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ABSTRACT

The molecular target and mechanism by which d-limonene induces LC3 lipidation and autophagosome
formation remain elusive. Here, we report that this monoterpene rapidly enhances Ca®* levels in SH-
SY5Y cells; yet this effect does not lead to calpain- or caspase-mediated proteolysis of a-spectrin, nor
calpain activity is required for the established enhancement of LC3-II levels by d-limonene. However, d-
limonene rapidly reduced vimentin levels, an unexpected effect also induced by the autophagy inhibitor
chloroquine (CQ). The magnitude of vimentin reduction parallels accumulation of LC3-II caused by a brief
incubation with d-limonene or CQ. For longer exposure (48 h), d-limonene does not reduce vimentin, nor
it increases LC3-II levels; conversely, a clear reduction of vimentin along with a massive accumulation of
LC3-II is evident in cells treated with CQ. Vimentin participates in organelle positioning and in other
cellular processes that have linked this intermediate filament protein to various diseases, including
cancer, inflammatory and autoimmune disorders, and to virus replication and internalization. Our
findings suggest an inverse relationship between vimentin reduction and LC3-II accumulation, whose
causal link needs to be examined. Further experiments are needed to dissect the role of vimentin
reduction in the mechanisms through which CQ impairs fusion of autophagosome with lysosomes as

well as in other effects of this drug.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

d-Limonene is a natural monoterpene hydrocarbon that, in the
past years, has attracted interest especially for its chemopreventive
and antitumoral activities in preclinical animal models of
chemically-induced carcinogenesis [1]. Along with this, d-limo-
nene, which is abundant in Citrus essential oils, likely contributes to
neuroprotection [2] and modulation of synaptic transmission [3]
elicited by the essential oil of bergamot (Citrus bergamia Risso et
Poiteau). Accordingly, some evidence has recently emerged that d-
limonene improves the regeneration process and the sensory and
motor function recovery after peripheral nerve injury in mice [4],
and protects from AP42 toxicity in a Drosophila model of
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Alzheimer’s disease [5]. However, the molecular target(s) respon-
sible for the anticancer and neuroprotective effects of d-limonene
remains still elusive. By using d-limonene at concentrations
(250—750 uM) within the breast tissue levels measured in a clinical
study, where limonene was administered orally at 2 g per day for
2—6 weeks before surgery in women with newly diagnosed oper-
able breast cancer [6], we observed that d-limonene stimulates
basal autophagy in human SH-SY5Y neuroblastoma cells [7,8] as
well as in human HepG2 hepatocellular carcinoma and MCF7 breast
cancer cells [8]. The ability of 500 uM d-limonene to stimulate
autophagy was confirmed by Yu et al. [9] in A549 and H1299 lung
cancer cells. Importantly, modulation of autophagy-related genes
and proteins was reported in xenograft tumors of transplanted
nude mice treated with d-limonene, along with a reduction of tu-
mor size [9].

Macroautophagy (hereafter autophagy) is an intracellular pro-
cess through which autophagosomes engulf cytoplasmic materials
and deliver them to the lysosomes for degradation [10]. This
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Fig. 1. d-Limonene increases intracellular Ca>* levels. SH-SY5Y cells were loaded with
Fluo-4 AM at 37 °C for 30 min and then washed twice with DPBS. The fluorescence
intensity of the calcium sensor was measured by flow cytometry before (basal) and up
to 10 min after treatment with DMSO (0.108%) or d-limonene (750 uM). Each point is
the mean + s.e.m. from three independent experiments. Results are expressed as
percent of basal.

process enables the recycling of cellular components upon nutrient
limitation; however, autophagy is more than just an adaptative
metabolic response. It is critical for cellular homeostasis, allowing
the removal of damaged organelles and the degradation of mis-
folded and aggregate-prone proteins. Accordingly, a deregulation of
this quality control mechanism has been linked to several human
pathologies, including neurodegeneration and cancer [11], paving
the way for investigating the therapeutic potential of autophagy
regulation. Thus, there is a need for additional autophagy modu-
lators as valuable experimental tools for dissecting the complex
biological processes of autophagy and validating the therapeutic
efficacy of targeting autophagy.

d-Limonene appears a promising tool to modulate autophagy;
in fact, it is regarded as a safe molecule [12] with minimal side
effects [13]. However, the main limitation restraining its usefulness
is that the target and the mechanisms through which it regulates
autophagy are still unknown. One of the difficulties in identifying
the exact mechanism involved stems from the various intracellular
pathways affected by d-limonene, which may also have opposite
effects in autophagy regulation [8]. Thus, not only LC3 lipidation by
d-limonene is independent from inhibition of the mTOR pathway,
which plays a key role in inhibiting autophagy initiation [14], but
the rapid and transient increase in the phosphorylation levels of
relevant mTOR substrates suggests that autophagy initiation and
mTOR signalling are concurrently activated by d-limonene [8].
Furthermore, d-limonene rapidly activates ERK and stimulates ROS
generation in SH-SY5Y cells, yet none of these events is implicated
in its ability to stimulate autophagy [8].

Our previous data suggest the involvement of intracellular Ca®*
in the mechanism of LC3 lipidation initiated by d-limonene; in fact,
the cell-permeant calcium chelator BAPTA-AM did not abrogate but
significantly reduced the levels of LC3-II increased by d-limonene
[8]. To get more insights into the mechanisms implicated in d-
limonene action, here we investigated whether d-limonene affects
intracellular Ca** levels and requires calpain activity to increase
LC3-II levels in SH-SY5Y cells. We report that d-limonene rapidly
enhances Ca®* levels; this effect does not lead to calpain-mediated
proteolysis of a-spectrin nor calpain activity is required for the
enhancement of LC3-II levels by d-limonene. Moreover, by inves-
tigating the mechanisms through which d-limonene reduces
vimentin levels, we describe here some effects of chloroquine (CQ)
we have incidentally observed by using this drug to inhibit auto-
phagy. In addition to causing cells to accumulate LC3-II, CQ pro-
vokes a rapid and long-lasting reduction of vimentin levels.
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2. Materials and methods
2.1. Reagents

d-Limonene (Cas No 5989-27-5), dimethyl sulfoxide (DMSO)
and chloroquine (CQ) were purchased from Sigma-Aldrich (St.
Louise, MO, USA). 3-(4-lodophenyl)-2-mercapto-(Z)-2-propenoic
Acid (PD 150606) was obtained from Calbiochem (San Diego, CA,
USA).

2.2. Cells, culture conditions and treatments

Adherent human SH-SY5Y neuroblastoma cells, from ICLC-IST
(Genoa, Italy) were cultured as previously described [8] in RPMI
1640 medium (Gibco, Life Technologies, Paisley, UK) supplemented
with heat-inactivated fetal bovine serum (10% v/v; Gibco). Cells
were seeded in 6-well plates and 24 h after plating were treated for
the indicated time. A stock solution (10%) of d-limonene in DMSO
was further diluted in culture medium to obtain a final concen-
tration of 750 uM; DMSO was added to the medium of parallel
control cultures (vehicle-treated cells) to obtain a final percentage
of 0.108% equal to that present in d-limonene-treated cells. Stock
solutions of PD 150606 (20 mM in DMSO) and CQ (20 mM in water)
were further diluted in culture medium and applied to SH-SY5Y
cells together with (PD 150606) or 2 h before (CQ) the addition of
d-limonene and DMSO for the indicated time.

2.3. Analysis of intracellular calcium

The relative levels of cytosolic free Ca>* were measured as pre-
viously described [15] using the calcium indicator Fluo-4 AM (Mo-
lecular Probes), a cell permeable probe that is essentially non-
fluorescent in the absence of Ca® and exhibiting an increase in
fluorescence upon Ca®* binding. In brief, SH-SY5Y cells were seeded
in 6-well plates and 24 h after seeding were resuspended in Dul-
becco’s phosphate-buffered saline (DPBS) with calcium chloride and
magnesium chloride plus 20 mM HEPES and stained with 3 uM Fluo-
4 AM for 30 min; after two washes with DPBS the cells were main-
tained at 37 °C and analyzed by BD FACSVerse flow cytometer. The
fluorescence intensity was acquired before (basal) and up to 10 min
after treatment with vehicle (DMSO, 0.108%) or d-limonene
(750 pM).

2.4. Western blotting analysis

Cell lysis and immunoblotting were performed as previously
described [7]. The following primary antibodies and dilutions were
used: anti-LC3 1:2000 (code PD036; MBL, International Corpora-
tion, Nagoya, Japan); anti-spectrin 1:1000 (non-erythroid; clone
AA6; Merk Millipore, MA, USA); anti-vimentin 1:1000 (Clone
RV202; Abcam, Cambridge, UK); anti-actin 1:1000 (clone AC-40;
Sigma-Aldrich, Milan, Italy); anti-B-tubulin 1:40000 (clone B-5-1-
2; Sigma-Aldrich, Milan, Italy); anti-GAPDH 1:50000 (clone 6C5;
Applied Biosystems, Carlsbad, CA, USA).

2.5. Statistical analysis

Data are expressed as the mean + s.e.m. of the indicated number
of independent experiments and evaluated statistically for differ-
ence by ANOVA followed by Tukey—Kramer test for multiple
comparisons. A value of P < 0.05 was considered as significant.

3. Results and discussion

To investigate whether d-limonene affects intracellular Ca®*
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Fig. 2. Calpain is not involved in the enhancement of LC3-II levels induced by d-limonene. (A) Representative immunoblot of SH-SY5Y cells incubated for 30 min with DMSO
(0.108%) or d-limonene (d-Limo, 750 pM) showing that d-limonene does not increase the levels of the calpain-specific 150—145 kDa a-spectrin breakdown products (SBDPs); also,
note the lack of accumulation of 120 kDa SBDP derived from caspase-mediated proteolysis. GAPDH was used as loading control; 150/145 kDa and 120 kDa SBDPs/GAPDH optical
density ratios for the reported blot are shown. (B) The calpain inhibitor PD 150606 does not reduce LC3-II levels increased by d-limonene. SH-SY5Y cells were treated with d-
limonene (d-Limo, 750 uM) given alone or in combination with PD 150606 (PD, 20 uM) for 60 min and the total protein extracts were subjected to western blot analysis of LC3;
GAPDH was used as internal control. Histograms show the results of densitometric analysis from three independent experiments (mean + s.e.m.); *P < 0.05 and **P < 0.01 vs DMSO
and PD 150606 given alone (ANOVA followed by Tukey-Kramer multiple comparison test). (C) d-Limonene (d-Limo; 750 uM) significantly reduces vimentin levels following a
30 min incubation. Representative immunoblot showing vimentin expression of SH-SY5Y cells treated as in (A). Histograms show the results of densitometric analysis from three
independent experiments (mean + s.e.m.). **P < 0.01 and ****P < 0.0001 vs Control; *P < 0.01 (ANOVA followed by Tukey Kramer multiple comparison test).

levels, these were monitored by FACS analysis using the calcium
indicator Fluo-4 AM. As shown in Fig. 1, d-limonene triggers a rapid
increase of intracellular Ca?* in SH-SY5Y cells. This finding is in line
and corroborates our previous data showing that calcium partici-
pates in or, at least, it is partly necessary for autophagy initiation by
d-limonene [8].

Enhancement of intracellular Ca®>t may activate calpain [16].
Calpain is required for autophagy [17] but activation of calpain, in
turn, may negatively regulate autophagy [18]. To investigate
whether d-limonene stimulates the Ca®"-activated neutral
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protease calpain I, we examined the typical calpain-mediated
generation of a-spectrin cleavage fragments (150—145 kDa), by
western-blot analysis. As shown in Fig. 2A, no accumulation of the
calpain-cleaved 150—145 kDa a-spectrin breakdown products
(SBDPs) was detectable in cells treated for 30 min with d-limonene.
These observations suggest that d-limonene does not activate cal-
pain; however, to further assess whether calpain is required for d-
limonene stimulated autophagy, the calpain inhibitor PD 150606
was also used. Pharmacological inhibition of calpain does not affect
basal LC3-II levels nor it modifies LC3-II levels increased by d-
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Fig. 3. Effects of short- and long-term exposure to d-limonene and chloroquine on vimentin and LC3-II levels. DMSO (0.108%) or d-limonene (d-Limo, 750 M) were added for
30 min (A, B) or 48 h (C, D) to SH-SY5Y cells, with or without 2 h pretreatment with chloroquine (CQ, 50 uM). Total protein extracts were analyzed by western blotting for vimentin
(A, C) and LC3 (B, D) levels; GAPDH, actin or tubulin were used as loading controls. Histograms in (A) and (C) show the results of densitometric analysis from three independent
experiments (mean =+ s.e.m.); **P < 0.01, ****P < 0.0001 vs Control (ANOVA followed by Tukey Kramer multiple comparison test). LC3-II/actin (B) and LC3-II/tubulin (D) optical

density ratios for the reported blots are shown.

limonene (Fig. 2B). These findings indicate that enhanced auto-
phagosome formation stimulated by d-limonene, though sensitive
to Ca®* buffering by BAPTA-AM [8], does not require calpain. An
increase in intracellular Ca®* can trigger autophagy by several
mechanisms [19,20] and further experiments are needed to iden-
tify the Ca®*-associated pathway that is recruited by d-limonene to
stimulate autophagy.

Also, consistent with our previous observations that a brief
exposure to d-limonene does not activate caspase-3 nor it induces a
cleavage of PARP [21], here we observed that d-limonene does not
enhance the levels of 120 kDa SBDPs indicative of caspase activa-
tion (Fig. 2A). However, when investigating the effects of d-limo-
nene on vimentin, an intermediate filament protein, which is also a
substrate of both calpain [22,23] and caspases [24], we observed
that d-limonene caused a substantial reduction of this protein
levels as compared to both control- and DMSO-treated cells,
following a 30 min incubation (Fig. 2C). Because d-limonene does
not appear to activate calpain or caspase-3 (Fig. 2A), we asked
whether d-limonene could reduce vimentin levels through acti-
vation of autophagy and used CQ as acknowledged tool to inhibit
the later stages of this pathway [10]. The results show that,
following a short incubation time, CQ per se significantly reduced
the levels of vimentin, and a reduction of a similar extent occurred
in cells treated with both CQ and d-limonene (Fig. 3A). Moreover,
the magnitude of vimentin reduction (Fig. 3A) parallels accumu-
lation of LC3-II (Fig. 3B) caused by a brief incubation with d-limo-
nene or CQ. However, upon treatment for 48 h, d-limonene does
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not reduce vimentin (Fig. 3C) nor it increases LC3-II levels (Fig. 3D)
whereas a clear reduction of vimentin along with a massive accu-
mulation of LC3-II is evident in cells treated with CQ, alone or in the
presence of d-limonene (Fig. 3C and D). While these findings do not
allow to establish a role for autophagic degradation in the reduction
of vimentin caused by d-limonene, they uncover an inverse rela-
tionship between vimentin reduction and LC3-II accumulation,
whose causal link needs to be examined.

CQ and d-limonene increase LC3-II via different mechanisms.
While accumulation of LC3-II by CQ is due to inhibition of lyso-
somal degradation of LC3-II [10], we [7,8] and others [9] have
demonstrated that d-limonene enhances the levels of LC3-II via
increased LC3 lipidation and autophagosome formation. Also, LC3-
II levels increase induced by d-limonene in SH-SY5Y cells is rapid
but transient [7]. Accordingly, in CQ-pretreated cells, only a short
(30 min; Fig. 3B [8]) co-incubation with d-limonene, but not a long
one (48 h; Fig. 3D), markedly increases the LC3-II levels that are
accumulating over time due to the blockage of autophagy induced
by CQ.

The mechanism through which CQ inhibits autophagy has been
ascribed to the lysosomotropic properties of CQ that accumulates
into the lysosomes thereby raising intralysosomal pH and inhibit-
ing lysosomal enzymes [10]. More recently, it has been suggested
that CQ inhibits the later stages of autophagy by preventing the
fusion of autophagosomes with lysosomes without substantially
decreasing lysosomal acidity and the degradation capacity of ly-
sosomes [25]. The present data demonstrate that in SH-SY5Y
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neuroblastoma cells CQ accumulates LC3-II levels and induces a
rapid and long-lasting reduction of vimentin levels.

Vimentin is involved in vesicular membrane traffic and vimen-
tin filaments are required for endo-lysosomal vesicle transport and
positioning of endosomes and lysosomes [26]. Recently, some ev-
idence has emerged that vimentin is involved in autophagy pro-
gression [27]. In HEK293 cells, vimentin aggregation by whitaferin-
A increases LC3-II levels and causes the juxtanuclear clustering of
autophagosomes and lysosomes with only limited colocalization
[27]. While the latter finding would suggest that vimentin aggre-
gation interferes with the fusion of autophagosomes with lyso-
somes, vimentin depletion by gene silencing does not seem to
affect basal autophagy or autophagosome distribution [27]. We
investigated only the levels of the protein and no cell imaging study
was performed that could inform us whether d-limonene and CQ
affect the intracellular distribution of vimentin, which indeed de-
serves further investigation. Nonetheless, these findings represent
an advance in our understanding of the mechanism of action of CQ
considering that the intermediate filament protein vimentin par-
ticipates in several critical functions including signal transduction
and cell adhesion and migration [28]. Upregulation of vimentin is
linked to epithelial-mesenchymal transition and vimentin over-
expression has been associated with cancer progression and
metastasis [29]. Furthermore, post-translational modifications of
vimentin play a role in the pathogenesis of inflammatory and
autoimmune disorders [30]. In addition, vimentin has been impli-
cated in virus replication and in facilitating internalization of
multiple viruses [31]. Thus, it has been suggested that vimentin
directly binds to the severe acute respiratory syndrome coronavirus
(SARS-CoV) spike protein and is involved in the entry of SARS-CoV,
functioning as a putative co-receptor with ACE2 [32].

CQ is approved for the treatment of malaria and rheumatic
diseases [33] and, due to its ability to inhibit autophagy, it is
currently evaluated in clinical trials as adjuvant in anti-cancer
chemotherapies [34]. Very recently, CQ and its analog, hydroxy-
chloroquine, have received much attention because of their use to
treat SARS-CoV-2 infection despite the paucity of preclinical evi-
dence to support this indication and their dose-limiting toxicity
[35]. To provide information that could be exploited in a better
understanding of the pharmaco-toxicological profile of CQ, here we
report some effects of CQ we have incidentally observed by using
this drug as a tool to inhibit autophagy. In addition to causing cells
to accumulate autophagosomes, CQ provokes a rapid and long-
lasting reduction of vimentin expression.

We hope these findings may stimulate future studies to inves-
tigate the role of reduction of vimentin in the mechanisms through
which CQ impairs fusion of autophagosome with lysosomes as well
as in other effects of this drug.
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