − 0.56(0.07) , z = − 7.98, p < 0.0001; model error: β = − 0.43(0.03) , z = − 14.24, 
p < 0.0001), meaning that they were less likely to report that the AI classifier’s judgements matches the ground 
truth of the image. This implies that the saliency maps encourage participants to consider that the AI classifier 
might be mistaken. One potential explanation for this observation is that the saliency maps show when the AI 
classifier attends to non-sensible features (i.e. parts that are not representative of either of the categories) as well 
as ambiguous features (e.g. thin metal strips that are present in both the “Electric Fan” and “Buckle” category).

Comparing all [examples] trials to all [no examples] trials, the presence of examples do not significantly 
improve fidelity when the AI classifier is correct ( β = −0.13(0.08) , z = − 1.61, p = 0.11) or when the AI classifier 
is wrong ( β = 0.02(0.03) , z = 0.69, p = 0.49). However, in the conditions where examples were present, helpful 
examples improve fidelity for trials when the AI classifier was correct ( β = 0.77(0.08) , z = 10.11, p < 0.0001), but 
not for trials when the AI classifier was wrong ( β = 0.06(0.04) , z = 1.77, p = 0.08). The positive influence of the 
helpful but not the random examples illustrates that it is not the mere presence of examples that improves fidelity, 
but that examples have to be carefully selected to be beneficial. Note also that the effect of helpful examples is 
the opposite to what we found for the saliency maps: Whereas saliency maps help participants to identify trials 
when the AI classifier has made a mistake by exposing inappropriate sub-image-level features, the examples 
help reinforce participant’s prior beliefs for trials in which the AI classifier is correct (see Fig. 5). In other words, 
the saliency maps and the examples serve separate and complementary functions in explaining AI judgements 
to the participants.

Figure 4.   The helpfulness of the presented examples as determined by the Bayesian teacher predicts human 
fidelity across trials with examples (419 participants; 62,820 observations). (A) The simulated explainee 
fidelity—the helpfulness of the explanatory examples expected by the Bayesian teacher—correlates significantly 
with participant fidelity for correct trials but not for incorrect trials. This suggests that the Bayesian teaching 
framework can predict explanations that are informative or misleading for trials that are correctly classified 
by the model, but not for trials that are incorrectly classified. (B) Category accuracy is positively associated 
with participant fidelity, both for trials when the AI classifier is correct and when it is wrong. A similar trend is 
observed in the control condition (see Supplementary Fig. F1). This suggests that humans and ResNet-50 find 
the same categories difficult to discriminate, implying that the ResNet architecture can serve as an appropriate 
model of human participants in this task. The difference in fidelity between when the AI classifier is correct 
and when the AI classifier is wrong suggests that it is harder to teach incorrect judgements, at least in this 
context. (C). Two-dimensional kernel density with 25 density bins showing the distribution of trials in terms of 
category accuracy and simulated explainee fidelity. In this study the two are independent. Note that the higher 
density near perfect simulated explainee fidelity was due to all the helpful examples being selected based on this 
variable, so they constitute a majority of our example trials. This figure was created using the ggplot2 package (v. 
3.3.2)46 in R (v. 4.0.3)47.
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The familiarity scores capture the ease of the discrimination task in that they are higher for trials involving 
categories that humans are familiar with. These scores provide clues as to whether participants project their own 
beliefs onto the AI: If humans use their first-order classifications to model the AI, participants should assume 
that the AI classifier gets the correct answer for trials that they themselves find easy. This is indeed what we find: 
familiarity is positively associated with fidelity when the and the AI classifier is correct ( β = 1.10(0.04) , z = 29.28, 
p < 0.0001), but negatively associated with fidelity for AI errors ( β = − 0.92(0.02) , z = − 42.82, p < 0.0001; Fig. 6).

Previously, we showed that saliency maps improved fidelity on trials when the AI classifier was wrong. This 
could be explained by saliency maps helping participants distinguish between their first-order judgements of the 
ground truth and their second-order beliefs about the model classification. This explanation can be evaluated 
by testing whether the impact of the familiarity scores on fidelity are attenuated by the saliency maps. In other 
words, if participants are more likely to predict that the AI classifier is correct on trials that they themselves 
find easy, and the saliency maps work by helping people realize that the AI classifier use decision-processes that 
differ from their own, the saliency maps should make participants more willing to consider that the AI classifier 
might be wrong for trials they themselves find easy. This is what we find (see Fig. 6): the presence of saliency 
maps reduces the positive impact of familiarity on fidelity when the AI classifier is correct ( β = − 0.51(0.08) , z 
= − 6.31, p < 0.0001). Conversely, saliency maps reduce the negative impact of familiarity on fidelity when the 
AI is wrong ( β = 0.70(0.05) , z = 15.22, p < 0.0001; Fig. 6). Collectively these results suggest that the presence of 
saliency maps helps participants model the AI as an agent with distinct beliefs that may conflict with their own.

Figure 5.   The fidelity between the participant predictions and the AI classifications is higher when the AI is 
correct than when the AI is wrong. (A,B) are based on the entire data set, comparing all [map] conditions to 
all [no map] conditions (631 participants; 94,582 observations). (C,D) exclude the [no examples] trials and 
contrast all [helpful] trials with all [random] trials (419 participants; 62,820 observations). (A) The saliency 
maps improve fidelity for trials when the AI classifier is wrong but reduce fidelity when the AI classifier is 
correct. (B) The saliency maps make people less likely to predict that the AI classification of the target image 
matches the ground truth. Together,  (A,B) imply that the saliency maps help people to consider that the AI 
classifier might make mistakes. (C) In trials with examples, helpful examples tend to help people accurately 
model the AI classifier in cases when the AI classifier is correct, but have a limited impact when the AI classifier 
is wrong. (D) Consequently, helpful examples make participants more likely to pick the ground truth option 
when the AI classifier is correct, but do not really impact the probability of selecting the ground truth option 
when the AI classifier is wrong. Collectively, these results suggest that helpful examples and saliency maps 
improve human understanding of the AI classifier in distinct and complementary ways: saliency maps improve 
error detection, whereas helpful examples enable participants to accurately determine when the AI classifier 
is correct. Errorbars represent 95% bootstrapped confidence intervals. All point estimates have confidence 
intervals, though some are too narrow to see clearly. This figure was created using the ggplot2 package (v. 3.3.2)46 
in R (v. 4.0.3)47.
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Though the presence of examples did not generally impact fidelity, it is possible that they impacted judge-
ments specifically for unfamiliar categories. Like the saliency maps, examples typically reduced the impact of 
familiarity on fidelity, both when the AI classifier is correct ( β = − 1.01(0.08) , z = − 12.71, p < 0.0001) and 
when the AI classifier is wrong ( β = 0.33(0.05) , z = 7.35, p < 0.0001). However, in contrast to the saliency maps, 
examples seem to be most helpful for unfamiliar trials when the AI classifier is correct, see Fig. 6C. This effect 
may imply that the examples help participants develop a working representation of the unfamiliar categories, 
which they are otherwise lacking.

Discussion
Bayesian teaching provides a novel way to think about XAI by explicitly modeling the explainee and their prior 
beliefs. It suggests that explanations can be evaluated in terms of how well they shift explainees’ beliefs away from 
their prior towards a target. We have presented evidence that a Bayesian Teacher can successfully predict which 
explanations will improve the fidelity between human predictions and target classifications as well as be preferred 
by human users. Crucially, our results show that the Bayesian Teacher is well-calibrated to human users: it both 
knows which explanations will improve predictions about the AI and which explanations are problematic. This 

Figure 6.   Familiarity score predicts fidelity based on the full data set (631 participants; 94,582 observations). 
(A) The fidelity between the participant predictions and the AI classifier’s judgements increase with category 
familiarity when the AI is correct, but decrease with familiarity when it is wrong. This provides further evidence 
that participants project their own beliefs unto the AI classifier, as they are more likely to predict that the AI 
makes the correct choice on trials they themselves find easy. (B) Saliency maps decrease the impact of familiarity 
on participant judgements. For model hits this leads to decreased fidelity, whereas for model errors it leads to 
improved fidelity. This pattern provides further evidence that the saliency maps work by shifting participants 
away from using their first-order judgments to model the AI’s classifications. (C) Examples also decrease the 
impact of familiarity on participant judgements. For model hits this improves fidelity for unfamiliar items 
but decreases fidelity for familiar items, with the opposite pattern for model errors. These results suggest that 
examples are most beneficial for unfamiliar items when the AI classifier is correct. Errorbars represent 95% 
bootstrapped confidence intervals. All point estimates have confidence intervals, though some are too narrow to 
see clearly. Shaded areas represent analytic 95% confidence intervals. This figure was created using the ggplot2 
package (v. 3.3.2)46 in R (v. 4.0.3)47.
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calibration provides strong evidence that the selection process of the Bayesian Teacher has a causal effect on 
explainee understanding. Not all examples are created equal, so they need to be appropriately curated.

Multiple strands of evidence from our results suggest that in the absence of explanations people project their 
own first-order beliefs onto the AI classifier. Specifically, we find that participants in the control condition show 
higher sensitivity than specificity, and that this discrepancy becomes more extreme the more familiar partici-
pants are with the trial categories. The finding that participants predict the AI system by projecting their own 
beliefs onto the AI links research on explainable AI to the rich psychological literature on social prediction. In 
many social prediction tasks (in contrast to mechanistic prediction tasks) people use their own preferences, 
judgements, and beliefs as priors for other agents44,45,48–50. Our results imply that such belief-projection can be 
mitigated by Bayesian teaching. The most compelling evidence that explanations mitigate belief projection is 
that the impact of familiarity on fidelity is reduced by explanations: explanations make participants more likely 
to catch AI mistakes on trials they themselves found easy.

Bayesian teaching also gives a coherent framework for comparing and contrasting explanatory methods that 
hereto have been considered independent: explanation-by-examples and feature attribution. We apply Bayes-
ian teaching to study explanation-by-examples, a popular method for XAI that previously has lacked a sound 
theoretical footing. Explanation-by-examples has many strengths: it is model-agnostic, domain-general, and 
easy to use with other XAI methods. Viewed through a Bayesian teaching lens, this method can be generalized 
to include feature attribution, another popular post-hoc method, by splitting each example into its component 
features (i.e. pixels in this study) and considering each pixel individually. When applied to images, such feature 
attribution on the pixel level generates saliency maps, which is arguably the most popular method for XAI in the 
image domain. The connection between feature attribution and pixel selection by Bayesian teaching opens up the 
possibility to reinterpret all feature attribution methods (e.g.51,52) as a form of teaching. By treating images and 
saliency maps as explanatory examples at different levels of granularity, we discover that the two explanations 
show complementary effects. Namely, example images are effective explanations for confirming the model’s cor-
rect classification of unfamiliar categories, and saliency maps are effective explanations for exposing the model’s 
incorrect classification of familiar categories.

The lack of a coherent theory is currently stifling XAI as methods are developed around technical innova-
tions without any apriori hypothesis as to whether they are appropriate for the specific use case53. Bayesian 
teaching both exposes this blind spot and offers a solution: effective explanation is a communication act which 
depends on a knowledgeable teacher, a good model of the explainee, and an awareness of the context in which 
inference takes place. Consequently, the framework encourages systematic evaluation of XAI interventions on 
these dimensions, and provides a way to systematically diagnose how interventions could be improved. In our 
study we show how such an evaluation applies to explanation-by-examples. We modeled the explainee by a 
ResNet-50 architecture, focused on two contextual variables (familiarity and model correctness), and surfaced 
how explanations generated by Bayesian teaching can mitigate mistaken prior beliefs. These results highlight 
the promise of the Bayesian teaching approach, since the function of explanation is to shape the explainee’s 
inductive reasoning54. Furthermore, Bayesian teaching exemplifies how XAI can be improved by considering 
links to other fields such as education and cognitive science. A balanced synergy between the social sciences 
and the more technical literature of AI is much needed, as XAI is simultaneously a machine-learning problem 
and a human-centered endeavor.

Methods
The objective of this study was to explore the effects of explanations, in the form of examples and saliency maps, 
on users’ understanding of high-performing machine learning models (referred to as AI throughout the paper) 
in the domain of image classification. We probe users’ understanding by a two-alternative-forced-choice (2AFC) 
task in which users are asked to predict the model’s classification of a target image into one of two categories. 
Experimental conditions vary in terms of the information presented on the screen during each classification. The 
information presented differs along three dimensions: types of labels, types of examples, and types of saliency 
maps. All the examples and saliency maps are generated by the Bayesian teaching framework. The fidelity of the 
participant is captured by sensitivity, specificity, and accuracy.

The model to be explained.  The machine learning model to be explained is a ResNet-50 model39. For 
this study, we used the pre-trained version of ResNet-50 in Keras with ImageNet weights. For the selection 
of saliency maps, the Bayesian teaching framework expects the model to be able to make probabilistic infer-
ence on the image classification task presented in the ImageNet Large Scale Visual Recognition Challenge 2012 
(ILSVRC2012). The ResNet-50 model has this capability, and we can use the ResNet-50 model without any 
modification. However, for the selection of examples, the Bayesian teaching framework expects the model to be 
able to make probabilistic inference on the 2AFC task, and the ResNet-50 model is deterministic. We replace 
the fully-connected classification layer of the ResNet-50 model with a probabilistic linear discriminant analysis 
(PLDA) model55. This new PLDA layer is trained using a transfer-learning-like procedure. Training images were 
first passed through the ResNet-50 model and transformed into feature vectors. Then, the PLDA layer was fit to 
these feature vectors and the corresponding class labels following the algorithm presented in55. Using the train-
ing dataset ImageNet 1K from the ILSVRC201238, this ResNet-50-PLDA model has a top-1 accuracy of 52.86% 
and a top-5 accuracy of 76.29%. For the actual experiment, we focused on a subset of 100 categories that include 
the most difficult, easiest, and most confusable categories (see the next subsection for details). Unless otherwise 
stated, all the model predictions used to design the experiment is based on the ResNet-50-PLDA model trained 
on the training data in only these 100 categories.
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Stimuli selection.  Each experiment consisted of 150 trials. For 50 of the trials, the predictions of the model 
(or the robot) matched the ground-truth labels of the target images. For the remaining 100, the model predic-
tions did not match the ground-truth labels. We selected the target images and the classification categories based 
on the model’s confusion matrix, with the aim to cover a wide range of model behavior. First we calculated the 
ResNet-50-PLDA model’s confusion matrix on ImageNet 1K, which contains 1000 categories. Then, we ran-
domly selected 25 categories from each of the following four subsets: the 100 categories on which the model 
was most accurate, the 100 categories that were most confusable with these most accurate categories, the 100 
categories on which the model was least accurate, and the 100 categories that were most confusable with these 
least accurate categories. This resulted in 100 categories. We recorded the model’s predicted labels of all the 
training images in these 100 categories and marked all images for which the model predictions were also among 
these 100 categories.

From this subset where both the image and the top model prediction belonged to our 100 categories, we 
randomly sampled 50 images where the model prediction matched the ground truth labels and 100 images for 
which the model predictions did not match the ground-truth labels. For the 50 trials with correctly classified 
target images, the two classification options participants could choose from were the correct model-predicted 
category and one of the two most confusable categories (out of our 100 selected categories). Which one of the two 
most confusable categories was presented were selected randomly for each trial. For the 100 incorrectly classified 
trials the two classification options were simply the ground-truth category and the incorrect model prediction. 
This procedure resulted in a total of 83 unique categories used in the experiment (Supplementary Table T1). 
This number is smaller than 100 because not all confusable categories are unique and not all categories were 
kept during the random sampling. Figure 7 depicts the trial generating process. The pairs of categories used in 
the experiments are listed in Supplementary Table T2.

Experimental design.  At the beginning of the experiment, participants were told that a robot has been 
trained to classify images but sometimes makes mistakes. They were asked to help by guessing how the robot will 
classify images. On each trial, a target image was displayed along with information about two categories, and the 
participants were asked to perform the 2AFC task by choosing which of the two categories they think the robot 
would classify the target image as.

The experimental conditions determined what information was presented during each trial and varied three 
dimensions: labels, examples, and saliency maps. Figure 2 shows a trial in the experimental condition with all 
the elements—labels, examples, and saliency maps—and describes how the conditions impact what elements are 
presented. More precisely, the conditions are characterized by five binary features: informative or generic labels, 
with or without examples, helpful or random examples (if present), with or without saliency maps, and blur or 
jet saliency maps (if present). The structured column and row labels of Table 1 show the naming conventions for 
the different conditions in terms of these features. Below, we provide more details on the conditions.

Specific or generic labels.  Conditions with informative or generic labels are referred to as [specific labels] 
and [generic labels], respectively. In the [specific labels] conditions, the English labels of the two catego-
ries (e.g., “Flagpole” and “Barn” in Fig. 2) are given. In the [generic labels] conditions, the two categories are 
named “Category A” and “Category B.”

With or without examples.  Conditions with and without examples are referred to as [examples] and [no 
examples], respectively. In the [examples] conditions, two examples are sampled from each of the two catego-
ries to represent the category. Thus, five images—one target image and four example images—are on display in 
each trial in these conditions. In the [no examples] conditions, only the target image is shown.

Helpful or random examples.  Conditions with the helpful examples and random examples are referred to as 
[helpful] and [random], respectively. The selection of the examples are based on the simulated explainee fidel-
ity, which is the numerator of the Bayesian teaching probability, fL(·) . The simulated explainee fidelity charac-
terizes the probability that the four examples will lead a ”explainee model” to classify the target image as the 
ResNet-50-PLDA model would. The Bayesian teaching probability and its numerator fL(·) are rigorously defined 
in Eqs. (2) and (3), respectively, in the subsection below called “Selection of examples with Bayesian teaching” 
section. In the [helpful] conditions, the four examples are chosen such that fL(·) > 0.8 . In the [random] con-
ditions, the four examples are chosen such that the fL(·) values across the 150 trials are uniformly distributed 
over the five bins that evenly partition the [0,1] interval.

With or without saliency maps.  Conditions with and without saliency maps are referred to as [map] and [no 
map], respectively. A saliency map is an image mask that shows the contribution of each pixel to the model’s 
classification decision. Details on the generation of the saliency maps are provided in the subsection below called 
“Selection of saliency maps with Bayesian teaching” section. In the [map] conditions, a saliency map is shown 
for every image displayed. In the [no map] conditions, no saliency map is shown.

Blur or jet saliency maps.  Conditions with the blur saliency maps and jet saliency maps are referred to as [blur] 
and [jet], respectively. The two types of map differ only in the rendering of the mask but not in the generation 
of the mask. The jet saliency map renders the importance of each pixel by colors following the jet color map. In 
order of decreasing importance, the jet color map goes from red to green to blue. The jet color map, overlaid 
on an image with some level of transparency, is one of the most commonly used renderings of saliency maps. 
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Two disadvantages of jet saliency maps are that the colors of the map can interfere with the colors of the image 
and that the unimportant regions remain visible to the user and can attract involuntary visual attention. For 
these reasons, we created the [blur] conditions in which the saliency maps are rendered by blurring the image. 
Furthermore, blurring is a more naturalistic visual effect than any color map masking because our visual system 
constantly experiences a large difference in visual acuity between our fovea and peripheral vision. The imple-
mentation details of both renderings are provided in the subsection below on saliency map selection.

Naming convention.  As shown in Table 1, not all combinations of the five binary features are allowed. Condi-
tions with generic labels and no examples are not tested because that would make the 2AFC task a game of pure 
guessing. Furthermore, conditions without examples cannot be paired with helpful or random examples, and 
conditions without saliency maps cannot be paired with blur or jet maps. This leaves a total of 15 experimental 
conditions.

The naming convention for the conditions is based on filter queries using the database structure presented 
in Table 1. To give a few examples: [helpful] refers to the aggregate of the six conditions in columns 2 and 4; 
[map] refers to the aggregate of the 10 conditions in rows 2 and 3; [helpful] & [blur] refers to the aggregate of 
the two conditions in row 2 column 2 and row 2 column 4; and [helpful] & [blur] & [specific labels] refers 
to the one condition in row 2 column 2.

Participants.  The study protocol was approved by Rutgers University IRB. All research was performed in 
accordance with the approved study protocol. An IRB-approved consent page was displayed before the experi-

Figure 7.   Flowchart of trial generation. (A) Selection of examples and saliency maps with Bayesian teaching. 
The inputs to Bayesian teaching are: the model to be explained, data sets from two categories, and a target 
image that belongs to one of the two categories. The green box depicts the inner working of Bayesian teaching. 
Random image pairs are selected from each of the input categories. Along with the target image, two sets of 
image pairs, one set from each category, are selected at random to form a trial. The explainee model, which is 
set to have the same architecture as the input model, takes in a large number of random trials to produce the 
simulated explainee fidelity (unnormalized teaching probabilities according to Eq. (3)). Here, a trial with high 
fidelity (probability) is selected, exemplifying the trial generation process in the [helpful] condition. Saliency 
maps are generated for the target image and the four selected examples using Eq. (6). The final output is a set of 
ten images: a target image, two examples selected from each of the two input categories, and the saliency maps 
of the above five images. (B) Trial generation steps peripheral to Bayesian teaching. Our model to be explained 
is a ResNet-50 trained on ImageNet 1K. A confusion matrix on the 1000 ImageNet categories was computed 
using the model. Using the confusion matrix, we sampled 25 categories where the model has high accuracy (the 
“Easy” categories), 25 categories where the model has low accuracy (the “Hard” categories), and the categories 
that are most confusable with the above 50 categories. To generate a trial, we select at random two categories 
from the 100 candidates mentioned above as well as a target image that belongs to one of the two selected 
categories. The model, the target image, and the data associated with the two categories are fed into Bayesian 
teaching to produce a trial. See Methods for the full details. This figure was created using Adobe Illustrator CS6 
(v. 16.0.0)43.
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ment. Informed consent was obtained from all participants. The experiment began after the participants gave 
consent.

656 participants (404 male, 249 female, 3 other) were recruited from Amazon Mechanical Turk and paid $2.50 
for completing the experiment, which took roughly 15 minutes to complete. The mean age of participants was 
34.8 years (SD = 10.1), ranging from 18 to 72 years. The participants were randomly assigned to each condition, 
with the aim to obtain 36−40 participants per condition. 25 participants were excluded from analysis for com-
pleting the experiment too quickly (less than one second per trial), resulting in a final sample of 631 participants 
completing 150 trials each. The [no examples] conditions received twice the sample size of the other conditions, 
so that they would match the sample size of the [examples] conditions, which had two distinct versions ([help-
ful] and [random]). Table 1 shows the number participants in each of the 15 conditions.

The number of participants in every condition is shown in Table 1. All participants in the [helpful] condi-
tions experienced the same set of 150 trials, i.e., the same 150 combinations of target image, category pairs, and 
example images, but in randomized order. All participants in the [random] conditions experienced another 
set of 150 trials, also in randomized order. All the category pairs used are listed in Supplementary Table T2. 
Participants in the [no examples] condition experienced one of these two sets of trials, selected at random. 
Note that because there are no examples but only English labels in the [no examples] conditions, the two sets 
of trials are functionally equivalent.

Selection of examples with Bayesian teaching.  The goal of Bayesian teaching is to select small subsets 
of the training data such that the inference made by a explainee model using this small subset will be similar 
to the inference made by a target model using the entire training data. For this study, the target model is the 
ResNet-50-PLDA model trained on the 100 selected categories as described earlier. The inference task is to clas-
sify the target image among the 100 categories. The inference task of the explainee model is the 2AFC image 
classification task presented in each trial. For the explainee model, we search for an ideal-observer model40,41 that 
would capture the participant’s inference in the 2AFC task. A good candidate is the ResNet-50-PLDA because 
it is trained on human-labeled data and achieves high accuracy on predicting humans’ labelling behavior. This 
means that the target model and explainee model share the same parameters (the ResNet-50 weights and PLDA 
parameters mentioned after Eq. (4)), and the use of Bayesian teaching is focused on explaining the image clas-
sification inference based on roughly 100 K training examples, i.e., all the training data in the 100 selected cat-
egories, with only four training examples, i.e., those selected to be displayed on each trial of the experiments in 
the [examples] conditions.

We introduce some notation to define the Bayesian teaching probability formally. The two categories that 
define the 2AFC task in each trial consist of the predicted category of the ResNet-50-PLDA model and an 
alternative category, which we denote by y∗ and y , respectively. The two examples sampled from the model-
predicted category are denoted by τ y∗ , and the two sampled from the alternative category are denoted by τ y . Let 
the explainee model be denoted by fL and the target image be denoted by d∗ . The Bayesian teaching probability, 
PT , is defined as the probability that the selected examples, τ y∗ and τ y , will lead the explainee model to classify 
the target image as the target model would. Mathematically, this probability can be expressed using Bayes’ rule as:

The sum in the denominator is over all possible candidate sets of the four examples. The set of all candidate 
sets is denoted by � . Equation (2) assumes a uniform prior over � so that the prior terms in the numerator and 
denominator cancel out. Technically, � is the Cartesian product of all possible pairings of images in the category 
y∗ with all possible pairings of images in the category y , which is on the order of 1011 for the dataset in use. Our 
goal here is to select τ y∗ and τ y such that fL(·) , the numerator of Eq. (2), would provide good coverage of the 
full range of [0,1]. This would ensure the existence of valid examples for both the [random] and [helpful] 
conditions. We found that the full range can usually be covered by forming a Cartesian product of 1000 random 
pairings from each category ( 106 combinations). In general, given a target value of fL(·) , one could use genetic 
algorithm56 or other types of discrete optimization method to select the examples. To sample in proportion to 
PT , one could use Markov Chain Monte Carlo and variational inference techniques14,57,58. These optimization 
and advanced inference methods would also be more efficient in the case that more than a few examples for 
each category is desired.

Using Bayes’ rule again, we express the explainee model’s inference of the target image’s label given the target 
image and examples, the numerator in Eq. (2), as

where f (d∗ | τ k) is the probability that the target image, d∗ , belongs to the category from which the two exam-
ple images, τ k , are sampled. Under the PLDA model, one can write this probability in closed form as a normal 
distribution21:
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Here, u is an image transformed in two steps. First, the image is passed through ResNet-50 and transformed into 
a feature vector; then, this feature vector undergoes an affine transformation with shift vector m and rotation and 
scaling matrix A to become u. Thus, in Eq. (4), u∗ is a transformed target image, and (uk1, u

k
2) are a pair of trans-

formed examples sampled from category k. The quantities m and A in the second transformation and the � in 
Eq. (4) are parameters of the PLDA model obtained by training on the images in the 100 selected categories. The 
precise definitions of these parameters and the training procedure are presented in Fig. 2 in Ioffe’s PLDA paper55.

To summarize this subsection, Eq. (2) defines the Bayesian teaching probability, and Eq. (3) defines its 
numerator (simulated explainee fidelity), fL(·) , used to select examples in the [examples] conditions. A high 
fL(·) means that the selected examples will lead the model of the explainee to classify the target image as the 
category predicted by the model to be explained with high probability. Conversely, a low fL(·) means that the 
selected examples will lead the explainee model to classify the target image as the other category in the 2AFC 
with high probability. Note that fL(·) is trial specific, as this probability is a function of the target image, d∗ , the 
model predicted label of the target image, y∗ , and the four examples, (τ y∗ , τ y) , which precisely define a trial.

Selection of saliency maps with Bayesian teaching.  A saliency map is an image mask that shows how 
important each pixel of the image is to the model’s inference. In the [map] conditions, we generate a saliency 
map for every image displayed. To generate a saliency map, one needs to specify a model, an inference task, and 
a definition of importance. We used ResNet-50 as the model and the classification of an image into the 1000 
categories in ImageNet 1K as the inference task. Using the Bayesian teaching framework, we define importance 
to be the probability that a mask, m, will lead the model to predict the image, d , to be in category, y, when the 
mask is applied to the image. This is expressed by Bayes’ rule as

Here, gL(y | d,m) is probability that the ResNet-50 model will predict the d masked by m to be y; p (m) is the 
prior probability of m; and �M = [0, 1]W×H is the space of all possible masks on an image with W ×H pixels. 
The prior probability distribution p (m) on m is a sigmoid-function squashed Gaussian process prior.

Instead of sampling the saliency maps directly from Eq. (5), we find the expected saliency map for each image 
by Monte Carlo integration:

where mi are samples from the prior distribution p (m), and N = 1000 is the number of Monte Carlo samples 
used. To see why an expected map is desirable, imagine the following case. Suppose that an image contains 7 
goldfish and its category is “goldfish.” In this case, a mask that reveals any one of the goldfish will have a high 
QT value. However, it is more desirable that the mask would reveal all the goldfish in the image. The expectation 
provides this by averaging the masks appropriately weighted by their QT values.

Now, we describe the step-by-step procedures for generating the saliency map for an image, d. First, d is 
resized to be 224-by-224 pixels, which is the size displayed in the experiments (Fig. 2). A set of 1000 2D functions 
are sampled from a 2D Gaussian process (GP) with an overall variance of 100, a constant mean of −100 , and a 
radial-basis-function kernel with length scale 22.4 pixels in both dimensions. The sampled functions are evalu-
ated on a 224-by-224 grid, and the function values are mostly in the range of [−500, 300] . A sigmoid function, 
1/(1+ exp(−x)) , is applied to the sampled functions to transform each of the function values, x, to be within 
the range [0, 1]. This results in 1000 masks. The mean of the GP controls how many effective zeros there are in 
the mask, and the variance of the GP determines how fast neighboring pixel values in the mask change from 
zero to one. The 1000 masks are the mi ’s in Eq. (6). We produce 1000 masked images by element-wise multiply-
ing the image d with each of the masks. The term gL(y | d,mi) is the ResNet-50’s predictive probability that the 
ith masked image is in category y. Having obtained these predictive probabilities from ResNet-50, we average 
the 1000 masks according to Eq. (6) to produce the saliency map of image d. If d is a target image, the y used to 
generate the saliency map is the ResNet-50-PLDA model’s prediction. If d is an example, the y is the category 
from which the example is sampled.

In the [jet] conditions, the saliency maps are rendered in the Matplotlib package with the “jet” colormap 
and an alpha value of 0.4 and overlaid on the images (see Fig. 2; images at the bottom row). In the [blur] 
conditions, a saliency map is rendered by blurring the image for which it is generated (Fig. 2; images in the 
middle row). To generate the blur, each pixel value of a saliency map, z, is assigned a blurring window width, 
w(z) = ceil(30/(1+ exp(20z − 10))) . The jth pixel value of the rendered saliency map is the average pixel value 
of a patch of the original image, where the patch is w-by-w in size and centered on the jth pixel of the original 
image. If the jth pixel is close to an edge of the image, the patch becomes rectangular, and the average is over 
whichever pixel values that are inside the w-by-w sized window.

To conclude this subsection, we make a few final remarks. First, a PLDA layer is unnecessary in the generation 
of saliency maps because the ResNet-50 model is capable of generating the probabilities gL(y | d,m) in Eq. (5). 
In contrast, the ResNet-50 model cannot be used directly to generate the probabilities fL(y∗ | τ y

∗
, τ y , d∗) in 

Eq. (2). Second, while the 2AFC task may be suitable for generating a saliency map for the target image, it can-
not be used to generate saliency maps for the examples. This is the main reason that here we used the inference 
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task of the image classification task that the ResNet-50 model is trained on. Lastly, Eq. (6) is the same as Eq. (5) 
in the RISE approach introduced by Petsiuk, Das, and Saenko42, which presents a state-of-the art method for 
generating saliency maps. Our implementation and their implementation differ only in the way the individual 
masks are sampled. In our implementation, we sampled functions from a GP prior and turned them into masks 
by applying a sigmoid function. In42, random binary matrices are first sampled and subsequently up-sampled to 
the desired mask size through bilinear interpolation. The expectation is done in the same way.

Familiarity coding.  In addition to the splits by conditions presented in Table 1, analysis also rely on scores 
of human familiarity with the image categories. The familiarity of each of the [helpful] and [random] trials 
was manually coded by 7 raters. Each rater was asked to code the trial as “familiar” if they thought they could 
correctly match the category labels to the images presented in that trial, and “unfamiliar” otherwise. A familiar-
ity score for each pairing of categories was then constructed by assigning each raters judgements as 1 for familiar 
and 0 for unfamiliar, and computing the mean across raters. The 300 trials across the [helpful] and [random] 
conditions resulted in 167 unique category pairings (counting the ordering of target versus other category), and 
their familiarity scores are presented in Supplementary Table T2.

Statistical analysis.  Whenever we report testing how well participants predict the model classifications 
(fidelity), or how often their judgements correspond to the image ground truth (accuracy) we used hierarchical 
logistic regressions with random intercepts per participants and fixed effects for the remaining terms. For analy-
ses of sensitivity and specificity analyses, we still used a logistic regression framework but only included trials 
corresponding to true positives and false negatives, or true negatives and false positives, respectively. Sensitivity 
captures how well participants predict trials when the AI is correct, and specificity capture how well participants 
predict trials when the model is wrong.

To illustrate, Bayesian teaching improves fidelity used the following equations on the full set of trials, and on 
a subset of the trials to capture sensitivity and specificity respectively:

where the agreement between a participant’s choice and the AI classifier’s choice is a binary variable coded as 
1 when participant correctly predict the AI classification and 0 otherwise, i is the observation index, j is the 
participant index. ExplanationCondition is a binary dummy variable coded as 1 if participants experienced 
heatmaps and helpful examples and 0 if they did not experience any explanations.

For the Participants prefer helpful examples section we compared three hierarchical logistic models: (A) 
An intercept only model that treated intercepts as nested within participants (B) an intercept only model that 
treated intercepts as nested within participants and conditions, (C) Model two, with an added fixed effect for 
the familiarity score. We then compared the negative log-likelihoods of these models to determine which best 
accounted for the observed data.

We evaluated whether Bayesian teaching can lead participants to both correct and incorrect inference by pre-
dicting fidelity in the conditions containing examples by fitting three nested models:

where SimExplaineeFidelity is the expected probability that the participant pick the same response as the target 
model, conditional on seeing the examples, CategoryAccuracy, is the average classification accuracy of the target 
ResNet-50 model for the target category, and ModelCorrectness is a dummy variable coding if ResNet made a 
correct classification on this particular trial. We then compared the negative log likelihoods of these three models, 
and reported the coefficients of the best-fitting model (the interaction model).

In the Bayesian teaching improves fidelity through belief-mitigation section we fitted four logistic hierarchical 
regression models to the full data. These models shared the following form:

where FamiliarityScore is a proportion of raters who rated the trial categories as familiar, Examples, MAP and 
Labels where dummy variables that captured whether examples were shown, whether heatmaps were shown and 
whether category labels were informative or not, respectively.

These four models were distinguished based on whether the AI was correct or not and whether Y corre-
sponded to whether the participant judgement matched the ground truth or matched the AI’s judgement. We 
fitted similar models to the [examples] trials only, with the only difference being that the Examples term, that 
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previously had captured whether examples were present was replaced with a dummy variable that captured 
whether the examples presented were helpful or not. Finally, we fitted two more models predicting fidelity from 
the full data. These are similar to Eq. (6), but added two additional interaction terms:

Coefficient tables for these models can be found in Supplementary Tables T3. All hierarchical logistic regres-
sion models were fitted using the lme4 package (1.1-23)59 in R version 4.0.347, Figures were created in ggplot 2 
version 3.3.246.

Data availability
Raw experimental data and analysis code will be deposited at https://​github.​com/​CoDaS-​Lab/​XAI-​BT-​SR upon 
publication.
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