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Abstract: Maternal parity is an important physiological factor influencing beef cow reproductive
performance. However, there are few studies on the influence of different calving periods on early
growth and postpartum diseases. Here, we conducted blood transcriptomic analysis on cows of
different parities for gene discovery. We used Short Time Series Expression Miner (STEM) analysis to
determine gene expression levels in cows of various parities and divided multiple parities into three
main periods (nulliparous, primiparous, and multiparous) for subsequent analysis. Furthermore, the
top 15,000 genes with the lowest median absolute deviation (MAD) were used to build a co-expression
network using weighted correlation network analysis (WGCNA), and six independent modules were
identified. Combing with Exon Wide Selection Signature (EWSS) and protein-protein interaction (PPI)
analysis revealed that TPCN2, KIF22, MICAL3, RUNX2, PDE4A, TESK2, GPM6A, POLR1A, and
KLHL6 involved in early growth and postpartum diseases. The GO and KEGG enrichment showed
that the Parathyroid hormone synthesis, secretion, and action pathway and stem cell differentiation
function-related pathways were enriched. Collectively, our study revealed candidate genes and gene
networks regulating the early growth and postpartum diseases and provided new insights into the
potential mechanism of reproduction advantages of different parity selection.

Keywords: Japanese black cattle; maternal parity; postpartum disease; transcriptome

1. Introduction

Beef cow reproductive performance is a key factor affecting a ranch. It has a posi-
tive effect on stabilizing and improving the reproductive performance of beef cows [1]
through the introduction of excellent varieties [2], strengthening disease prevention, and
adopting some advanced technologies [3]. In fact, maternal parity is one of the important
physiological factors affecting the reproductive performance of beef cows.

Calving is the basic factor for the profit of beef cow production [4]. Under the premise
of meeting the basic frequency of calving and the quality of calving [5], the management
plan for calving cows with different parity should be different. For example, primiparous
cows need more nutrients to maintain their own development, and multiparous cows
have higher postpartum morbidity and need prior prevention [6]. Predicting the risk
of postpartum disease and evaluating the calving quality of different parity cows can
effectively prolong the profit period of the beef cow [7,8]; reducing the number of feeding
heads of reserve cows and the cost of semen consumption and herd renewal [9,10]; in the
case of constant herd size, allowing pastures to carry out a higher proportion of active
elimination [11], increasing the intensity of selection [12], thereby accelerating the genetic
progress of herds [13], and the cost of ranching operations and veterinary drugs is also
reduced [14].
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Japanese black cattle are well-known for producing high-quality beef with a high
intramuscular (marbling) fat content, which has been improved through genetic selection
over the last half-century [15]. Previous research on Japanese black cattle has concentrated
on genetic traits and management strategies to increase high-quality beef yields [7,16,17].
In fact, the effect of cattle genetic improvement through breeding will be more far-reaching
and lasting, but it is slower than that of management decision-making. Appropriate
breeding decision-making schemes can maximize the potential of herds in a limited time,
improve economic efficiency, and accelerate genetic advance. In this study, we look at
RNA-seq transcriptome profiles to find candidate genes in the blood of beef cows of various
parities. We believe that these findings will aid in our understanding of the molecular
mechanisms of early growth and development, as well as postpartum diseases in beef
cattle of various parities, and will serve as a reference for decision-making programs for
reproductive advantages of cows of various parities.

2. Materials and Methods
2.1. Laboratory Animals and Feeding Management

A total of 50 Japanese Black cattle individuals from different periods were used in this
study (Supplementary Table S1). During their time at Inner Mongolia Mengdelong Dairy
Farm, the cows were raised under similar feeding strategies and conditions (Hohhot City,
Inner Mongolia Province). There were no restrictions on the food and drink given to the
animals in this experiment. They were all raised in the same batch and fed the same diet.

2.2. Sequencing Data Analysis

Adaptors, raw reads with over 5% unknown nucleotides, and other low-quality reads
with Q20 or lower quality scores were removed from raw reads to obtain high-quality clean
reads. Subsequently, the clean data were mapped to the reference genome (Bos taurus
ARS-UCD1.2) by the HISAT2 (v2.2.1, https://daehwankimlab.github.io/hisat2/, accessed
on 5 May 2022) [18]. The alignment of effective reads with gene regions was calculated
by using genomic location information from bovine reference genomes. SAMtools (v1.9,
http://samtools.sourceforge.net/, accessed on 15 May 2022) was used to sort the BAM
alignment files that were generated from HISAT2 by name. StrigTie (v2.1.1, https://ccb.jhu.
edu/software/stringtie/index.shtml/, accessed on 15 May 2022) was used to estimate read
counts and normalize reads as FPKM (fragments per kilobase of exon model per million
mapped fragments) for each sample [19,20].

2.3. Short Time-Series Expression Miner Analysis

Short time-series expression miner (STEM) analysis is a well-validated and widely
used bioinformatics approach that identifies statistically significant time-dependent gene
expression profiles and identifies significantly enriched biological pathways within elu-
cidated profiles [21]. An initial step of STEM is to select a distinct set of temporal model
profiles that represent potential time-dependent gene expression patterns.

2.4. Differentially Expressed Genes Analysis

DESeq2 (v1.30.1, http://mirrors.nju.edu.cn/bioconductor/3.15/bioc/html/DESeq2.html/,
accessed on 15 May 2022) was used to normalize the gene count data and calculate differential
expression to investigate differentially expressed genes (DEGs) across three time periods
(nulliparous vs. primiparous, primiparous vs. multiparous, nulliparous vs. multiparous). The
DEGs were identified using DESeq2 and filtered using the p-value 0.05 criterion.

2.5. Co-Expression Network Analysis

WGCNA could be used to investigate gene-gene relationship patterns and measure
the correlation between modules and the targeted traits, which has become a popular
method for identifying candidate biomarkers. The function was used in the current study
to perform hierarchical clustering based on DEG expression levels to reduce the effect of

https://daehwankimlab.github.io/hisat2/
http://samtools.sourceforge.net/
https://ccb.jhu.edu/software/stringtie/index.shtml/
https://ccb.jhu.edu/software/stringtie/index.shtml/
http://mirrors.nju.edu.cn/bioconductor/3.15/bioc/html/DESeq2.html/
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outlier samples on network analysis by per kilobases per million reads (FPKM). Using
the TBtools R package, the top 15,000 genes with the lowest MAD were used to build
a co-expression network [22]. When the fit index was 0.8, an appropriate value for the
scale-free network construction was determined. The topological overlap matrix (TOM)
for network interconnectedness was then calculated using the average linkage hierarchical
clustering method. Using a dynamic tree-cutting algorithm for module division, with
a minimum number of genes in each module of at least 40 and a threshold of 0.25 for
similar module merging. Furthermore, we identified stage-specific modules with strong
correlations between GS and MM values (p-value < 0.05) and highly correlated module-trait
relationships (correlation coefficient > 0.5) [23].

2.6. Function Enrichment and PPI Analysis

For each stage-specific module, GO enrichment and KEGG pathway analyses were con-
ducted using DAVID (https://david.ncifcrf.gov/, accessed on 20 May 2022) and KOBAS
(http://kobas.cbi.pku.edu.cn/kobas3/, accessed on 20 May 2022). GO terms and path-
ways with a p-value ≤ 0.05 were defined as significantly enriched [24]. Genes in each
stage-specific module were calculated separately by STRING (https://string-db.org/, ac-
cessed on 20 May 2022) and Metascape (https://metascape.org/, accessed on 20 May
2022), obtained the protein–protein interaction (PPI) network and imported into Cytoscape
(v3.8.2, https://cytoscape.org/, accessed on 20 May 2022) [25,26]. Node sizes and colors
indicate different node degrees, the width of the edges indicates combined scores and
intra-module connection weights, and nodes with the largest size and red indicate the
highest potential genes.

2.7. Exon Wide Selection Signature

The association analysis at the transcriptome level was used to assist in the screening
of related important functional genes. The number of SNPs in the coding region, although
small, is due to any base change in the exon. They may affect the translation of proteins
and the expression of biological traits. Therefore, SNP is of great significance in the study
of trait expression and disease. Exon Wide Selection Signature is an SNP screening method
based on transcription level by detecting the index of population differentiation. The Fst is
for screening selection signals among populations and then finding out the selection signal
region and target traits related to important genes. The population differentiation index
was calculated by the vcftools program, and the loci with negative Fst were eliminated to
screen SNP selection signals of different parity beef cows (Fst > 0.15).

3. Results
3.1. Data Analysis of Transcriptome

A total of 1246 million clean reads from 50 samples were generated by RNA-seq. After
aligning clean reads to the cattle reference genome (ARS-UCD1.2), the mapping rate was
approximately 95.35% (ranging from 93.73% to 96.13%) in Supplementary Table S1. We
observed 24,577 genes that were expressed across 50 samples in Supplementary Table S2.
By stem analysis, we found that gene expression changed greatly at 4 parities and divided
all beef cows into three main stages: nulliparous, primiparous, and multiparous (Figure 1).
In spite of differences in sample characteristics, gene expression profiles clustered samples
from the same group (Figure 2A).

https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/kobas3/
https://string-db.org/
https://metascape.org/
https://cytoscape.org/
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Figure 1. STEM analysis identified ten significant chronological profiles in gene expression, which
are depicted graphically.

3.2. Differentially Expressed Genes across Three Periods

The researchers looked into the differences in gene expression of samples from dif-
ferent time periods. 1010 DEGs were identified in the primiparous vs. nulliparous com-
parison, including 457 upregulated genes and 553 downregulated genes (Figure 2B and
Supplementary Table S3). In the multiparous vs. primiparous comparison, a total of
1060 DEGs were identified, including 616 upregulated genes and 444 downregulated genes
(Figure 2C and Supplementary Table S4). In the multiparous vs. nulliparous comparison,
2245 DEGs were found, with 1182 upregulated genes and 1063 downregulated genes
(Figure 2D and Supplementary Table S5).

3.3. Co-Expression Network Construction and Module Detection

We used WGCNA to investigate the relationship between three time periods to un-
derstand the function of genes better. According to the results of scale independence and
mean connectivity, we took power as 5 when the correlation index reached 0.85 (Figure 3A)
and 15,000 genes were divided into 19 modules (Figure 3B,C). The scale-free network was
built with a block-wide module function, with 51 genes in the light yellow module and
1439 in the purple module.
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Figure 2. (A) PCA of the identified genes, the red, green, and blue dots represent samples of mul-
tiparous, primiparous, and nulliparous periods. (B) Volcano plot of differential genes, volcano plot 
for DEGs in the nulliparous period compared with the primiparous period. (C) Volcano plot for 
DEGs in the primiparous period compared with the multiparous period. (D) Volcano plot for DEGs 
in the nulliparous period compared with the multiparous period, red and green dots represent 
up/down-regulated DEGs, respectively. The gray dots represent not DEGs. 
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Figure 2. (A) PCA of the identified genes, the red, green, and blue dots represent samples of
multiparous, primiparous, and nulliparous periods. (B) Volcano plot of differential genes, volcano
plot for DEGs in the nulliparous period compared with the primiparous period. (C) Volcano plot
for DEGs in the primiparous period compared with the multiparous period. (D) Volcano plot for
DEGs in the nulliparous period compared with the multiparous period, red and green dots represent
up/down-regulated DEGs, respectively. The gray dots represent not DEGs.
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3.4. Period-Specific Module Identification

To investigate the period-specific modules, the GS and MM of all genes in the module
were calculated over three periods. According to our definitions, GS is the correlation
between a gene and its development period, and MM is the correlation between a gene’s
expression profile and its module. A strong correlation between GS and MM (p-value < 0.05)
demonstrates that genes strongly associated with a trait are frequently the most important
components of the modules associated with that trait. Finally, we found six period-specific
modules (average module-trait relationship > 0.5 and p < 0.05), of which the midnight blue,
light green, and grey modules were positively correlated with the nulliparous period and
the light cyan module was positively correlated with a multiparous period. In contrast, the
module’s light cyan was negatively correlated with a nulliparous period, and the module’s
light green was negatively correlated with the multiparous period (Figure 4).
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Figure 4. The correlation between the differentiation period and the modules. Correlation ranges
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3.5. Function Enrichment Analysis

PPI network and Metascape were used to identify potential genes, and Cytoscape was
used to visualize them. We present the significantly enriched GO terms and the pathways
associated with each module in Figure 5. Detailed information on the GO terms and path-
ways is shown in Figures 6 and 7 and Supplementary Table S7. For this study, the important
pathways identified were Pathways in cancer, MAPK signaling pathway, MicroRNAs in
cancer, PI3K-Akt signaling pathway, Platinum drug resistance, Cell cycle, Chemokine
signaling pathway, Cancer-related transcriptional dysregulation Hippo signaling pathway,
Progesterone-mediated oocyte maturation, cytokine-cytokine receptor interaction. Multiple
significant GO terms are related to cell cycle, positive regulation of cell proliferation, cell
division, mitotic cell cycle, immune response, neuron differentiation, positive regulation of
ERK1 and ERK2 cascade, positive regulation of gene expression, mitotic spindle assembly
checkpoint, chromosome segregation, DNA replication.
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Figure 5. Visualization of potential genes in stage-specific modules. (A) PPI network for N-light cyan
module. (B) PPI network for N-midnight blue module. (C) PPI network for N-light green module.
(D) PPI network for N-grey module. (E) PPI network for M-light green module. (F) PPI network for
M-light cyan module.
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Figure 6. Analysis of gene ontology (GO) enrichment in related Specific module genes, the green
part represents BP (Biological Process), the orange part represents CC (Cellular Component), and
the purple part represents MF (Molecular Function). (A) GO enrichment analysis of genes in N-light
cyan module. (B) GO enrichment analysis of genes in N-midnight blue module. (C) GO enrichment
analysis of genes in N-light green module. (D) GO enrichment analysis of genes in the N-grey module.
(E) GO enrichment analysis of genes in M-light green module. (F) GO enrichment analysis of genes
in M-light cyan module.
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Figure 7. KEGG pathway analysis of related Specific module genes. (A) The pathway enrichment
for the N-light cyan module. (B) The pathway enrichment for N-midnight blue module. (C) The
pathway enrichment for N-light green module. (D) The pathway enrichment for the N-grey module.
(E) The pathway enrichment for M-light green module. (F) The pathway enrichment for the M-light
cyan module.

3.6. Exon Wide Selection Signature

In this study, SAMtools and BCFtools software were used to screen the SNP sites of
cows with different parity. Based on the population differentiation index Fst, the differences
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of each genetic variation and its frequency between groups were compared, and the highly
differentiated SNP sites were analyzed. SNP variation sites were screened by SAMtools
and BCFtools. We screened 2541, 2744, and 1763 SNPs loci with high differentiation in
different parity (Figure 8). Then, the selected SNP was mapped to the reference genome
(Bos taurus ARS-UCD1.2), with highly differentiated SNP regions as the center, and the 1M
extensions in the upstream and downstream were used as new candidate regions. Finally,
we mapped 723, 945, and 548 genes over three periods (Supplementary Table S6).
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3.7. Top Genes Expressed in Three Periods

In this study, we found that in the comparison of the nulliparous vs. primiparous
group, it was mainly concentrated in the signal pathways such as Oxidative phospho-
rylation, Pathways of neurodegeneration-multiple diseases, and Thermogenesis. In the
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primiparous vs. multiparous group, it is mainly concentrated in signaling pathways such
as postpartum disease, such as Salmonella infection, AMPK signaling pathway, Transcrip-
tional misregulation in cancer, and the Insulin signaling pathway. This is highly consistent
with our previous post-partum disease plate phenomenon. Based on the DEG, WGCNA,
and EWSS results, we can suggest TPCN2, KIF22, MICAL3, RUNX2, PDE4A, TESK2,
GPM6A, POLR1A, and KLHL6 as the promising candidate genes for different parity cows
(Figure 9).
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Figure 9. Venn diagram of DEGs, EWSS, and WGCNA. (A) The common intersection of nulliparous
and primiparous groups under the DEGs, EWSS, and WGCNA analysis method. (B) The common
intersection of primiparous and multiparous groups under the DEGs, EWSS, and WGCNA analysis
method. (C) The common intersection of nulliparous and multiparous groups under the DEGs, EWSS,
and WGCNA analysis method.

4. Discussion

In the livestock industry, reproductive traits are important economic traits, and they
are influenced by both genetics and the environment. In this experiment, beef cows are all
raised in the same environment. In this study, we found some special genes, which are
TPCN2 in the nulliparous vs. primiparous group; KIF22, MICAL3, RUNX2, and PDE4A in
the primiparous vs. multiparous group; TESK2, PDE4A, GPM6A, POLR1A, KLHL6 and
RUNX2 in nulliparous vs. multiparous group. Both RUNX2 and PDE4A were specifically
expressed in groups primiparous and multiparous, and they work together on the Parathy-
roid hormone synthesis, secretion, and action signaling pathway. The Parathyroid hormone
synthesis, secretion, and action-signaling pathway were demonstrated to be involved in
translation initiation and translation process, which is critical in the growth, metabolism,
reproduction, and aging of organisms [27].

RUNX2 is located on chromosome 6, also known as CCD or AML3. Runt DNA-binding
domain-containing nuclear protein encoded by this gene is a member of the RUNX family
of transcription factors. This protein is required for osteoblast differentiation and skeletal
morphogenesis, as well as acting as a scaffold for nucleic acids and regulatory factors
involved in skeletal gene expression. This gene has also been associated with carcass and
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growth-related traits in broilers [28] and goats [29]. According to some findings, RUNX2
may play an oncogenic role in esophageal carcinoma by activating the PI3K/AKT and ERK
pathways [30]. PDE4A, also known as DPDE2 or PDE46, is located on chromosome 19.
The protein encoded by this gene belongs to the cyclic nucleotide phosphodiesterase (PDE)
family and PDE4 subfamily. This PDE hydrolyzes the second messenger, cAMP, which is a
regulator and mediator of a number of cellular responses to extracellular signals. PDE4
inhibitors might be useful therapeutic targets for myelodysplastic syndromes (MDS) [31].
T-cells that were PDE4A-transgenic were also partially protected from regulatory T-cell
suppression [32]. Furthermore, PDE4A effectively suppressed PGE2-mediated upregulation
of the inhibitory surface markers CD73 and CD94 on CD8 T-cells [33].

In the nulliparous vs. primiparous group, we identified only one gene. TPCN2,
also known as TPC2 or SHEP10, is located on chromosome 11. TPCN2 protects against
diet-induced weight gain in a mild manner, and this protection is likely independent of
glucose tolerance, insulin sensitivity, and fasting plasma and hepatic lipid levels [34]. The
endolysosomal two-pore cation channel TPCN2 is a key factor in neovascularization and
immune activation [35]. TPCN2 acts on autophagy progression and extracellular vesicle
transport in cancer cells [36]. The encoded protein is a catalytic subunit of the complex
that transcribes DNA into ribosomal RNA precursors. Tp53-dependent neuroepithelial
apoptosis decreased neural crest cell proliferation, and cranioskeletal abnormalities can all
result [37]. KIF22 on chromosome 11, also known as OBP or KNSL4. This gene encodes
a protein that belongs to the kinesin-like protein family and plays an important role
in metaphase chromosome alignment and maintenance. KIF22 may be involved in the
regulation of cell proliferation in colon cancer [38]. In addition, it is highly expressed in
pancreatic cancer; it regulates the MEK/ERK/P21 signaling axis and promotes the cell
cycle and the development of pancreatic cancer [39]. MICAL3 on chromosome 22 is mainly
involved in activating actin-binding activity and actin filament depolymerization. MICAL3
knockout results in an increased frequency of cytokinetic failure and delayed abscission.
MICAL3 directs adaptor protein ELKS and Rab8A-positive vesicles to the midbody via
a mechanism unrelated to its enzymatic activity, and ELKS and Rab8A deficiency causes
cytokinesis defects [40].

The KLHL6 gene on chromosome 3 encodes a protein that is involved in B-lymphocyte
antigen receptor signaling and germinal-center B-cell maturation [41]. TESK2 is a ser-
ine/threonine protein kinase with an N-terminal protein kinase domain that is structurally
similar to the kinase domains of testis-specific protein kinase-1 and LIM motif-containing
protein kinases [42]. GPM6A, also known as M6A, is located on chromosome 11. It is pre-
dicted to enable calcium channel activity and is involved in neuron migration and stem cell
differentiation. POLR1A is also known as A190, RPA1, and RPO14 on chromosome 2. The
protein encoded by this gene is the largest subunit of the RNA polymerase I complex. The
encoded protein is a catalytic subunit of the complex that transcribes DNA into ribosomal
RNA precursors. Tp53-dependent neuroepithelial apoptosis decreased neural crest cell
proliferation, and cranioskeletal abnormalities can all result [43].

5. Conclusions

In this study, blood transcriptome analysis was performed on different parities of
Japanese black cattle. DEGs, EWSS, and WGCNA analysis revealed that TPCN2, KIF22,
MICAL3, KLHL6, and POLR1A might be involved in candidate genes for postpartum dis-
eases. RUNX2, PDE4A, TESK2, and GPM6A genes could be used as candidate genes for early
growth development. It provides a theoretical basis for beef cattle breeding evaluation.

Supplementary Materials: The following supporting information can be downloaded at: https:
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