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Abstract: The study’s primary purpose was to explore the abrasive water jet (AWJ) cut machinability
of stainless steel X5CrNi18-10 (1.4301). The study analyzed the effects of such process parameters as
the traverse speed (TS), the depth of cut (DC), and the abrasive mass flow rate (AR) on the surface
roughness (Ra) concerning the thickness of the workpiece. Three different thicknesses were cut
under different conditions; the Ra was measured at the top, in the middle, and the bottom of the cut.
Experimental results were used in the developed feed-forward artificial neural network (ANN) to
predict the Ra. The ANN’s model was validated using k-fold cross-validation. A lowest test root mean
squared error (RMSE) of 0.2084 was achieved. The results of the predicted Ra by the ANN model and
the results of the experimental data were compared. Additionally, as TS and DC were recognized,
analysis of variance at a 95% confidence level was used to determine the most significant factors.
Consequently, the ANN input parameters were modified, resulting in improved prediction; results
show that the proposed model could be a useful tool for optimizing AWJ cut process parameters for
predicting Ra. Its main advantage is the reduced time needed for experimentation.

Keywords: abrasive water jet cutting; surface roughness; stainless steel; artificial neural network

1. Introduction

Abrasive water jet (AWJ) machining is one of the beneficial machining processes used
to cut various engineering materials. The importance of this kind of machining lies in
the fact that it has a small heat-affected zone, no thermal distortion, a small machining
force, high flexibility, and a good surface finish. Overall, the AWJ machining processes
achieve high precision and accuracy of complex parts. Process parameters such as the
water pressure, the abrasive type, the abrasive mass flow rate (AR), and the traverse speed
(TS) influence the cutting surface quality and the overall process efficiency. The prediction
of surface roughness depending on process parameters with their optimization represents
a challenging task and attracts researchers worldwide.

Overview articles [1,2] provide a comprehensive review of the AWJ process parame-
ters. Some researchers even try to control the surface texture with process parameters [3].
Many traditional modeling techniques, such as regression analysis, do not provide sat-
isfactory results, especially when the relationship between the target function and the
influencing parameters is non-linear, as is usually the case in complex phenomena (such
as AWJ machining); this indicates the appropriateness of artificial neural network (ANN)
based methods for overall cutting process modeling [4]. For modeling and optimization
of any machining processes, ANNs [5], an adaptive neuro-fuzzy inference system (AN-
FIS) [6,7], and other intelligent techniques [8] are common. ANN and the regression model
were used for surface roughness prediction in the AWJ cutting of AA 7075 aluminum

Materials 2021, 14, 3108. https://doi.org/10.3390/ma14113108 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0903-0655
https://orcid.org/0000-0001-6024-067X
https://orcid.org/0000-0001-5922-3792
https://doi.org/10.3390/ma14113108
https://doi.org/10.3390/ma14113108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14113108
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14113108?type=check_update&version=1


Materials 2021, 14, 3108 2 of 16

alloy [9]. Additionally, different approaches have been applied for the investigation of sur-
face roughness in the AWJ process, such as fuzzy logic in [10], the Taguchi-based analysis
of variance method in [11–13], the multi-objective genetic algorithm (MOGA) in [14], and
the regression method in [10,15]. Liu et al. [16] developed quadratic regression models
to predict the penetration depth and surface roughness in abrasive water jet turning of
alumina ceramics using a response surface methodology with a Box–Behnken design.
Different kinds of materials were subjected to the AWJ process, among them, carbon
steel S235 [14], Hardox steel [15], magnesium alloy [10], aluminum alloy [17,18], titanium
alloy [19], marble [20], aluminum/magnesium hybrid metal matrix composites [11], a
lanthanum phosphate/yttria composite [12], and Nimonic C236 superalloy [21].

An overview of the current research shows that this topic has been gaining importance
in recent years. Most researchers are trying to control and optimize the process parame-
ters for various materials and with various methods [22]. From the presented literature
overview, different approaches were used to investigate the AWJ cutting surface rough-
ness [23]. Most researchers are trying to control and optimize the process parameters for
various materials and with various methods [22]. From the presented literature overview,
different approaches were used to investigate the AWJ cutting surface roughness [23,24].
Because of the many process variables and complex physical phenomena taking place dur-
ing the AWJ cutting, machine learning methods for modeling the process are appropriate.
Ganovska B. et al. [25] used the ANN for on-line control of the AWJ process. Hence, in this
study, the surface roughness was predicted in the AWJ cutting of stainless steel using the
ANN method at different depths of cut. The presented research deals just with the average
surface roughness in the direction of a water jet. It distinguishes between the top, middle,
and bottom sections of the AWJ cut at various material depths. The cutting conditions
change along with the depth; therefore, it was essential to predict the surface roughness
at the entire depth of cut, which is very important for cutting the materials of different
thicknesses and is even more critical for the larger materials’ thicknesses. Therefore, this
study aimed to predict the surface roughness using the ANNs method during abrasive
water jet cutting of stainless steel of different thicknesses. Then, by using ANOVA, we de-
termined which process parameters affected the surface roughness significantly concerning
the thickness of the workpiece.

This article is structured as follows. The introduction section presents the overview of
the research of the AWJ cutting surface roughness modeling. The second section describes
the experimental test setup and presents the experimental results; it also includes mod-
eling of the cutting surface roughness with ANN, together with method validation and
performance metrics. The third section presents the results and factor analysis for statistical
assessment of the influence of variables on the cutting surface roughness. The last section
concludes with important remarks and directs further research and implementation of the
developed model.

2. Materials and Methods
2.1. Experimental Setup Description

The experiments were conducted using a Flow Mach 4 abrasive water jet machine
(Flow Waterjet, Kent WA, USA). The material of the machined workpiece used in the
experiments was X5CrNi18-10 (1.4301) stainless steel plates of three different thicknesses,
5 mm, 10 mm, and 15 mm. The material was austenitic stainless steel, which is difficult
to machine from a traditional cutting process standpoint and is often processed with
an AWJ [23]. After evaluating the process parameters, we selected those with the most
significant influence on the cut quality for the design of experiments (DOE). The constant
process parameters and their values are presented in Table 1.
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Table 1. Constant process parameters and their values used in the experiments.

Constant
Parameters

Orifice
Diameter

Focusing
Tube

Diameter

Water Jet
Pressure

Abrasive
Type

Abrasive
Size (grit no)

Value 0.33 mm 1.016 mm 350 MPa GMT garnet 80 mesh

The most influential (DOE input variables) process parameters are the nozzle stand-off
distance, the traverse speed, and the abrasive mass flow rate [26]. The latter two input
process parameters were selected for analysis in the present study, since the stand-off
distance, already after the preliminary test, did not show a considerable influence. Table 2
shows the traverse speed and the abrasive mass flow rate values used in the experiments.

Table 2. Input process parameters and their values used in the experiments.

Process Parameters Traverse Speed (TS)
(mm/min)

Abrasive Mass Flow Rate
(AR) (g/min)

Material thickness 5 mm 139, 278, 347, 417 475, 522, 571
Material thickness 10 mm 76, 152, 190, 228 475, 522, 571
Material thickness 15 mm 48, 96, 120, 144 475, 522, 571

The surface roughness with a cut-off of 0.8 mm (on the cut surface) was measured
with the Mitutoyo SJ-201 Surftest (Mitutoyo, Kawasaki, Japan), as shown in Figure 1.
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Figure 1. The sample to measure surface roughness with the measuring equipment.

The Ra was used to evaluate the surface roughness; it is one of the most-studied AWJ
process parameters in research and industry. The surface roughness was measured at three
different sections in the jet direction (top, middle, and bottom), as shown in Figure 2. The
roughness was measured at four locations (P1, P2, P3, and P4) along the length of the cut
surface, as shown in Figure 2.
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2.2. Experimental Results

Altogether, 108 data points, 36 sets of 3 experiments, were conducted in this investiga-
tion. The Ra values of each experimental trial are listed in Tables 3–5.

Table 3. Ra values in the machining of the workpiece with 5 mm thickness.

AR
(g/min)

TS
(mm/min)

Position throughout
the Depth of the Cut

(DC)
Ra (µm)

(mm) Section P1 P2 P3 P4 Mean

475

139
2 top 2.74 2.24 2.9 2.66 2.635
3 middle 3.28 2.9 3.46 2.57 3.053
4 bottom 3.36 3.02 3.11 3.14 3.158

278
2 top 3.02 2.91 3.06 2.87 2.965
3 middle 3.48 3.94 3.53 3.89 3.710
4 bottom 4.87 3.71 4.72 3.86 4.290

347
2 top 2.81 2.6 2.61 3.18 2.800
3 middle 3.79 3.64 3.91 4.3 3.910
4 bottom 4.58 4.34 4.95 4.65 4.630

417
2 top 2.95 3.23 2.67 3.29 3.035
3 middle 4.05 4.65 3.94 3.98 4.155
4 bottom 4.74 5.39 5.09 4.71 4.983

522

139
2 top 2.7 3.21 2.67 2.79 2.843
3 middle 2.86 2.91 2.89 2.92 2.895
4 bottom 2.8 2.59 3.09 3.16 2.910

278
2 top 3.24 2.65 3.21 2.74 2.960
3 middle 3.92 4.01 4.51 3.67 4.028
4 bottom 4.2 4.33 4.59 4.26 4.345

347
2 top 3.07 3.05 3.31 3.15 3.145
3 middle 3.82 4.05 4.32 4.25 4.110
4 bottom 4.2 4.3 4.45 4.55 4.375

417
2 top 3.41 3.04 3.11 3.44 3.250
3 middle 3.85 4.34 3.88 3.8 3.968
4 bottom 4.37 4.68 4.48 5.07 4.650

571

139
2 top 3.37 2.64 3.19 2.29 2.873
3 middle 2.67 2.93 3.01 3.33 2.985
4 bottom 3.1 3.15 3.04 3.01 3.075

278
2 top 2.97 3.61 2.82 2.85 3.063
3 middle 3.53 3.63 4.14 3.97 3.818
4 bottom 4.01 4.33 3.72 4.33 4.098

347
2 top 2.54 2.92 3.25 3.07 2.945
3 middle 3.54 4.25 4.09 4.32 4.050
4 bottom 4.26 4.17 5.07 4.32 4.455

417
2 top 3.01 2.94 2.99 2.98 2.980
3 middle 4.08 4.08 4.01 4.62 4.198
4 bottom 4.31 4.89 4.43 4.66 4.573
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Table 4. Ra values in the machining of the workpiece with 10 mm thickness.

AR
(g/min)

TS
(mm/min)

Position throughout
the Depth of the Cut

(DC)
Ra (µm)

(mm) Section P1 P2 P3 P4 Mean

475

76
2 top 2.91 2.09 2.4 2.44 2.460
5 middle 3.08 2.72 2.9 3.34 3.010
8 bottom 4.57 2.85 2.92 3.29 3.408

152
2 top 2.54 2.28 2.49 2.59 2.475
5 middle 2.63 3.35 3.66 2.85 3.123
8 bottom 4.35 3.83 4.22 3.91 4.078

190
2 top 2.37 2.3 2.39 2.32 2.345
5 middle 3.85 4.15 3.39 3.69 3.770
8 bottom 4.93 5.1 4.69 4.88 4.900

228
2 top 2.45 2.74 2.7 2.99 2.720
5 middle 5.15 4.87 4.88 4.6 4.875
8 bottom 6.84 6.79 6.35 6.3 6.570

522

76
2 top 2.43 2.87 2.26 2.7 2.565
5 middle 2.86 2.71 3.1 2.95 2.905
8 bottom 2.91 2.89 2.96 2.94 2.925

152
2 top 2.44 2.56 2.4 2.52 2.480
5 middle 3.41 3.22 3.47 3.28 3.345
8 bottom 4.28 4.14 4.8 4.66 4.470

190
2 top 2.47 2.44 2.25 2.28 2.360
5 middle 3.45 3.39 3.71 3.65 3.550
8 bottom 4.83 5.01 4.69 4.87 4.850

228
2 top 2.34 2.34 2.6 2.6 2.470
5 middle 4.15 3.91 4.34 4.1 4.125
8 bottom 6.58 7.03 5.95 6.4 6.490

571

76
2 top 2.69 2.44 2.81 2.49 2.608
5 middle 3.76 3.03 3.01 2.54 3.085
8 bottom 3.32 3.1 2.88 3.55 3.213

152
2 top 2.23 2.55 2.96 2.38 2.530
5 middle 3.1 3.12 3.25 3.27 3.185
8 bottom 3.86 4.51 3.9 4.55 4.205

190
2 top 2.17 3.2 2.86 2.56 2.698
5 middle 2.63 3.24 4.26 3.17 3.325
8 bottom 4.79 4.36 5.42 4.99 4.890

228
2 top 2.47 2.7 2.83 2.3 2.575
5 middle 3.63 3.24 4.22 3.75 3.710
8 bottom 6.47 6.26 6.31 6.1 6.285



Materials 2021, 14, 3108 6 of 16

Table 5. Ra values in the machining of the workpiece with 15 mm thickness.

AR
(g/min)

TS
(mm/min)

Position throughout
the Depth of the Cut

(DC)
Ra (µm)

(mm) Section P1 P2 P3 P4 Mean

475

48
2 top 2.14 2.22 2.13 2.21 2.175
7 middle 2.63 2.48 2.78 2.63 2.630

13 bottom 2.28 2.99 2.57 3.28 2.780

96
2 top 2.21 2.04 2.18 2.01 2.110
7 middle 2.99 2.78 3.22 3.01 3.000

13 bottom 4.43 4.57 4.39 4.53 4.480

120
2 top 2.46 2.37 2.2 2.11 2.285
7 middle 3.05 3.33 2.99 3.27 3.160

13 bottom 5.02 5.34 5.46 5.78 5.400

144
2 top 2.59 2.3 2.54 2.25 2.420
7 middle 3.39 3.08 4.08 3.77 3.580

13 bottom 6.42 6.79 6.55 6.92 6.670

522

48
2 top 2.15 1.95 2.31 2.11 2.130
7 middle 2.45 2.51 2.56 2.62 2.535

13 bottom 2.81 2.43 2.92 2.54 2.675

96
2 top 2.17 2.31 2.26 2.4 2.285
7 middle 2.58 2.62 3.13 3.17 2.875

13 bottom 3.75 3.86 3.92 4.03 3.890

120
2 top 2.61 2.32 2.54 2.25 2.430
7 middle 3.01 3.06 3.11 3.22 3.100

13 bottom 5.4 5.24 5.35 5.19 5.295

144
2 top 2.22 2.25 2.36 2.39 2.305
7 middle 3.8 3.34 3.7 3.24 3.520

13 bottom 6.34 6.88 5.92 6.46 6.400

571

48
2 top 2.24 2.09 2.48 2.33 2.285
7 middle 2.46 2.51 2.52 2.57 2.515

13 bottom 2.69 2.76 2.6 2.67 2.680

96
2 top 2.3 2.2 2.35 2.25 2.275
7 middle 2.76 2.7 2.6 2.54 2.650

13 bottom 3.47 3.42 3.63 3.58 3.525

120
2 top 2.2 2.26 2.26 2.32 2.260
7 middle 2.61 2.93 2.54 2.86 2.735

13 bottom 5.01 4.74 5.81 4.64 5.050

144
2 top 2.36 2.35 2.75 2.42 2.470
7 middle 3.27 3.24 3.43 3.4 3.335

13 bottom 5.78 6.05 5.74 5.99 5.890

2.3. Artificial Neural Networks

ANNs simulate the human brain; they have been used to model various problems
in the economic, social, medical, and engineering sciences. ANNs are data-driven self-
adaptive methods capable of arbitrary adjustment to model the system without any explicit
specification of functional form for the underlying model, and, consequently, they can map
any function with arbitrary accuracy [27].

An ANN consists of an input layer of nodes, one or more hidden layers, and an output
layer. The input layer in our case consisted of neurons that represent different thicknesses,
AR, TS, and DC (independent variables). The hidden layer is a collection of neurons that
provide an intermediate connection between the input and output layers. The hidden layer
of the neural network maps the inputs into image space G. The number of neurons in the
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output layer determines the number of dependent variables. The output value of the i-th
neuron yi was determined using Equation (1):

yi = j(εi) = j
(
∑ ωijxj − ϑi

)
(1)

where, j(εi) denotes a transfer function such as sigmoid or logarithmic, εi the potential of
the i-th neuron, and xj the j-th input vector value transmitted through a neuron. In our case,
the output was presented as an average of P1, P2, P3, and P4 values (mean Ra). The weight
matrix and threshold vector coefficients were denoted as ωij and ϑi, respectively; both were
adopted iteratively using a specific training procedure, with the intent to minimize the
sum of squared differences E in Equation (2). The yo and to vectors represent the ANN’s
output value and the actual/desired output value (based on the experiment); the overall
summation runs over all output neurons o.

E = ∑
o

1/2 (yo − to)
2 (2)

when using a multilayer feed-forward ANN, the network’s architecture is one of the most
important factors [28]. Since an over-simplified (shallow with fewer neurons) ANN is
less flexible [29], complex ANNs are prone to over-fitting [30] and are computationally
expensive. There is no simple formula for determining the number of neurons and hidden
layers; the ANN topology depends critically on the number of training cases, the amount
of noise, and the overall complexity of the given problem [31,32]. Smaller ANN network
architectures are faster (fewer neurons/layers involved in calculations), easier to build
(and maintain), and offer better generalization ability.

2.4. Pre-Processing Validation and Performance Metrics

Normalization mapping of the input variable values on (−1, 1) was performed as a
preprocessing step. The special k-fold cross-validation procedure with k = 36 was adopted
for evaluating the performance of the proposed ANNs. This means that the data was
divided into 36 subsets; 35 datapoints subsets were used for training and the remaining
one was used for testing the ANNs’ performance. Each fold contained all representative
positions throughout the depth of the cut, belonging to the same cut. Datapoints belonging
to a specific fold have the same thickness, AR, and TS values (and different positions
throughout the depth of the cut). For better generalization, the whole 36-fold procedure
was repeated 10 times (wherein fold members are left unaltered). Performance metrics
include the mean average error (MAE) and the root mean squared error (RMSE).

3. Results and Discussion

Figure 3 shows the images of the cut surfaces, which were cut at the maximum and
minimum traverse speed and an abrasive mass flow rate of 475 g/min for material thick-
nesses of 10 mm and 15 mm. At a minimum traverse speed for both material thicknesses
(76 mm/min for a 10 mm and 48 mm/min for a 15 mm), no grooves were visible at the cut
surface. However, at a maximum traverse speed (228 m/min for 10 mm and 144 m/min
for 15 mm), the grooves were easily visible, especially on the lower half of the material’s
thickness. Since the cut surface images do not offer quantitative information, the research
focused on measuring the surface roughness at three different sections in the jet direction
(top, middle, and bottom) and discussing only those values.
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3.1. ANN Results

Table 6 shows the initially tested feed-forward ANN configurations. The presented
ANNs were comprised of two hidden layers (four in the first and eight neurons in the
second hidden layer). Different training procedures and different transfer functions were
adopted. The different training procedures included scaled conjugate gradient (“train-
scg”), gradient descent with adaptive learning rate (“traingda”), Levenberg–Marquardt
(“trainlm”), and Bayesian regularization (“trainsbr”) backpropagations. The adopted
transfer functions were logarithmic (“logsig”) and linear (“purelin”). The best results
(testMAE = 0.2046, testRMSE = 0.2397) were achieved with the scaled conjugate gradi-
ent learning method and the logarithmic transfer function; the stated configuration was
adopted further on.

Table 6. Tested feed-forward ANN configurations.

ANN
Information Config 1 Config 2 Config 3 Config 4 Config 5

Training
procedure Trainscg Trainscg Traingda Trainlm Trainbr

Learning epochs 200 200 200 9 14
Transfer function logsig purelin logsig logsig logsig

Architecture ANN 4_8 ANN 4_8 ANN 4_8 ANN 4_8 ANN 4_8
Cross validation 36-fold 36-fold 36-fold 36-fold 36-fold

Test MAE 0.2046 0.4399 0.6057 0.2525 0.2093

Train MAE 0.1390 0.4251 0.5388 0.1709 0.1715

Test RMSE 0.2397 0.5197 0.6956 0.2955 0.2477

Train RMSE 0.1772 0.5699 0.6980 0.2217 0.2209

Time (s) 118.7 124.6 101.4 60.4 68.5

Feed-forward ANNs with five different topologies ANN 5, ANN 3_5, ANN 4_8, ANN
3_6_3, and ANN 4_8_4 were used, comprising one to three hidden layers. For clarification,
the ANN 5 topology contained one hidden layer with five neurons. The ANN 3_6_3
contained three hidden layers with three neurons in the first hidden layer, six in the second,
and three in the third hidden layer. As stated, all the neurons in the hidden layers adopted
the logarithmic (“logsig”) transfer function and the scaled conjugate gradient learning
method (“trainscg”)-based learning method. For the ANNs’ validation, the k-fold cross-
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validation was used with 36 folds, wherein each fold contained three data points with
different depth sections (bottom, middle, and upper). The learning procedure lasted for
five different epoch durations (10, 50, 200, 500, and 1000 iterations). After that, the ANN’s
performance was assessed based on the MAE (Figure 4) and the RMSE (Figure 4) metrics.
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Figure 4. Test (left) and train MAE (right) of five different ANN topologies; ANN 5, ANN 3_5, ANN 4_8, ANN 3_6_3, and
ANN 4_8_4.

The best test set results were achieved with ANN 5 (testMAE = 0.1785, testRMSE = 0.2097)
after 1000 epochs. The graphs (Figures 4 and 5) indicate that a higher number of hidden
layers in ANNs, yield to be have proven less efficient in surface roughness (mean Ra)
prediction, mainly when a shorter learning duration was adopted (the epoch number was
less than 200).
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Figure 5. Test (left) and train RMSE (right) of five different ANN topologies; ANN 5, ANN 3_5, ANN 4_8, ANN 3_6_3, and
ANN 4_8_4.

Figure 6 presents a comparison plot of the experimental and predicted surface rough-
ness values of the training data. Let us stress that the predicted surface roughness values
were averaged over all 10 iterations of the ANN’s validation test set. The average percent-
age error between the predicted surface roughness (based on the ANN 5 configuration
trained for 1000 epochs—discussed in the paragraph above) and the experimental values
was 4.4973%.
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Figure 6. Experimental surface roughness vs. predicted surface roughness of the training data.

3.2. Analysis of Variance

A statistical method, analysis of variance, was applied to identify which process
parameters affected the surface roughness significantly concerning the thickness of the
workpiece. The degree of freedom (DF), the squares (SS), the square means (MS), the
F-values, and the p-values were presented for each factor (process parameter). In this study,
the p-value was taken at a level of 0.05, and the results were validated for a confidence
level of 95%. If the value of p was less than 0.05, the factor was statistically significant.
If the p-value was greater than 0.05, the factor was not statistically significant at a 95%
confidence level. The percentage of contribution (PC) was used to analyse the significance
of the process parameters.

The ANOVA results for the materials of 5 mm thickness are presented in Table 7, and
Figure 7 presents the 3D surface plots of process parameters vs. surface roughness for
5 mm material thickness.

Table 7. ANOVA results for the 5 mm material thickness.

Source DF Adj SS Adj MS F-Value p-Value PC (%)

AR 2 0.0056 0.00281 0.03 0.966 0.03
TS 3 5.7789 1.92618 23.72 0.000 34.83
DC 2 8.5327 4.26635 52.53 0.000 51.43

Error 28 2.2742 0.08122 13.71
Total 35 16.5911
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Figure 7. 3D surface plots of process parameters vs. surface roughness of 5 mm material thickness: (a) traverse speed (TS)
vs. depth of cut (DC) on surface roughness (Ra); (b) abrasive mass flow rate (AR) vs. depth of cut (DC) on surface roughness
(Ra); (c) abrasive mass flow rate (AR) vs. traverse speed (TS) on surface roughness (Ra).

From Table 7, the p-values were 0.966 for AR, 0.0 for TS, and 0.0 for DC. The TS and the
DC were shown to influence the surface roughness, unlike the AR. The strongest influence
can be attributed (based on ANOVA) to the DC.

It can be observed in Figure 7a,b that the depth of cut was the most impactful factor
affecting the surface roughness. Additionally, it can be seen in Figure 7a,c that, with the
increase in the traverse speed, the surface roughness increased, except at a 2 mm depth of
cut (top section). Moreover, it can be observed in Figure 7b,c that the abrasive mass flow
rate did not have a significant effect on the surface roughness; although, in Figure 7b, the
surface roughness decreased slightly with the increase in the abrasive mass flow rate at the
4 mm depth of cut (bottom section).

The ANOVA results for materials of 10 mm thickness are presented in Table 8. Figure 8
presents the 3D surface plots of process parameters and their influence on the surface
roughness value for materials of 10 mm thickness.

Table 8. ANOVA results for the 10 mm material thickness.

Source DF Adj SS Adj MS F-Value p-Value PC (%)

AR 2 0.0978 0.0489 0.14 0.866 0.2
TS 3 11.0971 3.6990 10.97 0.000 22.70
DC 2 28.2529 14.1265 41.88 0.000 57.79

Error 28 9.4451 0.3373 19.31
Total 35 48.8930
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Figure 8. 3D surface plots of process parameters vs. surface roughness of 10 mm material thickness: (a) traverse speed (TS)
vs. depth of cut (DC) on surface roughness (Ra); (b) abrasive mass flow rate (AR) vs. depth of cut (DC) on surface roughness
(Ra); (c) abrasive mass flow rate (AR) vs. traverse speed (i) on surface roughness (Ra).

From Table 8, the p-value for AR was 0.866, and it was 0.0 for TS and for DC. Based
on ANOVA (with the adopted 95% confidence levels), the highest percentage contribution
was obtained for the depth of cut, setting it as the factor with the most influence on the
surface roughness.

It can be seen in Figure 8a,b that the surface roughness increased with the increase in
the depth of the cut. A significant increase in surface roughness was observed in Figure 8a
at the maximum value of the traverse speed, especially at an 8 mm depth of cut (bottom
section). Figure 8c shows that the surface roughness decreased slightly with the increase in
the abrasive mass flow rate at the maximum value of the traverse speed.

ANOVA results for materials of 15 mm thickness are presented in Table 9. Figure 8
depicts the 3D surface plots of the process parameters and their influence on the surface
roughness value for materials of 15 mm thickness.

Table 9. ANOVA results for the 15 mm material thickness.

Source DF Adj SS Adj MS F-Value p-Value PC (%)

AR 2 0.3838 0.1919 0.46 0.639 0.67
TS 3 12.3679 4.1226 9.78 0.000 21.60
DC 2 32.7138 16.3569 38.80 0.000 57.12

Error 28 11.8049 0.4216 20.61
Total 35 57.2704

From Table 9, the p-value for AR was 0.639, and it was 0.0 for TS and for DC. It can be
noticed that the highest percentage contribution, based on ANOVA, was obtained for the
depth of cut, recognizing it as the most influential factor on the surface roughness, shown in
Tables 7 and 8. Based on the ANOVA results (shown in Tables 7–9), the highest percentage
contribution for the abrasive mass flow rate was obtained for the 15 mm material thickness.
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Thus, it can be concluded that, with the increase in the material thickness, the impact of the
AR parameter on the surface roughness also increased.

In the AWJ cutting of the 15 mm thick material it was also observed (see Figure 9a,b)
that the depth of cut had a substantial effect on the surface roughness. The same con-
clusion can be drawn from Figures 7 and 8, during the AWJ cutting of 5 mm and 10 mm
material thicknesses.
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Figure 9. 3D surface plots of process parameters vs. surface roughness of 15 mm material thickness: (a) traverse speed (TS)
vs. depth of cut (DC) on surface roughness (Ra); (b) abrasive mass flow rate (AR) vs. depth of cut (DC) on surface roughness
(Ra); (c) abrasive mass flow rate (AR) vs. traverse speed (TS) on surface roughness (Ra).

Response surfaces comply with the findings of A. Deaconescu and T. Deaconescu [22]
by researching the impact of various AWJ process parameters. They analyzed similar
material with higher thicknesses but without analysis of a cut surface at different depths.

3.3. ANN Concerning ANOVA

Since the AR process parameter has been recognized as the least influential factor
by ANOVA, it was excluded from the learning set. Instead of four input variables, the
ANN’s inputs consisted of only three process parameters (DC, TS, and material thickness).
By excluding AR, the ANN can model the data and provide results faster with higher
precision; Table 10 presents the results. Compared to Table 4, most ANNs produced better
test performance metrics, yielding a 5.75% lower test MAE and a 5.54% lower test RMSE.
The ANNs presented in the table yielded similar train MAE and RMSE results compared
to Table 4. From a computation time standpoint, the tested ANNs performed 12.18% faster
than the ANNs in Table 4. Additionally, by considering the Section 3.1 findings, wherein
the ANN 5 topology was recognized as best-suited, the ANN 5′s results with reduced data
(with exclusion of AR) yielded similar improvements of the test MAE (test MAE = 0.1779)
and the RMSE (test RMSE = 0.2084).
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Table 10. Tested feed-forward ANN configurations, with the AR parameter excluded.

ANN
Information Config 1 Config 2 Config 3 Config 4 config 5

Training
procedure Trainscg Trainscg Traingda Trainlm Trainbr

Learning epochs 200 200 200 9 14
Transfer function logsig purelin logsig logsig logsig

Architecture ANN 4_8 ANN 4_8 ANN 4_8 ANN 4_8 ANN 4_8
Cross validation 36-fold 36-fold 36-fold 36-fold 36-fold

Test MAE 0.1939 0.4366 0.5195 0.2280 0.2117

Train MAE 0.1468 0.4233 0.4652 0.1848 0.1828

Test RMSE 0.2282 0.5166 0.6045 0.2660 0.2496

Train RMSE 0.1946 0.5724 0.6042 0.2440 0.2356

Time (s) 107.1 115.3 87.4 51.0 58.7

4. Conclusions

A feed-forward ANNs method was used to predict the surface roughness in abrasive
water jet cutting of X5CrNi18-10 (1.4301) stainless steel in different depths of cut for
three different material thicknesses. This study’s novelty consisted in its introducing the
ANNs method as a useful tool for predicting surface roughness along the entire depth
of cut at AWJ cutting of stainless steel of different thicknesses. Its main benefit is the
reduced time needed for experimenting. The experimental data obtained at different
traverse speeds and abrasive mass flow rates were used to develop the feed-forward
ANNs method to predict surface roughness. The predicted surface roughness values
were compared with the measured values to show the efficiency of the ANNs. A single-
layered ANN with five neurons (ANN 5) was recognized as the best-suited topology for
the presented problem modeling. The best ANN 5 test set results for the MAE and the
RMSE were 0.1779 and 0.2084, respectively. The predicted values were found to be in close
agreement with the experimental. The average percentage error between the predicted
surface roughness values and the experimental was 4.4973%. At a 95% confidence level,
based on the percentage contribution of ANOVA, the dept of cut was the most significant
factor on the surface roughness, followed by the traverse speed. By exclusion of AR, the
ANNs performed faster and with increased precision.

In future research, more detailed discussions should be considered on the effects of
other process parameters such as water jet pressure, the size and type of abrasive, and the
type of material on surface roughness parameters, including 3D parameters.
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