
sensors

Article

A Study on the Application of Convolutional Neural
Networks to Fall Detection Evaluated with Multiple
Public Datasets

Eduardo Casilari * , Raúl Lora-Rivera and Francisco García-Lagos

Departamento de Tecnología Electrónica, Universidad de Málaga, ETSI Telecomunicación, 29071 Málaga, Spain;
raul.lora@uma.es (R.L.-R.); fgl@uma.es (F.G.-L.)
* Correspondence: ecasilari@uma.es

Received: 5 February 2020; Accepted: 5 March 2020; Published: 6 March 2020
����������
�������

Abstract: Due to the repercussion of falls on both the health and self-sufficiency of older people and
on the financial sustainability of healthcare systems, the study of wearable fall detection systems
(FDSs) has gained much attention during the last years. The core of a FDS is the algorithm that
discriminates falls from conventional Activities of Daily Life (ADLs). This work presents and
evaluates a convolutional deep neural network when it is applied to identify fall patterns based on the
measurements collected by a transportable tri-axial accelerometer. In contrast with most works in the
related literature, the evaluation is performed against a wide set of public data repositories containing
the traces obtained from diverse groups of volunteers during the execution of ADLs and mimicked
falls. Although the method can yield very good results when it is hyper-parameterized for a certain
dataset, the global evaluation with the other repositories highlights the difficulty of extrapolating to
other testbeds the network architecture that was configured and optimized for a particular dataset.

Keywords: fall detection system; accelerometers; body sensor networks; classification algorithms;
convolutional neural networks; machine learning; wearable sensors

1. Introduction

Due to the growing life expectancy and the social changes in the traditional family structure, the
population of seniors that live alone in their homes has notably increased during the last few decades.
In this context, falls are a major risk for the quality of life and the autonomy of the elderly.

According to the studies reported by the World Health Organization (WHO) [1], falls represent the
second leading cause of accidental deaths around the world, producing a particularly high morbidity
among people aged 65 and older. For those aged over 80 residing in community settings, the percentage
of those persons that experience at least one fall per year climbs to 50% [2], with 40% of them suffering
recurrent falls [3]. In the USA, the annual number of fall-related injuries is expected to reach 3.4 million
in 2020 and 5.7 million by the year 2030 [3]. As it refers to the economic impact on the sustainability
of national health systems, the global medical costs attributable to falls in 2015 totaled about $50.0
billion [4].

Aid response time is a key element to prevent the most serious potential consequences of the
comorbidities and disabilities linked to falls. Consequently, the study of systems for the automatic
recognition of falls has become an important research topic in the fields of telemedicine and human
activity recognition during the last ten years.

The objective of Fall Detection Systems (FDSs) is to continuously monitor the movements of a
certain user (or patient) with the aim of transmitting an alarm notification (text message, phone call,
etc.) claiming assistance to a remote observation point whenever a fall is suspected. FDSs must be

Sensors 2020, 20, 1466; doi:10.3390/s20051466 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2573-1048
http://dx.doi.org/10.3390/s20051466
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1466?type=check_update&version=2

Sensors 2020, 20, 1466 2 of 21

carefully designed to discriminate falls from other routines or ADLs (Activities of Daily Living) so that
the number of both unnoticed falls and false alarms (ADLs misidentified as falls) is minimized.

In spite of the variety of existing solutions to the problem of fall detection, FDSs are usually
categorized into two groups [5–7]: context-aware (vision and/or ambient based) and wearable detectors.
In context-aware systems, falls are recognized by processing the signals collected by environmental
sensors (such as cameras, depth sensors, microphones, vibration sensors, etc.) located in the vicinity
of the subject to be tracked. Hence, the operation of a context-aware architecture is confined to the
particular zone (e.g., room, nursing home) where the sensors are deployed and configured. In this
zone, the alteration of factors such as the lighting, the disposition of the furniture, or the presence of
unexpected elements (occlusions, pets, falling objects, other individuals, spurious sounds, etc.) may
impact heavily on the effectiveness of the detection decision [8]. Furthermore, in the case of using
audiovisual equipment, the patients may feel their privacy compromised.

On the other hand, wearable systems permit monitoring the patient’s movements by means
of one or several transportable sensors (mainly accelerometers, but also gyroscopes, and much less
frequently, magnetometers or ECG sensors), which are fixed to the clothes or attached to the body
through elastic bands.

Wearable FDSs can be easily implemented on smartphones as these popular gadgets natively
embed inertial sensors. Otherwise, if the sensing capabilities of the phone are not leveraged, external
sensors can also connect with a smartphone via a low-power wireless standard (such as Bluetooth
Low Energy) with a view to benefit from the long range connectivity (Wi-Fi, 4G/3G) of these personal
devices. Thus wearable FDSs offer a cost-effective alternative to track the movements unequivocally
linked to a certain user practically, without any geographical or location restriction. The increasing
capacity of wearables to put into operation sophisticated detection algorithms has also fostered the
interest in this typology of FDSs within the research community.

Falls are generically and ambiguously defined by the WHO as events that “result in a person
coming to rest inadvertently on the ground or floor or other lower level” [1]. Due to the complex
dynamics and the broad variety of the types of falls, fall detection algorithms based on machine learning
techniques yield much more accurate results than those obtained by ‘thresholding’ strategies [9,10],
which simply compare a certain variable or groups of variables (e.g., the acceleration magnitude) with
one or several preset thresholds or limit values to produce the detection decision.

In the domain of machine learning, different classes of architectures based on artificial neural
networks such as Recurrent Neural Networks (RNNs) [11–13] have been successfully employed as the
movement classifier of a FDS. Similarly, Convolutional Neural Networks (CNNs) have also been recently
proposed as a promising technology for those HAR (human activity recognition) systems [14,15] and
wearable FDSs that process the data gathered by inertial sensors [16–18].

CNNs are formed by a sequence of processing layers interrelated through neurons. Unlike other
machine learning techniques commonly employed in wearable FDSs (such as Support Vector Machine
or k-Nearest Neighbors), CNNs allow modeling the underlying structures of large datasets without
requiring human guidance as they are capable of identifying those internal features that optimize the
representation of the data with different layers of abstraction [19].

A central issue still under discussion in the study of fall detection algorithms is their evaluation.
On account of the evident complexity of testing the FDS in a real scenario with actual falls suffered by
elderly patients, fall detection algorithms are massively evaluated by the literature against databases
of inertial measurements. These data are typically collected by a group of volunteers that transport
inertial sensors during the systematic emulation of falls and ADLs executed as a function of a
preconfigured testbed.

In almost all initial studies on FDSs, the resulting evaluation datasets were not made publicly
available so that they could not be re-utilized by other authors to compare new proposals. This lack of
specific benchmarks was partially remedied over the past years, during which several repositories
designed for the evaluation of FDSs have been released. Thus, an increasing use of public datasets

Sensors 2020, 20, 1466 3 of 21

as benchmarking tools has been clearly detected in the recent related literature. However, although
existing databases strongly differ in many aspects (sampling rate and range of the sensors, number
and characteristics of the experimental users, emulated movements, length of the samples, etc.), in the
vast majority of the works, the detection methods are parameterized and tested by taking into account
only a single dataset. Thus, it is legitimate to question whether the results obtained by these studies for
a particular dataset can be extrapolated when other test samples are considered.

In this paper, we evaluate the capability of a CNN to perform as the movement classifier in
a wearable FDS. The hyper-parameters of the deep learning architecture are initially designed to
optimize the detector performance when a specific dataset is utilized as the evaluation framework.
Then, the same architecture is trained and tested with the other 13 datasets. The analysis shows the
huge variability of the quality metrics, which deeply depend on the utilized repository.

The rest of this paper is organized as follows. Section 2 revises the existing datasets, while Section 3
comments on the configuration of the CNN (input features, layers, dimensions). Section 4 presents the
numerical results systematically obtained for the different datasets when the same detection method is
applied. Finally, the conclusions are recapitulated in Section 5.

2. Revision and Selection of Public Datasets

Due to the inherent complications of gathering inertial measurements of actual falls suffered by
older people, most works have evaluated their proposals for FDSs by creating a testbed in which a set of
volunteers transporting one or several inertial sensors systematically execute a predetermined number
of activities. These preconfigured activities usually include typical ADLs (such as sitting, walking,
running, climbing stairs, etc.) as well as some types of mimicked falls (which are normally carried out
on a mat or padded surface to avoid injuries). Unfortunately, in many studies, these measurements
obtained in the testbed are not made publicly available to be exploited by the research community to
compare new proposals. To overcome this drawback, different datasets have been published (especially
during the last four years) as benchmarking tools for cross-comparison of detection algorithms.

Table 1 presents a comprehensive list of the authors, reference, institutions, and year of publication
of these datasets. Ahmed et al. [20] presented another repository (generated by 140 subjects and
intended for assessing fall risk), which was not considered in this analysis as it only includes five falls.

All of these datasets comprise the measurements collected by the inertial sensors worn by the
selected volunteers during the preconfigured experiments. The number of obtained samples and
considered typologies of the emulated ADLs and falls, the duration of the traces as well as the basic
characteristics of the participants (number, gender, and age range) are described in Table 2.

Table 3 summarizes, in turn, the type and basic properties (sampling rate, range) of the sensors
employed to generate the repositories. The table also indicates the corporal position on which the
sensor was located or attached during the experiments (see [21] for a further comparison of some of
these datasets). As can be observed from the table, although there are cases where up to seven sensing
positions have been considered, most datasets include only a single measuring point. In all cases,
the sensor embeds at least an accelerometer and less often, a gyroscope, a magnetometer, and/or an
orientation sensor.

Sensors 2020, 20, 1466 4 of 21

Table 1. List of the existing public datasets intended for the study of wearable fall detection systems. (* Note:
√

indicates the datasets employed in this study).

Dataset Ref. Authors Institution City (Country) Year *

DLR [22] Frank et al. German Aerospace Center (DLR) Munich (Germany) 2010
√

LDPA [23] Kaluza et al. Jožef Stefan Institute Ljubljana (Slovenia) 2010

MobiFall
MobiAct

[24]
[25] Vavoulas et al. BMI Lab (Technological Educational Institute of Crete) Heraklion (Greece) 2013

2016

√

√

EvAAL [26] Kozina et al. Department of Intelligent Systems, Jozef Stefan Institute, Ljubljana (Slovenia) 2013

TST Fall detection [27] Gasparrini et al. TST Group (Universita Politecnica delle Marche) Ancona (Italy) 2014
√

tFall [28] Medrano et al. EduQTech (University of Zaragoza) Teruel (Spain) 2014
√

UR Fall Detection [29] Kępski et al. Interdisciplinary Centre for Computational Modelling (University of Rzeszow- UR-) Krakow (Poland) 2014

Erciyes University [30] Özdemir & Barshan Department of Electrical and Electronics Engineering (Erciyes University) Kayseri (Turkey) 2014
√

Cogent Labs [31] Ojetola et al. Cogent Labs (Coventry University) Coventry (UK) 2015
√

Gravity Project [32] Vilarinho et al. SINTEF ICT Trondheim (Norway) 2015

Graz UT OL [33] Wetner et al. Graz University of Technology Graz (Austria) 2015
√

UMAFall [34] Casilari et al. Dpto. Tecnología Electrónica (University of Málaga) Málaga (Spain) 2016
√

FARSEEING [35] Klenk et al. FARSEEING Consortium (SENSACTION-AAL European Commission Project) Five hospital or scholar centers in Germany and
one university in New Zealand 2016

SisFall [36] Sucerquia et al. SISTEMIC (University of Antioquia) Antioquia (Colombia) 2017
√

UniMiB SHAR [37] Micucci et al. Department of Informatics, Systems and Communication (University of Milano) Bicocca, Milan (Italy) 2017
√

SMotion [20] Ahmed et al. Department of Computer Science (University of Karachi) Karachi (Pakistan) 2017

IMUFD [9] Aziz et al. Injury Prevention and Mobility Laboratory (Simon Fraser University) Burnaby (BC, Canada) 2017
√

DU-MD [38] Saha et al. Department of Electrical and Electronic Engineering (University of Dhaka) Dhaka (Bangladesh) 2018

SmartFall & Notch datasets [39] Mauldin et al. Department of Computer Science, Texas State University San Marcos (TX, USA) 2018

UP-Fall [40] Martínez-Villaseñor
et al. Facultad de Ingeniería (Universidad Panamericana) Mexico City (Mexico) 2019

√

DOFDA [41] Cotechini et al. Department of Information Engineering (Università Politecnica delle Marche) Ancona (Italy) 2019
√

Sensors 2020, 20, 1466 5 of 21

Table 2. Basic characteristics of the experimental subjects and the emulated movements for the different datasets (n.i.: not indicated).

Dataset Number of Subjects (Females/Males) Age Number of Types of ADLs/Falls Number of Samples (ADLs/Falls) Duration of the Samples (s)

DLR 19 (8/11) [23–52] 15/1 1017 (961/56) [0.27–864.33] s

LDPA 5 (n.i.) n.i. 10/1 100/75 Up to 300 s

MobiFall
MobiAct

24 (7/17)
57 (15/42)

[22–47]
[20–47]

9/4
9/4

630 (342/288)
2526 (1879/647)

[0.27–864.33] s
[4.89–300.01] s

EvAAL 1 (n.i.) n.i. 7/1 57 (55/2) [0.162–30.172]

TST Fall detection 11 (n.i.) [22–39] 4/4 264 (132/132) [3.84–18.34] s

tFall 10 (3/7) [20–42] Not typified/8 10909 (9883/1026) 6 s (all samples)

UR Fall Detection 6 (0/6) n.i. (over 26) 5/4 70 (40/30) [2.11–13.57] s

Erciyes University 17 (7/10) [19–27] 16/20 3302(1476/1826) [8.36–37.76]

Cogent Labs 42 (6/36) [18–51] 8/6 1968 (1520/448) [0.53–55.73] s

Gravity Project 2 (n.i.) [26–32] 7/12 117 (45/72) [9.00–86.00] s

Graz UT OL 5 (n.i.) n.i. 10/4 2460 (2240/220) [0.18–961.23] s

UMAFall 17 (7/10) [18–55] 8/3 531 (322/209) 15 s (all samples)

FARSEEING 15 (8/7) [56–86] 0/22 22 (0/22) 1200

SisFall 38 (19/19) [19–75] 19/15 4505 (2707/1798) [9.99–179.99] s

UniMiB SHAR 30 (24/6) [18–60] 9/8 7013 (5314/1699) 1 s (all samples)

IMUFD 10 (n.i.) n.i. 8/7 600(390/210) [15–20.01]

DU-MD 10 (4/6) [17–20] 8/2 3299 (2309/990) [2.85–11.55]

Smartfall 7 (n.i.) [21–55] 4/4 181 (90/91) [0.576–16.8]

Smartwatch 7 (n.i.) [20–35] 7/4 2563 (2456/107) [1–3.776]

UP-Fall 17 (8/9) [18–24] 6/5 559(304/255) [9.409–59.979]

DOFDA 8 (2/6) [22–29] 9/9 432 (120/312) 1.96–17.262

Sensors 2020, 20, 1466 6 of 21

Table 3. Position and characteristics of the sensor used in the different datasets. Note: A: Accelerometer, G: Gyroscope, O: Orientation measurements, M: Magnetometer.
SP: Smartphone.

Dataset Number of Sensing Points Captured Signals in Each Sensing Points Positions of the Sensing Points Type of Device Sampling Rate (Hz) Range

DLR 1 3 (A, G, M) Waist (belt) 1 external IMU 100
±5 g (A)
±1200◦/s (G)
±75 µT (M)

LDPA 4 Position (x,y,z coordinates) Right ankle, Left ankle, Waist (belt), Chest 4 external IMUS (tags) 10 Tens of meters

MobiFall & MobiAct 1 3 (A, G, O) Thigh (trouser pocket) 1 smartphone 87 (A)
100 (G,O)

±2 g (A)
±200◦/s (G)
±360◦ (O)

EvAAL 2 1 (A) Chest, right Thigh 2 external IMUs 50 ±16 g (A)

TST Fall detection 2 1 (A) Waist, Wrist 2 external IMUs 100 ±8 g (A)

Erciyes University 6 3(A, G, M) Chest, Head, Ankle, Thigh, Wrist, Waist 6 external IMUs 25
±16 g (A)
±1200◦/s (G)
±150 µT (M)

tFall 1 1 (A) Alternatively: Thigh (right or left pocket), Hand
bag (left or right side) 1 smartphone 45 (±12) ±2 g (A)

UR Fall Detection 1 3 (A) Waist (near the pelvis) 1 external IMU 256 ±8 g (A)

Cogent Labs 2 2 (A, G) Chest, Thigh 2 external IMUs 100 ±8 g (A)
±2000◦/s (G)

Gravity Project 2 1 (A) Thigh (smartphone in a pocket)
Wrist (smartwatch)

1 smartphone
1 smartwatch 50 ±2 g (A)

±16 g (A)

Graz UT OL 1 2 (A, O) Waist (belt bag) 1 smartphone 5 ±2 g (A)
±360º (O)

UMAFall 5 3(A, G, M) Ankle, Chest, Thigh, Waist
Wrist

1 Smartphone
4 external IMUs

100 (SP)
20 (IMUs)

±16 g (A)
±256◦/s (G)
±4800 µT (M)

FARSEEING 1 2 (A,G) Waist or Thigh 1 external IMU 100 ±6 g (A)
±100◦/s (G)

SisFall 1 3 (A, A, G) Waist
1 sensing mote with
two accelerometers
and a gyroscope

200
±16 g (A1)
±8 g (A2)
±2000º/s (G)

UniMiB SHAR 1 1 (A) Thigh (left or right trouser pocket) 1 smartphone 50 ±2 g (A)

IMUFD 7 3(A, G, M) Chest, Head, Left ankle, Left thigh, Right ankle,
Right thigh, Waist 7 external IMUs 128

±16 g (A)
±2000◦/s (G)
±800 µT (M)

DU-MD 1 1 (A) Wrist 1 external IMU 33 ±4 g (A)

Smartwatch 1 1 (A) Wrist (left hand) Smartwatch (MS
Band) 31.25 ±8 g (A)

Notch 1 1 (A) Wrist 1 external IMU 31.25 ±16 g (A)

UP-Fall 5 2 (A, G) Ankle, Neck, Thigh (pocket)
Waist, Wrist 5 external IMUs 14 ±8 g (A)

±2000◦/s (G)

DOFDA 1 4 (A, G, O, M) Waist 1 external IMU 33
±16 g (A)
±2000◦/s (G)
±800 µT (M)

Sensors 2020, 20, 1466 7 of 21

These available repositories are being increasingly considered by the recent literature on algorithms
for FDSs to evaluate the effectiveness of the detection process. Table 4 lists those studies that have
employed public datasets in order to test neural algorithms aimed at detecting falls in wearable systems.
The table itemizes the number and name of the utilized repositories as well as the quality metrics
achieved by the neural detection methods (mainly sensitivity and specificity, or alternatively, accuracy
or AUC (area ander the receiver operating characteristic curve). Table 4 shows that the evaluation of
the method in most studies (12 out of 17) was limited to a single dataset. Only three works validated
their proposals against more than two datasets. The work by Khojasteh et al. [42] made use of four
databases, but two of them (DaLiac [43] and Epilepsy [44] repositories) only included ADLs (which only
allows for evaluating the capacity of the system to avoid false alarms). The interesting dataset from the
FARSEEING project [35], also used in that study, consists of the traces obtained from 300 real world falls
captured by monitoring a population of hundreds of older people for several weeks. However, only 22
samples of that repository were available (under request to the project managers). The FARSEEING
dataset was also taken into consideration by one of the two studies that employed three datasets:
the work by Mauldin in [39], which introduced two similar databases (known as Smartwatch and
Notch) collected with wrist sensors (a smartwatch and an external IMU-Inertial Measurement Unit-,
respectively). Apart from the problems related to the difficulties of detecting falls with a wrist worn
device, these databases, also used by Santos in [18], incorporate a moderate number of fall events that
may hamper a thorough and systematic assessment of the effectiveness of the detector.

From the previous analysis, we can conclude that the use of several benchmarking datasets has
not been a major concern in the literature focused on wearable fall detection systems. However, before
being applied, all machine learning strategies for fall detection (including neural methods) need to be
configured by setting the values of a not-negligible number of parameters (e.g., the number and nature
of input features). In most cases, these values are heuristically selected, presumably as a function
of the results obtained with a set of testing samples extracted from a very particular dataset. As no
other database is utilized, the study of the capability of the configured network to detect falls under
conditions different from those in the reference dataset (sensor model, sampling rate, typology of ADL
and falls, etc.) actually remains unaddressed. Furthermore, except for some works such as that by
Yuwono [45] (which considers an outgroup dataset), the samples applied to test the system were always
acquired from the same experimental subjects that provided the training (and validation) samples.

In this regard, by using three repositories (tFall, DLR, and MobiFall), Medrano et al. have
already shown in [46] that the performance of a FDS noticeably decreased when the machine learning
algorithms were evaluated on a dataset different from that employed for training. In this work, we
show that even when the algorithm is trained and tested with data of the same datasets and users, the
performance of the same method may vary dramatically depending on the contemplated repository.
With this in mind, we selected SisFall as our reference dataset to parameterize the CNN in order to
maximize the performance metrics. Then, we analyzed the resulting network configuration when it
was trained and tested with other 13 different datasets (ticked with a check mark in Table 1).

Sensors 2020, 20, 1466 8 of 21

Table 4. Employed datasets and obtained results in other works that propose neural detectors.

Work Ref. Number of Employed Datasets & Names of the Datasets Sensitivity Specificity

(Poorani et al., 2012) [47] 1 Not specified dataset obtained from UCI
machine learning repository 91% n.i.

(Cheng & Jhan, 2013) [48] 1 LDPA 52%−78% 95.6%−99.47%

(Rashidpour et al., 2016) [49] 1 MobiFall 100% 100%

(Özdemir & Turan, 2016) [50] 1 Erciyes University 94.20%−96.27% (Accuracy)

(Vallabh et al., 2016) [51] 1 MobiFall 89.23% 81.43%

(Carletti et al., 2017) [52] 2 tFall & SisFall 91.2%−94.4% 95.4%−98.1%

(Jahanjoo et al., 2017) [53] 1 MobiFall 91.89%−97.29% 98.7%−100%

(Khan & Taati, 2017) [54] 2 DLR & Cogent Labs 70−95% 65%−90%

(Khojasteh et al., 2018) [42] 4 UMAFall, DaLiAC, Epilepsy &
FARSEEING 83.33%−100% 80.13%−84.18%

(Lisowska et al., 2018) [16] 1 tFall AUC (Area Under the Curve):
(0.582−0.904)

(Mauldin et al., 2018) [39] 3 FARSEEING, Smartwatch and Notch 89%−100% 70%−99%

(Musci et al., 2018) [55] 1 SisFall 85.78%−97.18% 94.14%−99.01%

(Nguyen et al., 2018) [56] 1 SisFall 98.26% 99.62%

(Theodoridis et al., 2018) [57] 1 UR Fall Detection 96.67% 100%

(Chelli & Patzold, 2019) [58] 1 Cogent Labs 96.8%−99.11% 100%

(Santos et al., 2019) [18] 3 UR Fall Detection, Smartwatch and Notch 22.73%−99.72% 87.50%−100%

(Wisesa & Mahardika, 2019) [12] 1 UMAFall 23.6%−100% 74.1%−97.6%

(Yacchirema et al., 2019) [59] 1 SisFall AUC (Area Under the Curve):
(0.582−0.904)

We opted to use SisFall [36] as the basis of our analysis as it is one of the most employed datasets
in the literature (see Table 4). In addition, it was generated by one of the largest sets of participants (38
subjects including 19 males and 19 females) with the widest age range (19–75 years). SisFall contains a
significant volume of traces (2707 ADLs and 1798 mimicked falls) with a duration (between 10 s and
180 s per movement, with a mean value of 15 s) long enough to apply different analysis strategies. The
nature of the emulated activities also exhibits a noteworthy variety: 19 categories of ADLs (ranging
from jogging or stumbling to basic movements such as sitting down) and 15 different types of falls
(generated as a function of the direction of the fall and the initial user’s position). In the testbed
deployed to collect the SisFall samples, the volunteers transported the sensing on a belt. The waist
is believed to be a good (and ergonomic) position to characterize the user’s movements [60] as it is
near the gravity center of the body and not strongly associated to the individual mobility of a limb
(such as the wrist or the ankle). For comparison purposes, we also selected those datasets where
the data were collected on the waist (or at least, on the upper part of the thigh). In order to keep a
common evaluation framework, in those cases where the traces were gathered with several sensors
simultaneously located on several parts of the body (e.g., Erciyes or UMAFall datasets), the analysis
focused on the data obtained on the waist and the data from the other sensors were not utilized.

Nevertheless, we have to remark that the appropriateness of investigating fall detection systems
with falls emulated by young healthy participants on a cushioned surface is still a controversial topic
out of the scope of this work. In this respect, Klenk found remarkable differences between the mobility
patterns of emulated and real-life [61] falls. In contrast, after analyzing the dynamics of actual falls
endured by elderly people, Jämsa et al. concluded in [62] that intentional and real life falls exhibited
analogous characteristics.

3. Configuration of the Convolutional Neural Network

3.1. Selection of the Input Features

The selection of the input features is a key design decision for the performance of machine
learning strategies.

In most practical implementations of FDS, the detector is expected to be (at least partly)
implemented on a sensing mote with heavy hardware resource limitations of the battery and

Sensors 2020, 20, 1466 9 of 21

computation power. Thus, to facilitate the real-time operation of the wearable, input features
should be derived from the data collected by the sensors without requiring any complex preprocessing
of the signals. In this respect, the architectures of the CNNs are particularly suited to learn the internal
structure of the signals directly from the raw sensor data without any previous heuristic extraction of
input features. Accordingly, we propose to directly feed the input of the CNN with the raw inertial
measurements provided by the repositories instead of using other parameters computed from the
data (extreme values, statistical moments, autocorrelation, time between ‘peaks’ or ‘valleys’ of the
signals, wavelet or discrete Fourier transform coefficients, frequency domain features, etc.). As long as
some datasets include other types of measurements, in this paper, we focused on the analysis of the
triaxial accelerometry signals (which are the basis for fall detection in most wearable FDSs existing in
the literature).

Falls are normally associated with one or several sudden upsurges of the acceleration magnitude
caused by the impacts of the body against the ground [63]. Hence, our analysis will be concentrated on
a time interval of fixed duration around the instant in which the maximum value of the acceleration
magnitude is detected, implicitly assuming that in the case of the sequence with a fall event, the fall
has occurred during this interval.

The acceleration magnitude or Signal Magnitude Vector (SMVi) for the i-th sample can be directly
computed from the values measured by the triaxial accelerometer:

SMVi =

√∣∣∣Axi

∣∣∣2 + ∣∣∣Ayi

∣∣∣2 + ∣∣∣Azi

∣∣∣2m/s2 (1)

where Axi, Ayi, and Azi define the three components of the acceleration vector for that i-th sample in
the direction of the x, y, and z-axis, respectively. These components are periodically measured by the
tri-axial accelerometer embedded in the smartphone and the external sensors.

The acceleration peak or maximum of the SMV (SMVmax) is defined as:

SMVmax = SMVto = max
{
SMVi : i ∈ [1, N]

}
(2)

where N indicates the length (number of samples) of the analyzed trace while to is the index of the
sample at which the acceleration peak is located.

Following the typical fall pattern, a “free fall” period (in which the acceleration magnitude tends
to be zero) normally precedes the impact against the floor. Furthermore, the dynamics of a fall is
usually characterized by brusque modifications of the body orientation, which are reflected in abrupt
changes in the sequence of the three acceleration components. In this context, the typical duration of
fall has been reported to span between 1 s and 3 s [64]. Thus, in order to capture the most significant
elements of the dynamics of a fall, we propose setting an observation window of up to ±2.5 s around
the instant to (four different window sizes will be considered). Hence, the CNN is fed with the raw
data collected by the accelerometer during that period.

Figure 1 illustrates an example of the evolution of both the acceleration components and magnitude
for a particular ADL (climbing and descending stairs rapidly) and a forward (mimicked) fall caused by
a trip.

Figure 2 represents the time series that will be analyzed by the CNN after extracting the values
corresponding to the observation window around the peak magnitude (for two window sizes: 1 and
5 s).

The sub-figures, in which the value SMVmax is indicated with a square marker, clearly show that
window sizes larger than 5 s are not required to apprehend the variability of the mobility patterns
during the fall. In our analysis, we will take into consideration two alternative variants for the input
sequences of the CNN:

Sensors 2020, 20, 1466 10 of 21

1. The series of the acceleration modules (SMVj) computed from the samples collected during the
observation window:

SMV j ∀ j ∈ [to −
TW

2
fs, to +

TW

2
fs] (3)

where fs indicates the sampling rate of the accelerometer and TW represents the duration (in
seconds) of the window.

2. As the second set of input features, we directly consider the series of the triaxial acceleration
components (Ax j,Ay j,Az j) obtained from the sensor:

Ax j,Ay j,Az j, ∀ j ∈ [to −
TW

2
fs, to +

TW

2
fs] (4)Sensors 2020, 20, x FOR PEER REVIEW 11 of 23

 (a) (b)

Figure 1. Snapshot of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV) for

two samples in the SisFall dataset: (a) An ADL (walking upstairs and downstairs quickly) and (b) a fall

(forward fall while walking caused by a trip).

Figure 2 represents the time series that will be analyzed by the CNN after extracting the values

corresponding to the observation window around the peak magnitude (for two window sizes: 1

and 5 s).

 (a) (b)

Figure 2. Detail of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV) of

the examples of Figure 1 for two different observation windows (±0.5 s and ±2.5 s) around the detected

maximum of the SMV. (a) ADL; (b) Fall.

The sub-figures, in which the value 𝑆𝑀𝑉𝑚𝑎𝑥 is indicated with a square marker, clearly show that

window sizes larger than 5 s are not required to apprehend the variability of the mobility patterns

during the fall. In our analysis, we will take into consideration two alternative variants for the input

sequences of the CNN:

1. The series of the acceleration modules (SMVj) computed from the samples collected during the

observation window:

𝑆𝑀𝑉𝑗 ∀𝑗 ∈ [𝑡𝑜 −
𝑇𝑊

2
𝑓𝑠, 𝑡𝑜 +

𝑇𝑊

2
𝑓𝑠] (3)

where fs indicates the sampling rate of the accelerometer and TW represents the duration (in seconds)

of the window.

Figure 1. Snapshot of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV)
for two samples in the SisFall dataset: (a) An ADL (walking upstairs and downstairs quickly) and (b) a
fall (forward fall while walking caused by a trip).

Sensors 2020, 20, x FOR PEER REVIEW 11 of 23

 (a) (b)

Figure 1. Snapshot of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV) for

two samples in the SisFall dataset: (a) An ADL (walking upstairs and downstairs quickly) and (b) a fall

(forward fall while walking caused by a trip).

Figure 2 represents the time series that will be analyzed by the CNN after extracting the values

corresponding to the observation window around the peak magnitude (for two window sizes: 1

and 5 s).

 (a) (b)

Figure 2. Detail of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV) of

the examples of Figure 1 for two different observation windows (±0.5 s and ±2.5 s) around the detected

maximum of the SMV. (a) ADL; (b) Fall.

The sub-figures, in which the value 𝑆𝑀𝑉𝑚𝑎𝑥 is indicated with a square marker, clearly show that

window sizes larger than 5 s are not required to apprehend the variability of the mobility patterns

during the fall. In our analysis, we will take into consideration two alternative variants for the input

sequences of the CNN:

1. The series of the acceleration modules (SMVj) computed from the samples collected during the

observation window:

𝑆𝑀𝑉𝑗 ∀𝑗 ∈ [𝑡𝑜 −
𝑇𝑊

2
𝑓𝑠, 𝑡𝑜 +

𝑇𝑊

2
𝑓𝑠] (3)

where fs indicates the sampling rate of the accelerometer and TW represents the duration (in seconds)

of the window.

Figure 2. Detail of the progress of the acceleration components (Ax, Ay, Az) and magnitude (SMV) of
the examples of Figure 1 for two different observation windows (±0.5 s and ±2.5 s) around the detected
maximum of the SMV. (a) ADL; (b) Fall.

Sensors 2020, 20, 1466 11 of 21

In the case of SisFall traces, as the sampling frequency is 200 Hz, a 5 s window encompasses
1001 values of the acceleration magnitudes and 3003 input features when the triaxial components
are employed.

3.2. Structure of the CNN

The basic objective of a neural network is to autonomously discover and implement a relationship
between a set of fixed-size input features (here, the accelerometer data) and a known set of fixed-size
output labels (here, a binary decision of 0 or 1, depending on the movement type, ADL or fall).

Classical multilayer perceptrons (MLPs) present full neuron connectivity between contiguous
layers (which dramatically increases the number of synaptic weights). In contrast with this repetitive
structure of neurons of MLPs, CNN are composed of specialized layers conceived for different purposes.
Thus, some elements are only responsive to a particular zone or ‘region’ (for images) or interval (for
time series) of the original input data. Benefitting from this ‘clustering’, the initial (convolutional)
layers in an CNN are in charge of learning and extracting the ‘features’ that characterize the different
pattern types to enable the discrimination at the final stage.

In MLPs or under other machine learning strategies, the features (or internal representation of
the raw data) required to feed the classifiers must be ‘manually’ or heuristically selected. Hence, the
performance of the system strongly relies on the expertise of the designer [19].

In a CNN, the learned features from a certain group of neurons in a layer (computed through
simple but nonlinear combinations of the neuron inputs) are the inputs for some neurons of the
following convolutional layer. Therefore, the high-level abstraction of the raw data was carried out in
an automatic way and with multiple levels of representation. To this end, in the convolutional layers,
every neuron convolves the received data with a set of adjustable kernels (or filters) of a predefined size.
The coefficients of these filters are adjusted during the training phase to optimize the representativeness
of the features. After the convolution, the resulting values are passed through a non-linear activation
function. In our case, we used rectified linear unit (ReLU), which is widely extended to deploy CNNs.
ReLU can be easily computed as a ramp function: f(z) = max (z,0) [19].

In order to reduce and compact the feature vectors produced by the convolutional filters into a
‘down-sampled feature map’, we utilized pooling layers after the convolutional layers. As a result,
every element or neuron in the pooling layer is capable of condensing the information generated by a
region of neurons of the previous layer. In particular, we employed the popular max-pooling filters,
which simply extract the highest value of the input region.

After the sequential feature extractors, a final classifier is required to produce the final
discrimination decision based on the global features learned by the closing convolutional layer.
In our scheme, although other conventional machine learning strategies could have been considered,
we used an architecture comprising one fully connected layer and a softmax function, which normalizes
the weighted input feature vector into two values, which describes the probabilities of detecting an
ADL or a fall. The final classification of the movement is simply based on the maximum of these
two probabilities.

To implement the CNN, we utilized MATLAB [65] scripts by leveraging the Deep Learning
MATLAB ToolboxTM [66]. To operate with these scripts, the CNN is directly fed with an equivalent
‘image’ of (1 × width) ‘pixels’, where the term width describes the number of acceleration samples
contained in the observation window around the acceleration peak (1001 or 3003, for the case of SisFall
dataset). Thus, the system was trained to categorize the ‘images’ as two different output types (ADL
or fall).

3.3. Training Procedure

In order to prevent overfitting during the training process, the original traces of the employed
datasets were divided into three independent sets of samples: training, validation, and test sets,

Sensors 2020, 20, 1466 12 of 21

following the typical ratio of 60% (for training), 20% (validation), and 20% (testing). The repositories
were randomly split, but preserving the same proportion of falls and ADLs in the three groups.

The validation set was used to assess the performance of the network after a certain number of
iterations or epochs in which the CNN was trained with the training sample group. As the training
progresses, the error (or loss) committed when classifying the validation samples is expected to
gradually decrease. Thus, the process continues until this validation loss stops decreasing and keeps
increasing for a predetermined number of attempts (‘validation patience’). This fact indicates that the
network is beginning to overfit the training data and, consequently, that the learning phase needs to
be concluded. To reduce the effects of overfitting in deep learning, we also employed two common
complementary techniques: dropout and L2 Regularization, aimed at avoiding co-adaptations on
training samples and minimizing the sum of the values of the weight coefficients, respectively.

We established a validation patient of three epochs. If this limit is not exceeded, the learning
phase stops after 20 epochs. Figure 3 illustrates the rapid convergence of the accuracy and loss for the
training and validation sample sets during the training process when the SisFall dataset is employed.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 23

3.3. Training Procedure

In order to prevent overfitting during the training process, the original traces of the employed

datasets were divided into three independent sets of samples: training, validation, and test sets,

following the typical ratio of 60% (for training), 20% (validation), and 20% (testing). The repositories

were randomly split, but preserving the same proportion of falls and ADLs in the three groups.

The validation set was used to assess the performance of the network after a certain number of

iterations or epochs in which the CNN was trained with the training sample group. As the training

progresses, the error (or loss) committed when classifying the validation samples is expected to

gradually decrease. Thus, the process continues until this validation loss stops decreasing and keeps

increasing for a predetermined number of attempts (‘validation patience’). This fact indicates that the

network is beginning to overfit the training data and, consequently, that the learning phase needs to

be concluded. To reduce the effects of overfitting in deep learning, we also employed two common

complementary techniques: dropout and L2 Regularization, aimed at avoiding co-adaptations on

training samples and minimizing the sum of the values of the weight coefficients, respectively.

We established a validation patient of three epochs. If this limit is not exceeded, the learning

phase stops after 20 epochs. Figure 3 illustrates the rapid convergence of the accuracy and loss for the

training and validation sample sets during the training process when the SisFall dataset is employed.

Figure 3. Training progress: training and validation accuracy.

In short, Table 5 summarizes the final characteristics and hyper-parameters of the utilized CNN

as well as the procedures considered for the training phase. Through an initial phase of

hyperparameter optimization and a systematic evaluation of the architecture, the network was

dimensioned and hyper-parameterized to maximize the performance metrics achieved with the

SisFall repository.

As previously commented, the complexity of a CNN is determined by the typology and number

of layers. A basic architecture with just one or two convolutional layers may be sufficient to learn the

features in a small set of unsophisticated data. However, more layers are normally required to detect

complex patterns in datasets as those used in our study. Therefore, as can be seen in Table 5, the CNN

consisted of four consecutive feature extractor and one final classifier. Every feature extraction layer

Figure 3. Training progress: training and validation accuracy.

In short, Table 5 summarizes the final characteristics and hyper-parameters of the utilized CNN as
well as the procedures considered for the training phase. Through an initial phase of hyperparameter
optimization and a systematic evaluation of the architecture, the network was dimensioned and
hyper-parameterized to maximize the performance metrics achieved with the SisFall repository.

As previously commented, the complexity of a CNN is determined by the typology and number
of layers. A basic architecture with just one or two convolutional layers may be sufficient to learn
the features in a small set of unsophisticated data. However, more layers are normally required to
detect complex patterns in datasets as those used in our study. Therefore, as can be seen in Table 5,
the CNN consisted of four consecutive feature extractor and one final classifier. Every feature extraction
layer includes one convolutional layer, followed by one batch normalization layer, a nonlinear ReLU
activation function, and one down-sampling max pooling layer (except for the final convolutional
layer, which does not incorporate the max pooling operation). Likewise, the final classifying layer is

Sensors 2020, 20, 1466 13 of 21

formed of one fully-connected layer, one softmax function, and one final classifying step. The training
process uses the cross-entropy loss function.

Table 5. Architecture and training hyper-parameters of the employed CNN.

Training algorithm Stochastic Gradient Descent Momentum
Error function Cross-entropy loss function
Maximum number of training epochs 20
Mini-batch size (to estimate the gradient of the loss in every
iteration) 64 training instances

Validation frequency 1 epoch
Validation patience 3
Tecniques to prevent overfitting Cross-validation, L2 Regularization and dropout layers
Initial learning rate: 0.0001
Layers activation functions ReLU (hidden layers) and softmax (output layer)
Number of convolutional feature extraction layers 4

Sub-layers for every feature extraction layer 4 (1 convolutional, 1 normalization, 1 ReLU and 1 max pooling
layers)

Number of filters for each convolutional layer 16 (1st layer), 32 (2nd), 64 (3rd), 128 (4th)
Filter size (for all convolutional layers) 1 × 5
Size of zero-padding 2 samples
Stride 1 × 1 (“non-strided”)
Pool size of the max-pooling layer 1 × 5
Classification layers 1 fully-connected layer, 1 softmax layer and 1 final classifier

4. Numerical Results

After training the neural system, the performance of the trained CNN was evaluated by computing
the efficacy of the detection decisions when the network was fed with the independent set of test
samples of every dataset.

To evaluate the capacity of the CNN to discriminate falls from ADLs, we calculated three traditional
quality metrics to characterize the performance of binary classifiers: the sensitivity (Se); hit rate or
recall, which describes the ability to recognize falls; the specificity (Sp) or selectivity, which portrays
the effectiveness of the FDS to prevent false alarms (i.e., ADLs misinterpreted as falls); and accuracy
(Acc), as a global measurement of the system efficiency.

These quality metrics (defined as percentages) can be straightforwardly computed as:

Sensitivity(%) = 100·
TP

FN + TP
(5)

Speci f icity(%) = 100·
TN

FP + TN
(6)

Accuracy(%) = 100·
TP + TN

TN + FN + TP + FP
(7)

where TP and TN define the number of ‘True Positives’ and ‘True Negatives’ (i.e., falls and ADLs that
have been adequately identified), respectively. Similarly, FP and FN describe the number of ‘False
Positive’ and ‘False Negatives’ (ADLs and falls that have been misidentified).

The results obtained when the network was trained and tested with the reference dataset (SisFall)
are available in Table 6 (also presented in [67]).

Table 6. Results of the detection system for the SisFall dataset (observation window TW = ±2.5 s).

Input Signal
Performance Metric

Sensitivity Specificity Accuracy

SMV 96.34% 95.44% 96.97%
3-axis signals 98.91% 98.69% 98.78%

The table displays the quality metrics achieved for an observation window of ±2.5 s for the two
alternative input signals (the SMV and the triaxial acceleration components). The results seem to

Sensors 2020, 20, 1466 14 of 21

indicate that the effectiveness of the detector (namely the sensitivity) noticeably improves when the
3-axis signals are utilized. This could be justified by the fact that, when compared to the acceleration
magnitude, triaxial components offer a better insight about the sudden changes of the body orientation
provoked by the falls, which could facilitate the CNN in the detection decision.

In any case, the obtained results (with both specificity and sensitivity near 99%) were better
than those published by other studies on FDS that employed the same SisFall dataset as a
benchmarking tool [36,52,56,68,69] and in which a specificity and a sensitivity superior to 0.98
were not attained simultaneously.

However, the performance of the system considerably worsens if we extend the evaluation to the
other datasets. For that purpose, we also selected those existing databases that incorporate samples
obtained with an accelerometer located in a similar position (waist or, if not possible, thigh).

Tables 7 and 8 shows the results for the 14 considered repositories when the SMV and the triaxial
acceleration components are respectively considered as the input features (the results for reference
SisFall dataset are highlighted in bold font). The tables include the metrics achieved for four different
observation windows (±0.5 s, ±1 s, ±1.5 s, and ±2.5 s around the acceleration peak). In two cases
(UniMiB and DLR), the short duration of the samples prevented the study for the highest values of the
window size.

We have to remark that in all cases, the CNN architecture was trained, validated, and tested with
data extracted from the same dataset (no cross-validation between different datasets was contemplated)
and followed the same procedure as that applied to the SisFall dataset. By the same token, for each
repository, the number of inputs of the CNN were dimensioned, taking into account the sampling rate
used to generate the dataset and the desired observation window (no sub-sampling or over-sampling
of the dataset measurements was performed). In this way, we evaluated the capability of the deep
learning architecture to self-adapt to the different conditions under which the traces were collected in
each repository.

From the tables, we can conclude that the performance of the system visibly depends on the
employed benchmark. No clear trend can be deduced about the behavior of the detector: in some cases,
an acceptable specificity (higher than 95%) was achieved at the cost of an inadmissible sensitivity while
for other datasets, the detector seems to prioritize the sensitivity (with independence of the number
of ADLs and falls included in the repositories). In some cases, the accuracy is even worse than that
achieved with a random classification of the movements with balanced data (50%). No conclusions can
be drawn either from the analysis of the importance of the observation window or from the election of
the input features.

This ‘erratic’ performance of the detector can be justified by the huge variability of the factors
that affect the generation of the mobility patterns: parameters of the sensor (range, sampling rate),
typology of the emulated movements, characteristics of the experimental subjects or configuration of
the scenario of the simulations (pads, mattresses, etc.).

Consequently, in opposition to the procedure commonly followed by most works in the literature,
we consider that it is essential to evaluate any proposal on a FDS against diverse databases to state that
the accuracy of the classifier has been validated.

In any case, this issue is just another example of the existence of a global problem associated
with the research on fall detection systems: the lack of commonly accepted methodology to evaluate
and benchmark the new proposals on FDSs existing in the literature. This lack of consensus, which
has been highlighted and discussed by different authors [70–73], does not only affect the employed
datasets, but also other important operational aspects of the evaluation policy (performance metrics,
availability of the code of the proposed algorithms, etc.). Thus, the problem of the proper selection
(number and typology of movements, participants, etc.) of the datasets should be approached under a
general procedure to generate a consensual framework that eases the comparison of FDSs.

Sensors 2020, 20, 1466 15 of 21

Table 7. Comparison of the obtained performance metrics for the 14 datasets and the four different observation windows (TW) around the peak when the acceleration
magnitude (SMV) was used to feed the convolutional neural network (the results for the reference dataset -SisFall- are marked in bold). Note: * Some observation
windows could not be applied to these datasets due to the short duration of the samples.

Duration of the Observation Window Around the Peak

TW = ±0.5 s TW = ±1 s TW = ±1.5 s TW = ±2.5 s

Dataset Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc

Cogent Labs 0.00% 100.00% 77.75% 0.00% 100.00% 75.43% 2.38% 99.69% 75.08% 0.00% 100.00% 70.73%

DLR * 0.00% 100.00% 93.65% 0.00% 100.00% 96.99%

Erciyes University 94.29% 94.17% 94.23% 97.56% 91.03% 94.69% 97.21% 93.02% 95.30% 96.77% 95.14% 96.05%

GRAZ UT OL 0.00% 100.00% 80.72% 0.00% 100.00% 86.75% 0.00% 100.00% 80.72% 0.00% 100.00% 77.11%

MOBIACT 56.72% 91.07% 80.24% 31.11% 94.83% 74.59% 31.54% 95.59% 76.00% 50.85% 78.03% 68.62%

MOBIFALL 69.09% 94.74% 82.14% 96.49% 81.82% 89.29% 96.77% 58.00% 79.46% 94.74% 77.27% 87.13%

SisFall 91.74% 95.27% 93.90% 91.23% 96.46% 94.34% 90.40% 96.77% 94.12% 96.34% 95.44% 96.97%

tFall 26.76% 99.64% 92.52% 62.12% 99.39% 96.01% 72.57% 99.44% 96.65% 80.00% 99.24% 97.39%

TST Fall Detection 96.88% 90.48% 94.34% 89.66% 95.83% 92.45% 92.59% 84.62% 88.68% 85.19% 84.00% 84.62%

UMAFall 0.00% 94.00% 76.42% 4.00% 97.96% 78.86% 0.00% 100.00% 81.30% 0.00% 98.92% 74.80%

UniMiB SHAR * 71.71% 97.53% 91.09%

IMUFD 37.78% 60.32% 50.93% 43.59% 53.62% 50.00% 10.00% 86.76% 58.33% 0.00% 100.00% 67.59%

UP-Fall 92.86% 98.21% 95.54% 89.80% 100.00% 95.54% 94.55% 96.49% 95.54% 89.80% 98.41% 94.64%

DOFDA 96.30% 87.10% 92.94% 98.33% 92.00% 96.47% 98.41% 72.73% 91.76% 60.47% 26.67% 46.58%

Sensors 2020, 20, 1466 16 of 21

Table 8. Comparison of the obtained performance metrics for the 14 datasets and the four different observation windows (Tw) around the peak when the triaxial
components of the acceleration magnitude were used to feed the convolutional neural network. (the results for the reference dataset -SisFall- are marked in bold).
Note: * Some observation windows could not be applied to these datasets due to the short duration of the samples.

Duration of the Observation Window around the Peak

TW = ±0.5 s TW = ±1 s TW = ±1.5 s TW = ±2.5 s

Dataset Se Sp Acc Se Sp Acc Se Sp Acc Se Sp Acc

Cogent Labs 0.00% 100.00% 80.00% 0.00% 99.61% 72.29% 0.00% 100.00% 75.38% 0.00% 100.00% 75.96%

DLR * 0.00% 100.00% 92.06% 0.00% 100.00% 94.58%

Erciyes University 98.06% 87.92% 93.47% 96.64% 92.72% 94.84% 91.53% 92.13% 91.81% 92.88% 95.58% 94.08%

GRAZ UT OL 90.00% 23.29% 31.33% 64.29% 18.84% 26.51% 25.00% 41.27% 37.35% 7.69% 97.14% 83.13%

MOBIACT 20.00% 98.60% 72.71% 49.26% 95.50% 80.71% 44.53% 95.49% 79.06% 70.83% 88.16% 83.28%

MOBIFALL 100.00% 9.43% 56.76% 100.00% 51.61% 72.97% 98.39% 44.90% 74.77% 94.23% 85.71% 90.10%

SisFall 96.74% 95.50% 96.00% 98.64% 99.63% 99.22% 98.56% 98.92% 98.78% 98.91% 98.69% 98.78%

tFall 0.00% 100.00% 90.14% 0.00% 100.00% 89.72% 40.32% 99.80% 94.72% 61.57% 99.90% 96.10%

TST Fall Detection 96.30% 0.00% 49.06% 100.00% 31.82% 71.70% 84.00% 75.00% 79.25% 76.67% 72.73% 75.00%

UMAFall 29.03% 73.91% 62.60% 11.54% 88.66% 72.36% 0.00% 100.00% 84.55% 0.00% 100.00% 82.11%

UniMiB SHAR * 66.47% 96.40% 89.02%

IMUFD 0.00% 100.00% 69.44% 0.00% 100.00% 62.96% 11.90% 77.27% 51.85% 0.00% 98.46% 59.26%

UP-Fall 78.18% 22.81% 50.00% 96.08% 59.02% 75.89% 82.98% 60.00% 69.64% 91.49% 53.85% 69.64%

DOFDA 100.00% 5.00% 77.65% 100.00% 0.00% 76.47% 100.00% 0.00% 74.12% 100.00% 0.00% 78.08%

Sensors 2020, 20, 1466 17 of 21

5. Conclusions

The last decade has witnessed a considerable number of research efforts that propose new
algorithms to detect falls based on the signals captured by wearable inertial sensors.

This work has evaluated the effectiveness of a Convolutional Neural Network (CNN) to
discriminate falls and ADLs (Activities of Daily Living) from datasets containing accelerometry signals.

In contrast to other machine learning strategies, the system reduces the need of the required
preprocessing of the signals and avoids the ‘handcrafted’ selection of input features as it takes advantage
of the ability of CNNs to automatically extract knowledge from complex raw time series. Thus, the
CNN is directly fed with the signals collected by an accelerometer. In particular, the analysis of the
CNN focuses on the acceleration samples gathered during an observation window around the moment
where a certain peak in the acceleration magnitude is detected.

The performance of the classifier was initially evaluated by using one of the largest public datasets
of movements with emulated falls. The achieved performance metrics (with specificity and sensitivity
over 98%) revealed that the effectiveness is augmented when the three acceleration components (instead
of the acceleration magnitude) were used as input features by the CNN. Then, the obtained architecture
was trained and tested with the samples of 13 other public databases, collected with an accelerometer
in a similar position but in different testbeds.

Results show that the dataset employed as a benchmark dramatically impacts the performance,
which could be justified by the variability of the sensors and the configuration of the tests deployed by
the testbeds of the different repositories. These results challenge the methodology usually followed
by the related literature, by which the proposed algorithms are evaluated against one (or at the most
two) datasets.

By using a deep learning architecture, capable in principle of automatically extracting the most
representative features of the training patterns, we have shown the difficulty of extrapolating the
results achieved for a dataset when the same fall detection architecture is evaluated with samples of the
same nature, but collected in different scenarios (employed sensors, sampling rate, type of movements,
characteristics of the experimental subjects, etc.). Therefore, these results at the very least question
the effectiveness of many machine learning mechanisms that achieve excellent performance metrics
(with sensitivities and specificities close to 100%) when they are trained and validated with samples
recorded in a very particular experimental setup. This conclusion is particularly relevant if we take
into account that in a realistic application of a FDS, it is very unlikely that the system can be trained
with samples of actual falls of the target user.

In any case, future studies should analyze in detail whether these limitations in the extrapolation
capability of the FDS can be resolved if more sophisticated configurations of the CNN are tested or if
other machine learning mechanisms (either the traditional feature engineering-based methods or other
neuronal mechanisms such as LSTM (Long-Short Term Memory Networks) are considered.

To the best of our knowledge, this is the first proposal that utilizes up to 14 different public datasets
to assess the effectiveness of a FDS. Further studies should be devoted to defining a framework to
characterize the quality and representativeness of the existing datasets, so that a commonly accepted
procedure to evaluate fall detection systems could be defined.

Author Contributions: Proposed the experimental setup, defined the architecture and the evaluation procedure,
co-analyzed the results, elaborated the critical review, and wrote the paper, E.C.; Programmed the classifier and
executed the tests to evaluate the algorithms R.L.-R.; Proposed the neural architecture, co-discussed the results,
and revised the paper F.G.-L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by FEDER Funds (under grant UMA18-FEDERJA-022) and Universidad de
Málaga, Campus de Excelencia Internacional Andalucia Tech.

Conflicts of Interest: The authors declare no conflicts of interest.

Sensors 2020, 20, 1466 18 of 21

References

1. World Health Organization (WHO) Falls (Facts sheet, 16 January 2018). Available online: https://www.who.
int/news-room/fact-sheets/detail/falls (accessed on 26 February 2020).

2. Inouye, S.K.; Brown, C.J.; Tinetti, M.E. Medicare nonpayment, hospital falls, and unintended consequences.
N. Engl. J. Med. 2009, 360, 2390–2393. [CrossRef] [PubMed]

3. Orces, C.H.; Alamgir, H. Trends in fall-related injuries among older adults treated in emergency departments
in the USA. Inj. Prev. 2014, 20, 421–423. [CrossRef] [PubMed]

4. Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls
in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [CrossRef]

5. Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013,
100, 144–152. [CrossRef]

6. Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online
2013, 12, 66. [CrossRef]

7. Chaccour, K.; Darazi, R.; El Hassani, A.H.; Andres, E. From fall detection to fall prevention: A generic
classification of fall-related systems. IEEE Sens. J. 2017, 17, 812–822. [CrossRef]

8. Zhang, D.; Wang, H.; Wang, Y.; Ma, J. Anti-fall: A non-intrusive and real-time fall detector leveraging CSI
from commodity WiFi devices. In Proceedings of the International Conference on Smart Homes and Health
Telematics (ICOST’2015), Geneva, Switzerland, 10–12 June 2015; Volume 9102, pp. 181–193.

9. Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection
algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from
a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [CrossRef]

10. Fortino, G.; Gravina, R. Fall-Mobileguard: A smart real-time fall detection system. In Proceedings of the
International Conference on Body Area Networks (BodyNets), Sydney, Australia, 28–30 September 2015.

11. Luna-Perejón, F.; Domínguez-Morales, M.J.; Civit-Balcells, A. Wearable fall detector using recurrent neural
networks. Sensors 2019, 19, 4885. [CrossRef]

12. Wisesa, I.W.W.; Mahardika, G. Fall detection algorithm based on accelerometer and gyroscope sensor data
using Recurrent Neural Networks. In Proceedings of the International Conference on Science, Infrastructure
Technology and Regional Development, Lampung Selatan, Indonesia, 19–20 October 2018; p. 12035.

13. Torti, E.; Fontanella, A.; Musci, M.; Blago, N.; Pau, D.; Leporati, F.; Piastra, M. Embedding recurrent
neural networks in wearable systems for real-time fall detection. Microprocess. Microsyst. 2019, 71, 102895.
[CrossRef]

14. Ordóñez, F.; Roggen, D.; Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks
for multimodal wearable activity recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

15. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity
recognition using wearable. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, New York, NY, USA, 9–15 July 2016; AAAI: Menlo Park, CA, USA, 2016; pp. 1533–1540.

16. Lisowska, A.; O’Neil, A.; Poole, I. Cross-cohort evaluation of machine learning approaches to fall detection
from accelerometer data. In Proceedings of the 11th International Joint Conference on Biomedical
Engineering Systems and Technologies (BIOSTEC 2018)—Volume 5: HEALTHINF, Funchal, Madeira,
Portugal, 19–21 January 2018; Volume 5, pp. 77–82.

17. Fakhrulddin, A.H.; Fei, X.; Li, H. Convolutional neural networks (CNN) based human fall detection on Body
Sensor Networks (BSN) sensor data. In Proceedings of the 4th International Conference on Systems and
Informatics, ICSAI 2017, Hangzhou, China, 11–13 November 2017; pp. 1461–1465.

18. Santos, G.L.; Endo, P.T.; de Carvalho Monteiro, K.H.; da Silva Rocha, E.; Silva, I.; Lynn, T. Accelerometer-Based
Human Fall Detection Using Convolutional Neural Networks. Sensors 2019, 19, 1644. [CrossRef] [PubMed]

19. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
20. Ahmed, M.; Mehmood, N.; Nadeem, A.; Mehmood, A.; Rizwan, K. Fall detection system for the elderly based

on the classification of shimmer sensor prototype data. Healthc. Inform. Res. 2017, 23, 147–158. [CrossRef]
[PubMed]

21. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of public datasets for wearable fall detection
systems. Sensors 2017, 17, 1513. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/falls
https://www.who.int/news-room/fact-sheets/detail/falls
http://dx.doi.org/10.1056/NEJMp0900963
http://www.ncbi.nlm.nih.gov/pubmed/19494213
http://dx.doi.org/10.1136/injuryprev-2014-041268
http://www.ncbi.nlm.nih.gov/pubmed/24916685
http://dx.doi.org/10.1111/jgs.15304
http://dx.doi.org/10.1016/j.neucom.2011.09.037
http://dx.doi.org/10.1186/1475-925X-12-66
http://dx.doi.org/10.1109/JSEN.2016.2628099
http://dx.doi.org/10.1007/s11517-016-1504-y
http://dx.doi.org/10.3390/s19224885
http://dx.doi.org/10.1016/j.micpro.2019.102895
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.3390/s19071644
http://www.ncbi.nlm.nih.gov/pubmed/30959877
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.4258/hir.2017.23.3.147
http://www.ncbi.nlm.nih.gov/pubmed/28875049
http://dx.doi.org/10.3390/s17071513

Sensors 2020, 20, 1466 19 of 21

22. Frank, K.; Vera Nadales, M.J.; Robertson, P.; Pfeifer, T. Bayesian recognition of motion related activities
with inertial sensors. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing,
Copenhagen, Denmark, 26–29 September 2010; ACM: New York, NY, USA, 2010; pp. 445–446.

23. Kaluža, B.; Mirchevska, V.; Dovgan, E.; Luštrek, M. An agent-based approach to care in independent living.
In Proceedings of the 1st International Joint Conference on Ambient Intelligence 2010 (AmI-10), Malaga,
Spain, 10–12 November 2010; pp. 177–186.

24. Vavoulas, G.; Pediaditis, M.; Spanakis, E.G.; Tsiknakis, M. The MobiFall dataset: An initial evaluation of
fall detection algorithms using smartphones. In Proceedings of the IEEE 13th International Conference on
Bioinformatics and Bioengineering (BIBE 2013), Chania, Greece, 10–13 November 2013; pp. 1–4.

25. Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M. The Mobiact dataset: Recognition of activities
of daily living using smartphones. In Proceedings of the International Conference on Information and
Communication Technologies for Ageing Well and e-Health (ICT4AWE), Rome, Italy, 21–22 April 2016.

26. Kozina, S.; Gjoreski, H.; Gams, M.; Luštrek, M. Three-layer activity recognition combining domain knowledge
and meta-classification. J. Med. Biol. Eng. 2013, 33, 406–414. [CrossRef]

27. Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. A depth-based fall detection system using a Kinect®

sensor. Sensors 2014, 14, 2756–2775. [CrossRef]
28. Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with

smartphones. PLoS ONE 2014, 9, e94811. [CrossRef]
29. Kwolek, B.; Kepski, M. Human fall detection on embedded platform using depth maps and wireless

accelerometer. Comput. Methods Programs Biomed. 2014, 117, 489–501. [CrossRef]
30. Özdemir, A.T.; Barshan, B. Detecting falls with wearable sensors using machine learning techniques. Sensors

2014, 14, 10691–10708. [CrossRef]
31. Ojetola, O.; Gaura, E.; Brusey, J. Data set for fall events and daily activities from inertial sensors. In Proceedings

of the 6th ACM Multimedia Systems Conference (MMSys’15), Portland, OR, USA, 18–20 March 2015;
pp. 243–248.

32. Vilarinho, T.; Farshchian, B.; Bajer, D.G.; Dahl, O.H.; Egge, I.; Hegdal, S.S.; Lones, A.; Slettevold, J.N.;
Weggersen, S.M. A combined smartphone and smartwatch fall detection system. In Proceedings of the
IEEE 2015 International Conference on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), Liverpool, UK, 26–28 October 2015; pp. 1443–1448.

33. Wertner, A.; Czech, P.; Pammer-Schindler, V. An open labelled dataset for mobile phone sensing based
fall detection. In Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MOBIQUITOUS 2015), Coimbra, Portugal, 22–24 July 2015;
pp. 277–278.

34. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of a smartphone-based architecture with
multiple mobility sensors for fall detection. PLoS ONE 2016, 11, e01680. [CrossRef]

35. Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.F.; Kerse, N.; Hauer, K.;
Pijnappels, M.; Synofzik, M.; et al. FARSEEING consortium The FARSEEING real-world fall repository: A
large-scale collaborative database to collect and share sensor signals from real-world falls. Eur. Rev. Aging
Phys. Act. 2016, 13, 8. [CrossRef]

36. Sucerquia, A.; López, J.D.; Vargas-bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198.
[CrossRef] [PubMed]

37. Micucci, D.; Mobilio, M.; Napoletano, P. UniMiB SHAR: A new dataset for human activity recognition using
acceleration data from smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

38. Saha, S.S.; Rahman, S.; Rasna, M.J.; Mahfuzul Islam, A.K.M.; Rahman Ahad, M.A. DU-MD: An open-source
human action dataset for ubiquitous wearable sensors. In Proceedings of the 2018 Joint 7th International
Conference on Informatics, Electronics & Vision (ICIEV) and IEEE 2018 2nd International Conference on
Imaging, Vision & Pattern Recognition (icIVPR), Fukuoka, Japan, 25–29 June 2018; pp. 567–572.

39. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.H.; Rivera, C.C. SmartFall: A smartwatch-based fall
detection system using deep learning. Sensors 2018, 18, 3363. [CrossRef] [PubMed]

40. Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C.
UP-fall detection dataset: A multimodal approach. Sensors 2019, 19, 1988. [CrossRef]

http://dx.doi.org/10.5405/jmbe.1321
http://dx.doi.org/10.3390/s140202756
http://dx.doi.org/10.1371/journal.pone.0094811
http://dx.doi.org/10.1016/j.cmpb.2014.09.005
http://dx.doi.org/10.3390/s140610691
http://dx.doi.org/10.1371/journal.pone.0168069
http://dx.doi.org/10.1186/s11556-016-0168-9
http://dx.doi.org/10.3390/s17010198
http://www.ncbi.nlm.nih.gov/pubmed/28117691
http://dx.doi.org/10.3390/app7101101
http://dx.doi.org/10.3390/s18103363
http://www.ncbi.nlm.nih.gov/pubmed/30304768
http://dx.doi.org/10.3390/s19091988

Sensors 2020, 20, 1466 20 of 21

41. Cotechini, V.; Belli, A.; Palma, L.; Morettini, M.; Burattini, L.; Pierleoni, P. A dataset for the development and
optimization of fall detection algorithms based on wearable sensors. Data Br. 2019, 23, 103839. [CrossRef]
[PubMed]

42. Khojasteh, S.B.; Villar, J.R.; Chira, C.; González, V.M.; de la Cal, E. Improving fall detection using an on-wrist
wearable accelerometer. Sensors 2018, 18, 1350. [CrossRef]

43. Leutheuser, H.; Schuldhaus, D.; Eskofier, B.M.; Fukui, Y.; Togawa, T. Hierarchical, multi-sensor based
classification of daily life activities: Comparison with state-of-the-art algorithms using a benchmark dataset.
PLoS ONE 2013, 8, e75196. [CrossRef]

44. Villar, J.R.; Vergara, P.; Menéndez, M.; de la Cal, E.; González, V.M.; Sedano, J. Generalized models for the
classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition.
Int. J. Neural Syst. 2016, 26, 1650037. [CrossRef]

45. Yuwono, M.; Su, S.W.; Moulton, B. Fall detection using a Gaussian distribution of clustered knowledge,
augmented radial basis neural-network, and multilayer perceptron. In Proceedings of the 7th International
Conference on Broadband Communications and Biomedical Applications (IB2COM 2011), Melbourne,
Australia, 21–24 November 2011; Volume 2007, pp. 145–150.

46. Igual, R.; Medrano, C.; Plaza, I. A comparison of public datasets for acceleration-based fall detection.
Med. Eng. Phys. 2015, 37, 870–878. [CrossRef]

47. Poorani, V.D.; Ganapathy, K.; Vaidehi, V. Sensor based decision making inference system for remote health
monitoring. In Proceedings of the IEEE 2012 International Conference on Recent Trends in Information
Technology, Chennai, Tamil Nadu, India, 19–21 April 2012; pp. 337–342.

48. Cheng, W.C.; Jhan, D.M. Triaxial accelerometer-based fall detection method using a self-constructing
cascade-AdaBoost-SVM classifier. IEEE J. Biomed. Heal. Inform. 2013, 17, 411–419. [CrossRef]

49. Rashidpour, M.; Abdali-Mohammadi, F.; Fathi, A. Fall detection using adaptive neuro-fuzzy inference system.
Int. J. Multimed. Ubiquitous Eng. 2016, 11, 91–106.

50. Özdemir, A.T.; Turan, A. An analysis on sensor locations of the human body for wearable fall detection
devices: Principles and practice. Sensors 2016, 16, 1161. [CrossRef]

51. Vallabh, P.; Malekian, R.; Ye, N.; Bogatinoska, D.C. Fall detection using machine learning algorithms. In
Proceedings of the IEEE 2016 24th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–9.

52. Carletti, V.; Greco, A.; Saggese, A.; Vento, M. A smartphone-based system for detecting falls using anomaly
detection. In Proceedings of the 19th International Conference on Image Analysis and Processing (ICIAP
2017), Catania, Italy, 11–15 September 2017; pp. 490–499.

53. Jahanjoo, A.; Tahan, M.N.; Rashti, M.J. Accurate fall detection using 3-axis accelerometer sensor and MLF
algorithm. In Proceedings of the IEEE 2017 3rd International Conference on Pattern Recognition and Image
Analysis (IPRIA), Shahrekord, Iran, 19–20 April 2017; pp. 90–95.

54. Khan, S.S.; Taati, B. Detecting unseen falls from wearable devices using channel-wise ensemble of
autoencoders. Expert Syst. Appl. 2017, 87, 280–290. [CrossRef]

55. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online fall detection using recurrent neural
networks. arXiv 2018, arXiv:1804.04976.

56. Nguyen, L.P.; Saleh, M.; Le Bouquin Jeannès, R. An efficient design of a machine learning-based elderly fall
detector. In Proceedings of the International Conference on IoT Technologies for HealthCare (HealthyIoT
2017), Angers, France, 24–25 October 2017; Springer: Berlin, Germany, 2017; pp. 34–41.

57. Theodoridis, T.; Solachidis, V.; Vretos, N.; Daras, P. Human fall detection from acceleration measurements
using a recurrent neural network. In Proceedings of the International Conference on Biomedical and Health
Informatics (ICBHI 2017), Thessaloniki, Greece, 18–21 November 2017; Springer: Berlin, Germany, 2017;
pp. 145–149.

58. Chelli, A.; Patzold, M. A machine learning approach for fall detection and daily living activity recognition.
IEEE Access 2019, 7, 38670–38687. [CrossRef]

59. Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and
ensemble machine learning algorithm. Pers. Ubiquitous Comput. 2019, 23, 1–17. [CrossRef]

60. Ntanasis, P.; Pippa, E.; Özdemir, A.T.; Barshan, B.; Megalooikonomou, V. Investigation of sensor placement
for accurate fall detection. In Proceedings of the International Conference on Wireless Mobile Communication

http://dx.doi.org/10.1016/j.dib.2019.103839
http://www.ncbi.nlm.nih.gov/pubmed/31372467
http://dx.doi.org/10.3390/s18051350
http://dx.doi.org/10.1371/journal.pone.0075196
http://dx.doi.org/10.1142/S0129065716500374
http://dx.doi.org/10.1016/j.medengphy.2015.06.009
http://dx.doi.org/10.1109/JBHI.2012.2237034
http://dx.doi.org/10.3390/s16081161
http://dx.doi.org/10.1016/j.eswa.2017.06.011
http://dx.doi.org/10.1109/ACCESS.2019.2906693
http://dx.doi.org/10.1007/s00779-018-01196-8

Sensors 2020, 20, 1466 21 of 21

and Healthcare (MobiHealth 2016), Milan, Italy, 14–16 November 2016; Springer: Cham, Switzerland, 2016;
pp. 225–232.

61. Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J.M.; Van Lummel, R.C.;
Chiari, L. Comparison of acceleration signals of simulated and real-world backward falls. Med. Eng. Phys.
2011, 33, 368–373. [CrossRef]

62. Jämsä, T.; Kangas, M.; Vikman, I.; Nyberg, L.; Korpelainen, R. Fall detection in the older people: From
laboratory to real-life. Proc. Est. Acad. Sci. 2014, 63, 341–345. [CrossRef]

63. Hsieh, C.-Y.; Liu, K.-C.; Huang, C.-N.; Chu, W.-C.; Chan, C.-T. Novel hierarchical fall detection algorithm
using a multiphase fall model. Sensors 2017, 17, 307. [CrossRef]

64. Yu, X. Approaches and principles of fall detection for elderly and patient. In Proceedings of the 10th
International Conference on e-health Networking, Applications and Services (HealthCom 2008), Singapore,
7–9 July 2008; pp. 42–47.

65. Davis, T.; Sigmon, K. MATLAB Primer, Seventh Edition. Available online: http://www.mathworks.com/

products/matlab/ (accessed on 25 July 2019).
66. Deep Learning Toolbox Documentation—MathWorks. Available online: https://es.mathworks.com/help/

deeplearning/index.html?searchHighlight=DeepLearningNetworkToolbox&s_tid=doc_srchtitle (accessed
on 1 April 2019).

67. Casilari, E.; Lora Rivera, R.; García Lagos, F. A wearable fall detection system using deep learning.
In Proceedings of the 32nd International Conference on Industrial, Engineering & other Applications Of
Applied Intelligent Systems (IEA/AIE 2019), Graz, Austria, 9–11 July 2019; pp. 1–12.

68. Mastorakis, G. Human Fall Detection Methodologies: From Machine Learning Using Acted Data to Fall
Modelling Using Myoskeletal Simulation. Ph.D. Thesis, Kingston University, London, UK, 2018.

69. Putra, I.P.E.S.; Brusey, J.; Gaura, E.; Vesilo, R. An event-triggered machine learning approach for
accelerometer-based fall detection. Sensors 2017, 18, 20. [CrossRef]

70. Luque, R.; Casilari, E.; Morón, M.-J.; Redondo, G. Comparison and characterization of Android-based fall
detection systems. Sensors 2014, 14, 18543–18574. [CrossRef]

71. Ponce, H.; Martínez-Villaseñor, L.; Núñez-Martínez, J.; Moya-Albor, E.; Brieva, J. Open source implementation
for fall classification and fall detection systems. In Challenges and Trends in Multimodal Fall Detection for
Healthcare. Studies in Systems, Decision and Control; Ponce, H., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E.,
Eds.; Springer: Berlin, Germany, 2020; Volume 273, pp. 3–29.

72. Khan, S.S.; Hoey David, J.R. Review of fall detection techniques: A data availability perspective.
Med. Eng. Phys. 2016, 39, 12–22. [CrossRef]

73. Broadley, R.; Klenk, J.; Thies, S.; Kenney, L.; Granat, M.; Broadley, R.W.; Klenk, J.; Thies, S.B.; Kenney, L.P.J.;
Granat, M.H. Methods for the real-world evaluation of fall detection technology: A scoping review. Sensors
2018, 18, 2060. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.medengphy.2010.11.003
http://dx.doi.org/10.3176/proc.2014.3.08
http://dx.doi.org/10.3390/s17020307
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://es.mathworks.com/help/deeplearning/index.html?searchHighlight=DeepLearningNetworkToolbox&s_tid=doc_srchtitle
https://es.mathworks.com/help/deeplearning/index.html?searchHighlight=DeepLearningNetworkToolbox&s_tid=doc_srchtitle
http://dx.doi.org/10.3390/s18010020
http://dx.doi.org/10.3390/s141018543
http://dx.doi.org/10.1016/j.medengphy.2016.10.014
http://dx.doi.org/10.3390/s18072060
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Revision and Selection of Public Datasets
	Configuration of the Convolutional Neural Network
	Selection of the Input Features
	Structure of the CNN
	Training Procedure

	Numerical Results
	Conclusions
	References

