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ABSTRACT: We present a protocol based on unitary trans-
formations of molecular orbitals to reduce the number of
nonvanishing coefficients of spin-adapted configuration interaction
expansions. Methods that exploit the sparsity of the Hamiltonian
matrix and compactness of its eigensolutions, such as the full
configuration interaction quantum Monte Carlo (FCIQMC)
algorithm in its spin-adapted implementation, are well suited to
this protocol. The wave function compression resulting from this
approach is particularly attractive for antiferromagnetically coupled
polynuclear spin systems, such as transition-metal cubanes in
biocatalysis, and Mott and charge-transfer insulators in solid-state
physics. Active space configuration interaction calculations on N2
and CN− at various bond lengths, the stretched square N4
compounds, the chromium dimer, and a [Fe2S2]

2− model system are presented as a proof-of-concept. For the Cr2 case, large
and intermediate bond distances are discussed, showing that the approach is effective in cases where static and dynamic correlations
are equally important. The [Fe2S2]

2− case shows the general applicability of the method.

1. INTRODUCTION
Polynuclear transition metal and f-element systems play central
roles in biochemical processes and as building blocks of Mott
and charge-transfer insulators. Understanding their electronic
structure is of paramount importance to control their
properties. At the atomic level, these compounds have complex
electronic structures, with several unpaired electrons per metal
center distributed among near-degenerate valence d (or f)
orbitals. Orbital degeneracies are partially lifted by ligand-field
effects, at the price of even more complex electronic structures
characterized by charge-transfer excitations between metal
centers and ligands (consider the super-exchange mechanism
in solids as an example1) and degeneracies between metal and
ligand orbitals. These systems also exhibit multiple quasi-
degenerate low-lying spin states whose relative order is easily
altered by small external perturbations.2 Locally (at each metal
center), Hund’s rules suggest that the unpaired electrons have
parallel spins. However, kinetic-exchange interactions, includ-
ing direct-exchange and super-exchange mechanisms, favor
electrons residing in adjacent metal centers to couple with
antiparallel spins, thus inducing antiferromagnetism.3−9

Computational investigations of these systems require
advanced multiconfigurational electronic structure methods,
such as the complete active space self-consistent field approach
(CASSCF).10−14 However, for these methods, even the
determination of the spin of the ground state is computation-
ally demanding, and predictions of reaction mechanisms and
electronic properties are, in practice, limited to systems

containing at most two transition-metal atoms.15−18 When
studying systems with numerous unpaired and low-spin-
coupled electrons, the limiting step is the exponential scaling
of the Hilbert space size with respect to the size of the chosen
active space.
This limitation is exemplified by the {Mn4CaO5} cluster of

photosystem II. In its relaxed form, the S1 state, the cluster
consists of two d4-Mn(III) and two d3-Mn(IV) ions. The
minimal active space for this system is the CAS(14,20),
consisting of the valence orbitals and electrons of the four
metal centers. In the low spin (singlet, S = 0), the configuration
interaction (CI) vector contains ∼6 × 109 Slater determinants
(SDs) and ∼1 × 109 configuration state functions (CSFs),
quickly reaching the present computational limits. A more
adequate active space would also contain orbitals and electrons
of the bridging oxygens, CAS(44,35), largely exceeding the
current computational limits.
In recent years, a number of methods have been developed

to circumvent the exponential scaling of CAS wave functions,
which use algorithms such as density matrix renormalization
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group (DMRG)19−28 or full configuration interaction quantum
Monte Carlo (FCIQMC)29−35 as CI eigensolvers. Within the
framework of the novel stochastic-CASSCF approach,36 active
spaces containing up to 38 electrons and 40 orbitals have been
reported.37,38 In FCIQMC, a finite number of “walkers” are
used to stochastically sample CAS (or FCI) wave functions
and information is stored only for those SDs that are populated
by walkers at the given instantaneous imaginary time step. For
a fixed number of walkers, the stochastic representation of the
wave function is generally more accurate for sparse wave
functions than for dense ones. Thus, it seems relevant for
methods that benefit from wave function sparsity, such as
FCIQMC, to ask whether techniques exist that can reduce the
number of nonvanishing coefficients in CI wave functions.
The graphical unitary group approach (GUGA)39,40 is a

technique that constrains multiconfigurational wave functions
to a chosen total spin, S. The method has been pioneered by
Paldus, Shavitt, and others,39,41−47 and it has been used for
decades in conventional MCSCF methods. Since 2011, the
GUGA approach has also been adapted to generalized active
space SCF wave functions (GASSCF)48 and to the GASPT2
approach.49 Recently, a spin-adapted version of the FCIQMC
algorithm based on GUGA has also been developed in our
laboratories.50 When used in conventional CI procedures,
GUGA represents the most compact way of storing CI
expansions, as it contains a much smaller number of
parameters (the CSF coefficients) than the ones in Slater
determinant expansions. However, Slater determinant repre-
sentations are more effective in direct-CI driven procedures, as
the evaluation of the sigma vector, σ = HC, only relies on the
Slater−Condon rules and vectorization is possible.51,52 The
advantage of both expansions, Slater determinants for
computing the σ vector and CSFs for storing the wave
function parameters, can be combined at the extra cost of
efficient ways of transforming the wave function between the
two bases. Already in 1976, Grabenstetter53 suggested one of
such methods. This method is currently used in many
chemistry software packages, including MOLCAS,54,55

LUCIA,56 and DALTON.57 More recently, an algorithm has
been suggested by Olsen58 that avoids the large spin-coupling
transformation matrix and the operation count can be reduced
for systems featuring a large number of low-spin-coupled
unpaired electrons.
Within the GUGA formalism, one additional property

emerges: orbital reordering impacts the sparsity of the CI
Hamiltonian matrix and the number of nonvanishing CI
coefficients in the CI eigensolutions. This feature, which has
already been discussed for several simple cases by Brooks and
Schaefer III in 1979,47,59 is unique to CSF expansions, and it is
not present when an SD basis is utilized. The property follows
from the way CSFs are constructed and coupled via the spin-
free nonrelativistic Hamiltonian operator, and it will be
discussed in great detail in the present manuscript.
Orbital reordering is also a crucial element for the

convergence of the DMRG procedure.60−67 However, the
reordering discussed in this manuscript differs from the one
discussed within the DMRG framework, both in motivation
and in aim. In the context of DMRG, the role of the reordering
is to accelerate the convergence of the method with respect to
the bond dimension (referred to as the M, or D, value). This is
achieved by exploiting the concepts of entanglement
entropy63,64,66 and locality67 between adjacent sites (orbitals)
and by analyzing one- and two-electron integrals. Although

locality and electron repulsion integrals could also be related to
our orbital reordering schemes, our reordering schemes are
strictly motivated by the intrinsic mechanisms of the GUGA
algorithm and aim at the compression of wave functions
expanded in CSFs.
The structure of CI expansions based on different orbital

representations (natural, pseudo-natural, and canonical orbi-
tals) has previously been investigated by Shavitt for the water
molecule in its ground-state equilibrium geometry and only for
configuration interaction with single- and double-excitation
(CISD) wave functions in spin-adapted basis.68 The wave
function compression is here analyzed in combination with
two orbital representations commonly used in multiconfigura-
tional CI approaches, the active natural orbitals produced by
diagonalizing the active space one-body density matrix and the
localized active orbitals that are obtained by localizing
occupied and virtual orbitals together (a not-invariant
transformation for HF wave functions). Split-localized orbitals,
obtained by localizing occupied and virtual orbitals separately
(an invariant transformation for HF wave functions), and
mixed localized/delocalized basis represent alternative routes.
Although we use different orbital representations, the aim of
this work is not to compare between them, but rather to study
the effect of reordering schemes on the ground-state wave
function sparsity in a spin-adapted basis within them. These
reordering schemes are based on the occupation numbers for
natural orbitals, real-space orbital separation arguments for
localized orbitals, and generalized active space48,52,54,55,69

orbital partitioning for both of them. As it has already been
noticed by Shavitt in ref 59, orbital reordering is the only tool
available in the unitary group approach, including GUGA, for
controlling spin couplings of CSFs and, although it is not to be
expected to find in all cases the specific ordering that reduces
the number of coupling CSFs to its minimum, it is generally
possible, as shown in this manuscript, to find the ordering that
leads to a considerable reduction of the interacting space.
Conventional CASCI procedures, as well as the spin-adapted

FCIQMC algorithm, are used to show the wave function
compression effect that follow specific orbital reordering
schemes. The increased sparsity obtained facilitates the
convergence of spin-adapted FCIQMC calculations with
respect to walker distributions, and it is strongly recommended
for polynuclear transition-metal complexes with antiferromag-
netically coupled metal centers. The N2 and CN− at various
bond distances, the stretched N4 molecules, the chromium
dimer at 2.4 Å and at dissociation, and a model system of the
oxidized form of the [Fe2S2]

2− cluster in its lowest spin state (S
= 0, singlet) will be used as examples.
We discuss the theoretical foundation of the compression of

spin-adapted wave functions in Section 2 and present
numerical examples in Section 3, using conventional CI
procedures and the stochastic FCIQMC algorithm. For the
latter, we show that the convergence behavior with respect to
the total number of walkers can be greatly improved by taking
advantage of the wave function compression that follows
orbital reordering.

2. THEORETICAL DETAILS

2.1. Representation of CSFs. CSFs are generally
represented by one of the three equivalent tables of Figure
1, known as Gel’fand, Paldus, and Weyl tableaux, respec-
tively.43,70,71 The top row of the Gel’fand tableau completely
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characterizes the electronic state of the considered system as it
complies with the following two conditions

∑ ∑ δ= =
= =

m N Sand 2
i

n

i
i

n

m
1

1
1

1, i1
(1)

where n, N, and S are the total number of orbitals, electrons,
and the total spin, respectively. The m1i elements represent the
individual entries of the top row. The example of Figure 1
represents a system with eight orbitals (n = 8, dimension of the
top row) and six electrons (N = 6, sum of the m1i entries)
coupled to a triplet spin state (S = 1, sum of 1-entries divided
by 2). The other rows in the Gel’fand tableau identify a specific
CSF for the given electronic state, as it will be explained in the
following. Considering that Gel’fand tableaux contain only 0, 1,
and 2 entries,43 a more compact “three-column table” can be
used, where the number of 0’s, 1’s, and 2’s is counted. This
table is referred to as the Paldus ABC tableau (Figure 1). The
sum of the entries in Paldus ABC tableau equals the row index
(from bottom to top)

+ + = =a b c i i n, ( 1 ,..., )i i i (2)

thus, any two columns are sufficient to uniquely determine the
state and the specific CSF. Paldus AC tableaux are derived
from the ABC tableaux by excluding the second column, B.
Paldus ABC (or AC) tableaux can be recast in “variation
tables” with Δxi = xi − xi−1 (x = a, b, c), as shown in Figure 1.
Starting from the top row of Paldus ABC, or ΔABC variation
tableau, four actions recursively follow to obtain the possible
lower rows and generate the CSFs for the targeted electronic
state:

• remove one empty orbital, Δai = 0, Δbi = 0, Δci = 1,
• reduce spin by 1/2, Δai = 0, Δbi = 1, Δci = 0 (negative

spin coupling),
• remove one doubly occupied orbital and one empty

orbital and increase the spin by 1/2, Δai = 1, Δbi = −1,
Δci = 1 (positive spin coupling), and

• remove one doubly occupied orbital, Δai = 1, Δbi = 0,
Δci = 0.

Lexically ordered CSFs are obtained when the above steps are
followed in order. While the Δa and Δc entries are restricted to
0 and 1 values, the Δb column may assume 1, 0, and −1
entries. All CSFs for a given state can be constructed by
allowing the possible variations of ai, bi, and ci according to the
actions given above, decreasing the values of ai, bi, and ci down
to (0 0 0). From the ΔAC tableaux, the Weyl representation is
promptly obtained by writing the row indices of the left 1-
entries and the right 0-entries, as indicated in Figure 1. Each

Weyl tableau represents a CSF with a defined total spin, S, and
the left and right columns represent the positively and
negatively spin-coupled contributions in a cumulative sense.

Step Vector. The four possible actions that lead from the
top row of the ABC tableaux to the bottom can be expressed in
a more compact form via the step vector, whose elements (the
step values) are defined as

= Δ − Δ +d a c2 1i i i (3)

Depending on the action that leads to the lower row index, the
step values will assume values from 0 to 3. Table 1 summarizes

the correspondence between the possible step values and the
Δai, Δbi, and Δci variations. Step values, di, of 0, 1, 2, or 3
correspond to empty, singly occupied orbitals increasing the
total spin by 1/2 (positive spin coupling and referred to as u in
this work), singly occupied decreasing the total spin by 1/2
(negative spin coupling and referred to as d), or doubly
occupied ith-orbital, respectively. The di′ labels of Table 1
represent a more intuitive step-value nomenclature to specify
CSFs that will be used in the rest of this manuscript.

Graphical Unitary Group Approach (GUGA). When
constructing the CSFs of a given multiconfigurational wave
function, rows in Paldus ABC tableaux repeat for different
CSFs. Repetitions can be avoided by listing only nonequivalent
rows. The table collecting all of the nonequivalent rows is
referred to as a distinct row table (DRT) (Table 2), introduced
by Shavitt.39 Each row of a DRT is identified by a pair of
indices, (i, j), with i = ai + bi + ci being the level index, and j the
lexical row index, a counting index such that j < j′ if ai > ai′ or if
ai = ai′ and bi > bi′. CSFs are generated by connecting rows with
decreasing level index. Allowed connections between rows are
indicated by downward chaining indices. For a given lexical
row, the downward chaining indices define the connected rows
of the lower level row after the action of the four possible step
values, d0, d1, d2, and d3. Table 2 summarizes the DRT of a
CAS(6,6) wave function, coupled to a singlet spin state. A
more compact representation of DRT tables is obtained by
means of graphs (Figure 2). Each vertex of the graph
represents one distinct row of the DRT. Arcs connect only
vertices linked by downward chaining indices. Vertices are
labeled by the lexical ordering index, j, and arcs by the
corresponding step value. The head node corresponds to the
top row and the tail node corresponds to the bottom row (0 0
0) of the corresponding DRT table. Vertices with the same i-
value are aligned horizontally. Vertices are also left−right-
sorted with respect to the a and b values of the DRT. The left−
right ordering ensures that the slope of each arc corresponds to
its step value. Direct walks through the graph, following only
vertices connected by arcs, lead to all possible CSFs of the
given multiconfigurational wave function. In Figure 2, three
CSFs have been highlighted. The step vector d = |111222⟩,
represented by the orange path in Figure 2 (read from bottom

Figure 1. (a) Gel’fand, (b) Paldus ABC, (c) ΔAC variation, and (d)
Weyl tableau representing a distribution of six electrons in eight
orbitals with total spin S = 1 (triplet). Table 1. Mapping between Step-Vector Values, di, and the

Four Possible Variations of ai, bi, and ci and the Equivalent
Nomenclature, di′, Chosen in This Manuscript

di Δai Δbi Δci di′
0 0 0 1 0
1 0 1 0 u
2 1 -1 1 d
3 1 0 0 2
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to top), corresponds to the CSF |uuuddd⟩ (u = positively spin-
coupled, d = negatively spin-coupled), the step vector d = |
121212⟩ (green path in Figure 2) corresponds to the CSF |
ududud⟩, and the step vector d = |333000⟩ (blue path in Figure
2) corresponds to the closed-shell |222000⟩ CSF.
GUGA Representation of GAS Wave Functions. When

the GUGA representation of CSFs is used for generalized
active space (GAS) wave functions,48 a number of direct walks
in the GUGA graph are not permitted by the occupation
number constraints of the GAS specifications. A GAS6(6,6) is
considered as an example, which contains six active electrons
and six active orbitals, each orbital in a separate GAS subspace.
The six GAS subspaces are populated by only one electron and
thus referred to as disconnected spaces (interspace electron
excitations are not allowed). This GAS wave function
corresponds to a configurational space where only spin re-
couplings via exchange-driven spin-flips are permitted. As a
guide for the eye, the cumulative occupation number, Nelec,
associated with each vertex is shown in Figure 2. Some of the
arcs of Figure 2 are not permitted for this GAS6(6,6). For
instance, the arc connecting vertices (30) and (27)
corresponds to populating the first orbital with two electrons,
which is not permitted by the chosen GAS. The paths
permitted by the GAS6(6,6) restrictions are depicted in Figure

3. The filled black circles indicate the allowed vertices within
the GAS restrictions. The thin black lines and circles of Figure

3 represent CSFs of the auxiliary space, a space that is
forbidden by GAS rules, but necessary for the coupling of
permitted CSFs via double excitations. The gray lines and
circles are prohibited by GAS rules and not necessary for the
auxiliary space.

Table 2. Distinct Row Table for N = 6, n = 6, and S = 0.
Zeroes under d0−d3 Columns Represent Not Allowed
Downward Chaininga

a b c i j d0 d1 d2 d3

3 0 3 6 1 2 0 3 4
3 0 2 5 2 5 0 6 7
2 1 2 5 3 6 7 8 9
2 0 3 5 4 7 0 9 10
3 0 1 4 5 11 0 12 13
2 1 1 4 6 12 13 14 15
2 0 2 4 7 13 0 15 16
1 2 1 4 8 14 15 17 18
1 1 2 4 9 15 16 18 19
1 0 3 4 10 16 0 19 20
3 0 0 3 11 0 0 0 21
2 1 0 3 12 0 21 0 22
2 0 1 3 13 21 0 22 23
1 2 0 3 14 0 22 0 24
1 1 1 3 15 22 23 24 25
1 0 2 3 16 23 0 25 26
0 3 0 3 17 0 24 0 0
0 2 1 3 18 24 25 0 0
0 1 2 3 19 25 26 0 0
0 0 3 3 20 26 0 0 0
2 0 0 2 21 0 0 0 27
1 1 0 2 22 0 27 0 28
1 0 1 2 23 27 0 28 29
0 2 0 2 24 0 28 0 0
0 1 1 2 25 28 29 0 0
0 0 2 2 26 29 0 0 0
1 0 0 1 27 0 0 0 30
0 1 0 1 28 0 30 0 0
0 0 1 1 29 30 0 0 0
0 0 0 0 30 0 0 0 0

aPaldus ABC representations of CSFs are obtained by selecting one
row for each level index, i, according to the downward chaining
indices.

Figure 2. Graph representing the DRT of Table 2. The different step
values, di, connecting the nodes of the highlighted paths are shown.
The highlighted step vectors, d = |111222⟩ (orange path, top), d = |
121212⟩ (green path, middle), and d = |333000⟩ (blue path, bottom),
correspond to |uuuddd⟩, |ududud⟩, and |222000⟩, respectively.

Figure 3. Graph representing the DRT of Table 2 with the additional
GAS6(6,6) constraints discussed in the main text. The orange, green,
and thick black paths between them represent the allowed CSFs of the
GAS wave function, connecting the allowed vertices, indicated by the
filled circles. The thin black lines and circles belong to the auxiliary
space (see the main text), and gray nodes and arcs are prohibited by
GAS rules and not necessary for the auxiliary space.
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2.2. Coupling of CSFs via the Hamiltonian Operator.
The coupling of two CSFs (or SDs) via the spin-free
nonrelativistic Hamiltonian operator

∑ ∑

∑ ∑

δ̂ = ̂ + | ̂ ̂ − ̂

= ̂ + | ̂

H h E pq rs E E E

h E pq rs e

1
2

( )( )

1
2

( )

pq
pq pq

pq rs

pq rs ps rq

pq
pq pq

pq rs
pq rs

,

,
,

(4)

is given by

∑ ∑⟨ ′| ̂ | ⟩ = ⟨ ′| ̂ | ⟩ + | ⟨ ′| ̂ | ⟩m H m h m E m pq rs m e m
1
2

( )
pq

pq pq
pq rs

pq rs
,

,

(5)

where hpq and (pq|rs) are the one- and two-electron
integrals, and ⟨m′|Êpq|m⟩ and ⟨m′|ep̂q,rs|m⟩ are the coupling
coefficients between two SDs or CSFs. The integral values
depend on the shape of the orbitals, while the coupling
coefficients depend on the entries in |m⟩ and |m′⟩ (depending
on whether an SD or CSF basis is chosen). The Slater−
Condon rules apply for the coupling coefficients between SDs,
which can be evaluated very efficiently. However, these rules
are not applicable for CSFs, and, consequently, wave function
optimizations in CSF basis have been less popular than
optimizations in SD basis. Paldus, Shavitt, and others40,41,47

have demonstrated that the efficient evaluation of CSF
coupling terms is possible via the GUGA approach.
One-Electron Coupling Coefficients. One-electron

coupling coefficients, ⟨m′|Êpq|m⟩, can be computed graphically
by first identifying |m⟩ and |m′⟩ paths in the corresponding
GUGA graph followed by their connection via the excitation
operator, Êpq. For nonvanishing coefficients, the walks of |m′⟩
and |m⟩ on the graph must coincide outside the (p, q) range,
defined by the excitation operator, Êpq. The value of the
coupling coefficient is independent of the overlapping outer
regions and depends only on the shape of the loop formed by
the two CSFs in the range defined by the operator Êpq. At each
row level, k (inside the range), nonvanishing terms satisfy the
conditions

Δ = − ′ = ±b b b 1k k k (6)

′ + ′ = + +a b a b2 2 1k k k k (7)

Shavitt proved that coupling coefficients can be factorized as

∏⟨ ′| ̂ | ⟩ = ′ Δ
=

m E m W Q d d b b( ; , , , )pq
k p

q

k k k k k
(8)

and the values of W(Qk; dk′, dk, Δbk, bk) are tabulated.59 The
factors, W, depend on step-vector values, dk′ and dk, Δbk = bk −
bk′, and the bk value of |m⟩ at the k-level. They also depend on
the k-segment shape, Qk, which indicates the relation of the k-
level arcs of the two CSFs, |m′⟩ and |m⟩. If the k-arc of |m′⟩ is
on the left, coincident or on the right of the k-arc of |m⟩, Qk is
labeled as raising (R), weight (W), or lowering (L),
respectively. For the segments where the loop begins (bottom)
and ends (top), under-bars and over-bars (R, L and R̅, L̅),
respectively, are used as labels. As an example, the ⟨2uud0d|Ê15|
uuuddd⟩ coupling term is promptly evaluated using the graph
of Figure 3, the labeling rules defined above, and Table III of
ref 59

⟨ | ̂ | ⟩ = ̲ · · · · ̅+ + +uud d E uuuddd R R R R R2 0 15 31
1 1

11
2 1

11
3 1

22
2

02
1

(9)

where we have used the ΔbkRdk′dk
bk symbols for each k-level inside

the loop.
When orbitals are reordered, the graphical representation of

any CSF in a GUGA graph and the couplings between CSFs
are altered and thus nonvanishing coupling terms may vanish
after orbital reordering.

Two-Electron Coupling Coefficients. Matrix elements of
two-body excitation operators, ÊpqÊrs, can either be evaluated
by introducing a summation over intermediate states, |m″⟩
(resolution of identity)

∑⟨ ′| ̂ ̂ | ⟩ = ⟨ ′| ̂ | ″⟩⟨ ″| ̂ | ⟩
″

m E E m m E m m E mpq rs
m

pq rs
(10)

or directly in a factorized form similar to eq 8; see ref 40.
Similar to the one-body coupling coefficients, orbital
reordering also impacts these terms; thus, it is possible to
increase the number of vanishing coupling terms and produce
a more sparse Hamiltonian matrix and compact representation
of the many-body wave function.

3. APPLICATIONS
This section is dedicated to examples that show how sparsity of
spin-adapted CI wave functions is increased by orbital
transformations and reordering schemes. For diatomics (N2,
Cr2, and [Fe2S2]

2−), delocalized natural orbitals can be
arranged (a) by grouping them by irreducible representation
(Irrep) and within each Irrep by orbital energy or natural
orbital occupation number (here referred to as the canonical
ordering), or (b) in pairs of bonding (o) and corresponding
antibonding (o*) orbitals (pair ordering). Alternatively,
orbitals can be localized and arranged (a) by pairs of
equivalent orbitals, say (dz2

A , dz2
B ), or (b) by grouping orbitals

residing on the same atom (atom-separated ordering). At large
distance, Hund’s rules suggest that, for each magnetic center,
the unpaired electrons have parallel spins; this leads to very few
nonvanishing paths (to the extreme of one for the CAS(6,6)
wave function of N2 or the CAS(12,12) wave function of Cr2 at
dissociation).
For weakly interacting magnetic centers, say N2 at a bond

length of 2.0 Å (Section 3.3), Cr2 at a bond length of 2.4 Å
(Section 3.4), or more realistic transition-metal clusters, such
as the [Fe2S2]

2− system (Section 3.5), this partitioning is still
very useful, and one has neutral configurations in addition to
charge-transfer ones. Higher-order charge-transfer configura-
tions carry small weights, and GUGA allows for an easy
selection of dominant paths.
As demonstrated in detail in Section 3.1, the sparsity of the

CI Hamiltonian matrix and its eigenvectors arises from
multiple factors: (a) vanishing spin-coupling coefficients, (b)
vanishing electron integral values, (c) exact cancellation of
terms with opposite signs, and (d) terms that fortuitously fall
below thresholds. The latter case leads to unpredictable
numerical zeroes, while the former cases (zeroes by symmetry)
can be predicted and their effect traced into the leading
configurations of the multiconfigurational wave function. It is
hard to distinguish and quantify the various sources that lead
to sparsity and impractical when tackling realistic cases
featuring complex wave functions. In Section 3.3, the L1 and
L4 norms will be utilized to quantify the compression effect for
different orbital representations and orderings for the
homonuclear N2 and the noncentrosymmetric CN− species
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at various bond lengths. Instead, in Section 3.5, the
convergence of the spin-adapted FCIQMC projected energy
will be utilized as a practical mean to measure the sparsity of
the CAS(22,26) wave function of the [Fe2S2]

2− model system.
3.1. Stretched Nitrogen Molecule. The nitrogen

molecule at dissociation is a simple pedagogical example that
demonstrates how orbital reordering impacts the sparsity of
the many-body CI expansion when CSF representations are
utilized. Consider a CAS(6,6) active space, consisting of six
MOs formed by a linear combination of the 2p atomic orbitals
on each atom, and their electrons. The CASSCF(6,6) wave
function is optimized to a singlet spin state. Two sets of
orbitals are considered: delocalized natural orbitals, with
bonding and antibonding characters, and localized orbitals
(atomic-orbital-like). C1 point group symmetry has been used
for all cases. The CAS(6,6) CI expansion contains 175 CSFs.
These CSFs are represented by all possible walks in the GUGA
graph of Figure 2. The number and the list of nonvanishing
terms in the optimized CI wave function for each type of
orbital shape and ordering are given in Tables 3 and 4,
respectively.

Natural Orbitals. Two ordering schemes have been adopted
for the natural orbitals of the CAS(6,6) wave function: the
canonical ordering, with bonding orbitals (σ, πx, and πy)
preceding the antibonding orbitals (σ*, πx*, and πy*), and the
pair ordering, where orbitals are sorted in (σ, σ*), (πx, πx*), and
(πy, πy*) pairs. The pair ordering has the effect of reducing the
number of nonvanishing terms in the CI expansion with
respect to the canonical ordering, from 20 to 14 CSFs (Table
3).
In the natural orbital basis, there is a strong coupling

between bonding and antibonding orbital pairs, i.e., σ ↔ σ*
and πx/y ↔ πx/y* . As a consequence, the significant off-diagonal
molecular integrals at dissociation are the exchange-like,
(σσ*|σσ*) and (πx/yπx/y* |πx/yπx/y* ), and the “coherent” combi-
nations of them, i.e., (σσ*|πx/yπx/y* ) (8-fold permutational
symmetry implied). The list of electron repulsion integrals is
available in the Supporting Information. We will explain the
increased sparsity of the pair ordering scheme using the
example of three CSFs shown in Table 5.
In the canonical ordering scheme, the Hamiltonian matrix

elements ⟨1|Ĥ|2⟩ and ⟨1|Ĥ|3⟩ are driven by the large integral
contribution (πxπx*|πyπy*), which is (25|34). The coupling
coefficients ⟨2|e5̂2;43|1⟩ and ⟨3|e5̂2;43|1⟩ do not vanish, and, upon
multiplication by the (25|34) integral value, they result in the
nonvanishing ⟨1|Ĥ|2⟩ and ⟨1|Ĥ|3⟩ matrix elements. Also, in
canonical ordering, the following matrix element does not
vanish

⟨ | ̂ | ⟩ = ⟨ | ̂ | ⟩

= [ | + | − | − | ]

H uudd H udud3 2 2 0 2 0
3

2
(34 34) (25 25) (35 35) (24 24)

where (34|34) and (25|25) correspond to the large and
identical integrals between the bonding and antibonding π
orbitals, while the (35|35) and (24|24) are the small
(πyπx*|πyπx*) and (πxπy*|πxπy*) integral values, respectively.
Thus, in the canonical ordering scheme, configurations |1⟩, |
2⟩, and |3⟩ are coupled via the Hamiltonian operator, causing
the wave function to be in general dense.
For the pair ordering scheme, the coupling coefficient

between states |1′⟩ and |3′⟩ is zero for the strong (πxπx*|πyπy*)
integral contribution, which is (34|56), and is only driven by
the much smaller (πxπy|πx*πy*) and similar contributions. At the
same time, in the pair-ordered case, the matrix element

Table 3. Number of Nonvanishing CSFs in the CAS(6,6) of
N2 and the CAS(12,12) of N4 at Dissociation Geometry

shape ordering N2 system N4 system

delocalized canonical 20 2073a

delocalized pair/type 14 1100a

localized pair/type 5 119
localized atom-separated 1 1

aThese values may change as a function of the local rotations of the px
and py orbitals at each site. See the main text for details.

Table 4. List of Nonvanishing CSFs for the CAS(6,6) Wave
Function of N2 at Dissociation

a

natural orbitals localized orbitals

canonical ordering pair ordering pair ordering atom-separated

222000 202020 ududud uuuddd
220200 022020 uduudd
2udud0 200220 uuddud
u2du0d 020220 uududd
202020 202002 uuuddd
ud20ud 022002
022002 200202
2uudd0 020202
u2ud0d uudd20
uu20dd uu20dd
200220 20uudd
ud02ud 02uudd
020202 uu02dd
u0du2d uudd02
0udud2
002022
uu02dd
u0ud2d
0uudd2
000222

aNatural orbitals and localized orbitals are shown. Natural orbitals in
canonical ordering are sorted as (σπxπy, πy*πx* σ*). Natural orbitals in
pair ordering are sorted as (σσ*, πxπx*, πyπy*). Localized orbitals in
pair ordering are sorted as (px

Apx
B, py

Apy
B, pz

Apz
B). Localized orbitals in

atom-separated ordering are sorted as (px
Apy

Apz
A, px

Bpy
Bpz

B).

Table 5. Three Exemplary CSFs of the CAS(6,6) of N2 at
Dissociation in a Natural Orbital Basis

canonical order 1 2 3 4 5 6

orbital labels σ πx πy πy* πx* σ*

|1⟩ 2 2 2 0 0 0
|2⟩ 2 u d u d 0
|3⟩ 2 u u d d 0

pair order 1 2 3 4 5 6

orbital labels σ σ* πx πx* πy πy*

|1′⟩ 2 0 2 0 2 0
|2′⟩ 2 0 u d u d
|3′⟩ 2 0 u u d d
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⟨ ′| ̂ | ′⟩ = ⟨ | ̂ | ⟩

= [ | + | − | − | ]

H uudd H udud3 2 20 20
3

2
(45 54) (36 63) (46 64) (35 53)

goes to zero, as all of the involved integrals correspond to
identicaland weak(πxπy|πxπy) types.
Thus, the pair ordering scheme reduces the connectivity

within the Hilbert space (a) by zeroing coupling coefficients
that multiply strong integral contributions or (b) by
cancellation of equal integral contributions, due to the sign
structure of the resulting coupling coefficients. This reduced
connectivity within CSFs leads to more sparse wave functions.
It is important to highlight already at this point that, for

some orbital representations, integrals that multiply nonzero
coupling coefficients may become vanishingly small (numerical
zeroes). It is difficult in realistic cases to distinguish truly
vanishing elements (by conditions (a) and (b) above) from
terms that fall below a certain threshold and it will not be
attempted in the subsequent sections.
Localized Orbitals. Localization of the natural orbitals

produces atomic-orbital-like molecular orbitals. The pair
ordering scheme (px

Apx
B, py

Apy
B, pz

Apz
B) and the atom-separated

ordering scheme (px
Apy

Apz
A, px

Bpy
Bpz

B) have been considered.
In the pair ordering scheme, the wave function contains five

nonvanishing terms. A single-configurational (yet multi-
determinantal) wave function is obtained when the atom-
separated ordering is adopted. Localization schemes without
paying particular attention on the orbital ordering is not a
sufficient condition for optimal wave function compression.
The five nonvanishing CSFs, for the pair-ordered localized

orbitals, are graphically shown in Figure 2. They are
represented by all of the paths inside (and including) the
orange and green direct walks. These CSFs share a common
property: they all feature singly occupied orbitals. Thus, a GAS
wave function can be constructed, with each orbital in a
separate GAS subspace, and the spaces kept disconnected. The
graph of Figure 3 represents such a wave function. The single-
configurational character of the CI expansion in the localized
orbitals and atom-separated ordering completely reflects the
chemical nature of this system, that is, two noninteracting
nitrogen atoms, each in its ground state, 4S, antiferromagneti-
cally coupled to form a singlet spin-state compound. This
information is not promptly accessible when orbitals are
delocalized or localized and pair-ordered.
GAS Hamiltonian Matrix. The single-configurational

character of the wave function in atom-separated ordering
scheme is bound to the sparsity of the corresponding
Hamiltonian matrix. Only a matrix with vanishing off-diagonal
elements can provide a strictly single-configurational eigen-
vector. For simplicity and without loss of generality, only the
GAS6(6,6) Hamiltonian matrix is discussed. The GAS6(6,6)
wave function contains a total of five CSFs (listed in the third
column of Table 4). The GAS6(6,6) Hamiltonian matrices in
the localized orbital basis and using pair ordering and atom-
separated ordering are reported in Figure 4.

As an example, two off-diagonal elements, ⟨ududud|Ĥ|
uuuddd⟩ and ⟨uduudd|Ĥ|uuuddd⟩, are evaluated, and it is
shown why in the atom-separated ordering these terms vanish,
while in the pair ordering they do not.
General one-electron excitation operators, Êpq(p ≠ q),

applied to any of the CSFs of the GAS6(6,6) wave function
necessarily generate CSFs outside the GAS expansion (CSFs
with doubly occupied orbitals), and no contribution to the off-
diagonal elements of the GAS Hamiltonian matrix can arise
from them. Only exchange two-particle operators can
contribute to these elements (double spin-flips), namely

∑⟨ ′| ̂ | ⟩ = | ⟨ ′| ̂ ̂ | ⟩m H m pq qp m E E m
1
2

( )GAS
pq

pq qp
(11)

The resolution of identity (eq 10) is used for their evaluation.
The |m″⟩ configurations of the auxiliary space, which
simultaneously couple with |uuuddd⟩ and |ududud⟩ (or |
uduudd⟩), are found by applying conditions eqs 6 and 7. The
black thin lines of Figure 3 represent the CSFs of the auxiliary
space that simultaneously couple with |uuuddd⟩ and |ududud⟩,
and the resulting coupling coefficients are listed in Table 6.

The coupling terms with the auxiliary |u2ud0d⟩, |2uudd0⟩, |
0uudd2⟩, and |u0ud2d⟩ CSFs vanish as the corresponding (25|
52) and (16|61) integrals, which are multiplied, equal zero in
both orbital representations. As a result

⟨ | ̂ | ⟩ = [ | + | ]ududud H uuuddd
2

2
(26 62) (15 51)

(12)

and

⟨ | ̂ | ⟩

= [ | + | ] + [ | + | ]

uduudd H uuuddd
2

3
(26 62) (15 51)

2 2
3

(24 42) (35 53)

(13)

For the atom-separated ordering case, the two-electron
repulsion integrals of eqs 12 and 13 vanish, as the orbitals of
the pairs (2, 6), (1, 5), (2, 4), and (3, 5) are spatially separated.
In the pair ordering case, instead, the orbitals of these pairs
reside on the same atom and the two-electron repulsion
integrals do not vanish, leading to a nonvanishing Hamiltonian
matrix element.

3.2. Square N4 System at Dissociation. In this section,
the square N4 model compound at dissociation and in its
singlet spin state is discussed. A CAS(12,12) active space that

Figure 4. GAS6(6,6) Hamiltonian matrices on the basis of localized orbitals in pair ordering (left) and atom-separated ordering (right).

Table 6. Nonvanishing (pq|qp)⟨ududud|ÊpqÊqp|uuuddd⟩
Terms

term value

(26|62)⟨ududud|Ê62|u2udd0⟩⟨u2udd0|Ê26|uuuddd⟩ −√2/2(26|62)
(15|51)⟨ududud|Ê51|2uud0d⟩⟨2uud0d|Ê51|uuuddd⟩ −√2/2(15|51)
(26|62)⟨ududud|Ê26|u0udd2⟩⟨u0udd2|Ê62|uuuddd⟩ −√2/2(26|62)
(15|51)⟨ududud|Ê15|0uud2d⟩⟨0uud2d|Ê51|uuuddd⟩ −√2/2(15|51)
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consists of the three 2p orbitals on each atom and their
electrons is chosen. The corresponding CI expansion contains
a total of 226512 CSFs in the C1 point group symmetry.
Natural and localized orbitals are used as the basis for the CI
procedure, using canonical, type, and atom-separated order-
ings. The type ordering for the localized orbitals is the
following

(2p 2p 2p 2p )(2p 2p 2p 2p )(2p 2p 2p 2p )x x x x y y y y z z z z
A B C D A B C D A B C D

The number of nonvanishing terms for each orbital
representation is summarized in Table 3. As for the nitrogen
molecule, the most compact representation of the CI wave
function is obtained when localized orbitals in atom-separated
ordering are utilized. The ground state of this system is 4-fold
degenerate, and, in principle, any combination of the four
states is a solution. The two most compact solutions
correspond to the single |uuuuuudddddd⟩ CSF and the |
uuuddduuuddd⟩ CSF. These two CSFs correspond to the
extreme paths of Figure 5b. The other two degenerate states

are linear combinations of the other CSFs depicted in Figure
5b. Thus, in the atom-separated ordering, the worst
compression would contain 20 nonvanishing CSFs. This
number can be derived from a GAS12(12,12) wave function
with disconnected spaces and singly occupied orbitals only.
Under these conditions, the first three electrons, residing on
the first atom, are coupled to a quartet, the last three electrons
are coupled antiferromagnetically to the previous ones, locally
with parallel spins, while the intermediate six electrons couple
in all possible ways with parallel or antiparallel spin (see the
genealogical branching diagram of Figure 5b). In the type
ordering, the gray paths of Figure 5b do not vanish; instead,
they also contribute to the CI expansion, thus reducing the
sparsity.
3.3. N2 and CN− at Varying Bond Distances. In this

section, the compression that results from different orbital
representations and orderings will be discussed for N2 and
CN− dimers at various bond lengths. The noncentrosymmetric
CN− anion has been chosen to investigate the role of
molecular symmetry (N2 is centrosymmetric, while CN− is
not) and to show that the compression does not depend
strongly on symmetry considerations, which could result in
fortuitous zeroing of electron repulsion integrals, as might be
thought in view of the results earlier presented for the N2
system. However, it is important to note that CN− is
isoelectronic to N2, effectively making the CI space of the
two systems identical, while their electron repulsion integral
values differ.

For both systems, five bond lengths have been considered,
namely, 10, 3, 2, and 1.4 Å and the equilibrium bond distance,
Req, of 1.0975 Å for N2 and 1.1770 Å for CN−, respectively. A
basis set of atomic natural orbital (ANO-RCC) type has been
used for both C and N atoms, contracted to 3s2p functions. In
all cases, the 1s core orbitals have been kept frozen, while the
10 valence electrons have been correlated into the space of the
remaining 16 orbitals, CAS(10,16). In all cases, a space of
4504864 CSFs is built and the exact CASCI wave function is
deterministically computed.
Two orbital representations have been used for these tests,

(a) the natural orbitals, ordered by irreducible representations
(irreps) and within the irrep in the decreasing order of
occupation numbers (symmetry ordering), and (b) the Pipek−
Mezey localized orbitals. The localization procedure was
applied either only to the six valence 2p orbitals (valence
localized) or to the entire list of correlating orbitals (all
localized). Upon localization, two reordering schemes (as
discussed in Section 3.1) have been utilized, namely, the pair
ordering and the atom-separated ordering.
Results for the different geometries and orbital representa-

tions/orderings are summarized in Figures 6 and 7 for N2 and

CN−, respectively. For the CN− system, at 10 Å, natural
orbitals are already localized into the atoms, as opposite to the
other geometries where orbitals are delocalized between the
two centers. Thus, considering that we already have three
different schemes using localized orbitals and for consistency
with the other geometries, we have used the delocalized natural
orbitals obtained for CN− at a bond length of 3.0 Å to discuss
the sparsity of the wave function for the CN− at the more
stretched bond distance.
Two measures of sparsity of the wave functions are reported

in Figures 6 and 7, namely, the L1 and L4 norms of the CI
vector, defined as Ln = ∑i|ci|

n, where it is assumed that the
wave functions are normalized in the sense of L2 = 1. The L1

Figure 5. Genealogical branching diagram for the N4 model system at
dissociation in the localized orbital basis and considering only spin-
flips of singly occupied orbitals with type ordering (a) and atom-
separated ordering (b).

Figure 6. L1 norm, L4 norm, and the percentage reference weight for
the CAS(10,16) CI expansion of the N2 system at various bond
distances, orbital representations, and ordering schemes. Small L1
norm and large L4 norm values are associated with orbital
transformations and reordering schemes that lead to most compact
wave functions.
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norm can range from a value of 1 (single-configurational wave
function) to NCSF , NCSF being the size of the wave function
(highly multiconfigurational wave function with equal
coefficients in the entire Hilbert space). A wave function
with many small (but nonvanishing) components can have a
large L1 norm, and therefore the L1 is quite sensitive to parts of
the wave function with small but non-negligible amplitudes. In
the context of FCIQMC, the L1 norm is related to the number
of walkers required to instantaneously describe the wave
function. The L4 norm (also called the participation ratio in
localization theory) provides a different measure of the
sparsity. Here, the maximal value is 1 and corresponds to a
wave function with only one nonzero component (i.e., fully
localized), while a small L4 norm indicates that the wave
function is spread over several (potentially many) components.
The components of a CI expansion below roughly 10−3 make a
numerically negligible contribution to the L4 norm, so L4

−1 is a
measure of the number of substantially nonzero components
present in a wave function.
Both systems behave quite similarly in terms of the sparsity

and localization properties of the wave functions, with
differences between the two molecules observed only in the
intermediate stretching regime. At equilibrium and near-
equilibrium geometries, the symmetry-adapted orbitals lead
to the sparsest (most localized) description of the wave
function, with L4 values of 0.8 for both N2 and CN−. On the
contrary, the L4 norm is only 0.04−0.08 for the localized basis.
At 2.0 Å, N2 is clearly more compactly represented by the
localized orbitals in atom-separated ordering (L4 = 0.48,
compared to 0.16 for the symmetry-ordered orbitals). By
contrast, the CI wave function of CN− at this geometry is more
localized in the symmetry-adapted basis L4 = 0.37 instead of
0.16. However, for both N2 and CN−, the L1 norm for the
various orbital representations investigated is very similar at a

bond distance of 2.0 Å, making any judgment on wave function
compression far from convincing.
At yet more stretched geometries (3.0 Å and beyond), the

localized and atom-separated orderings lead to a more compact
wave function for both molecules (with L4 > 0.9, compared to
L4 ∼ 0.05 in the symmetry-adapted basis). It is also striking
that the equilibrium geometries are always less sparse than the
stretched (near-dissociated) geometries, when each is ex-
pressed in their optimal orbital representation. This observa-
tion shows that describing correlation at the equilibrium
geometries of molecules is actually harder compared to that of
the stretched geometries. This arises thanks to the compact-
ness that the GUGA formulation allows, for the optimally
ordered representations of the stretched molecules.
In Figures 6 and 7, the (percentage) weight of the dominant

CSF is also reported for each orbital representation and
geometry. For a given system and geometry, this weight may
drastically differ depending on the orbital representation, being
close to 1 for some representations and close to zero in others.
Sampling a wave function dominated by a single CSF is much
easier in FCIQMC compared to wave functions in which
multiple CSFs are important. This is partly because the
presence of a single dominant configuration leads to greatly
reduced sign problems (there being fewer important CSFs in
which the signs are determined through a delicate cancellation
of oppositely spawned walkers) and partly because the
stochastic noise of the projected energy is generally reduced
in such systems (the number of walkers on the reference
appears in the denominator of the projected energy
expression). For these two reasons, any representation that
leads to a single-configurational wave function is to be
preferred in FCIQMC.
As will be demonstrated in Section 3.5, there are realistic

systems possessing multiple open-shell orbitals, such as
polynuclear transition-metal (TM) catalysts, which behave
similarly in terms of the induced sparsity in the wave function,
to the small dimers (N2 and CN−) at dissociation. This makes
the strategy presented here a powerful tool for wave function
compression for cases of practical interest, beyond pedagogical
model systems.

3.4. Chromium Dimer, CAS(24,48). Small active spaces
have been considered for the N2 and N4 systems, with wave
functions that can be optimized by conventional methods
(Davidson in its direct-CI formalism). GAS restrictions, similar
to the nitrogen cases, discussed in Sections 3.1 and 3.2, could
also be applied to the valence orbitals of the chromium dimer
at dissociation on a localized basis. Consequently, the valence-
only active space for the chromium dimer at dissociation,
CAS(12,12), can be related to the CAS(6,6) of the nitrogen
molecule, with the two chromium atoms in their high-spin, 7S,
ground state and antiferromagnetically coupled. This CAS-
(12,12) wave function would be single configurational if
represented by localized orbitals in atom-separated ordering
and will not be discussed further.
Instead, we are interested in a considerably larger active

space, CAS(24,48) (see ref 17 for details on the active space).
Conventional CI optimization procedures are infeasible, and
the spin-adapted implementation of the FCIQMC algorithm
has been utilized. In the CAS(24,48) case, doubly occupied,
singly occupied, and empty orbitals simultaneously occur in
the wave function, and a mixture of static and dynamic
correlations characterize this wave function, independently of
the orbital representation chosen. Two geometries are

Figure 7. L1 norm, L4 norm, and the percentage reference weight for
the CAS(10,16) CI expansion of the CN− system at various bond
distances, orbital representations, and ordering schemes. Small L1
norm and large L4 norm values are associated with orbital
transformations and reordering schemes that lead to most compact
wave functions.
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discussed, one at the dissociation limit and one at a bond
distance of 2.4 Åthe “shoulder region” of the potential
energy curvewhere a more complex wave function is to be
expected.
Dissociation Limit. Figure 8 shows four spin-adapted

FCIQMC calculations using (a) delocalized orbitals in

canonical ordering, (b) delocalized orbitals in pair ordering,
(c) localized orbitals in pair ordering, and (d) localized orbitals
in atom-separated ordering. For case (b), pair ordering was
adopted for all orbitals, and orbitals have been reordered such
that orbitals with p and s characters (any shell) are in adjacent
positions. In case (d), orbitals have been sorted as

(3p4p5p4f4d5s3d4s) (4s3d5s4d4f5p4p3p)A B (14)

An unstable spin-adapted FCIQMC dynamics is observed for
the delocalized orbitals in canonical ordering even at a
population of 20 × 106 walkers (20M). The wave function is
highly multiconfigurational in this orbital representation, and
walkers are evenly distributed among the many equivalent
configurations. As a consequence, the occupation of the
reference CSF drops to zero, which, in turn, causes the energy
estimate to diverge. This result is to be compared to the
findings summarized in Figure 6 for the simple N2 system. Also
for the N2 dimer at dissociation (bond distance of 10.0 Å), the
weight of the dominant configuration is very small, only 6%.
The pair ordering increases the weight of the reference
configuration and increases sparsity in the CI wave function.
These two effects are sufficient to stabilize the FCIQMC
dynamics. Yet, with a population of 20 × 106 walkers (20M),
the energy is not converged.
Localization schemes greatly improve the dynamics, and the

atom-separated reordering has a major effect on the sparsity of
the wave function, in line with the findings reported for the
simpler N2 system. Already with a population of 1 × 106

walkers (1M), a satisfactory dynamics is observed with a
projected energy estimate of 12 kcal/mol lower than the case
with localized orbitals in pair ordering and 20 kcal/mol lower

than the energy estimate obtained with delocalized orbitals and
with higher walker population (20M). Furthermore, increasing
the walker population from 1 × 106 to 50 × 106 walkers causes
only a marginal lowering of the projected energy, by less than 1
milliHartree, and projected energy estimates for 10 × 106

(10M) and 50 × 106 (50M) walkers are, in practice, identical,
suggesting that convergence with respect to walker population
has been reached. The difference of 12 kcal/mol between
localized/pair-ordered and localized/atom-separated orbital
bases clearly demonstrates that the convergence pattern of
the spin-adapted FCIQMC with respect to the walker number
(initiator error) changes for different orbital representations
and orderings, being more advantageous for the orbital
ordering that compresses the wave function the most.

Intermediate Bond Distance. Orbital representation has
also a significant impact on wave function sparsity at an
intermediate bond distance of 2.4 Å (Figure 9). As for the

asymptotic case, an unstable dynamics is observed when using
delocalized orbitals in canonical ordering and populations up
to 20 × 106 walkers (20M). The dynamics stabilizes when
delocalized orbitals are ordered in bonding and antibonding
pairs and further improves when localized orbitals in atom-
separated ordering are utilized, as already observed for the
dimer at dissociation. The latter representation leads to an
FCIQMC dynamics that, already at 5 × 106 walker population
(5M), is 18 kcal/mol lower than the 20M walker simulation
with delocalized and pair-ordered orbitals.
Analogously to the asymptotic case, the different con-

vergence rate is entirely attributed to the initiator error, greatly
reduced for the localized/atom-separated orbitals, thus leading
to lower energy. For the localized/atom-separated representa-
tion, a population of 5 × 106 walkers (5M) is close to
convergence. Increasing the population to 50 × 106 walkers
(50M) lowers the energy by 1.5 kcal/mol. Increasing further to
100 × 106 walkers (100M) has a marginal effect of 0.3 kcal/
mol (see the inset of Figure 9). However, while at dissociation
a negligible energy difference was observed for the spin-
adapted FCIQMC dynamics at 10 × 106 and 50 × 106 walkers,
at the shoulder region the two dynamics still differ by 1 kcal/
mol. This result suggests that the localized/orbital-separated

Figure 8. Spin-adapted FCIQMC dynamics for the chromium dimer
at the dissociation limit, using a (24, 48) active space for different
orbital representations and orderings. The inset shows the
convergence using localized orbitals ordered “atom-separated” with
respect to the total walker number. Within the localized orbitals in
atom-separated ordering, the projected energy estimates at 10 × 106

(10M) and 50 × 106 (50M) walkers are, in practice, identical,
indicating that convergence is reached.

Figure 9. Comparing the spin-adapted FCIQMC dynamics of the
chromium dimer at a bond distance of 2.4 Å, using the (24, 48) active
space, for different orbital representations and orderings. The inset
shows the convergence with respect to the total walker number for the
localized orbitals in atom-separated ordering.
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representation leads to the most compact representation of the
wave function as already observed for the asymptotic limit.
However, the slower convergence with respect to the walker
population, as compared to the stretched geometry, is a clear
indication that the wave function at this geometry is already
more dense.
3.5. [Fe2S2]

2− Model System. In this section, we show
that orbital reordering can lead to higher sparsity in spin-
adapted CI wave functions also in practical cases, where no
obvious simplifications of the wave function can easily be
predicted. An active space of 22 electrons and 26 orbitals is
considered for a [Fe2

(III)S2]
2− model system (Figure 10;

coordinates available in the Supporting Information),72 which
consists of the 20 valence, 3d, and double-shell, d′, orbitals on
the metal centers, and the 6 3p orbitals of the bridging sulfur
atoms. Formally, the orbitals of the bridging sulfur atoms are
doubly occupied (12 electrons, S2−), and the iron atoms are in
their Fe(III) oxidation state (d5 configuration, 10 electrons),
for a total of 22 electrons. The low-spin state (singlet) with
antiferromagnetically coupled spins at the metal centers is
characterized by a highly correlated wave function (details of
the wave function go beyond the scope of the present work).
Spin-adapted FCIQMC wave function optimizations have

been performed on the basis of the stochastic-CASSCF-
(22,26)36 optimized natural orbitals (natural orbital coef-
ficients in symmetry order and Molcas54,55 format are available
in the Supporting Information). Delocalized and localized
orbitals are discussed for this system.
Similar to the Cr2 case, the spin-adapted FCIQMC dynamics

is highly unstable when the delocalized natural orbitals in
canonical order are utilized. This behavior is observed for any
walker population up to 20 × 106 walkers (20M) and does not
arise in FCIQMC dynamics in the Slater determinant basis.
The spin-adapted FCIQMC dynamics becomes stable when a
qualitative pair ordering scheme for the valence Fe 3d and S 3p
orbitals is utilized (orbital ordering given in Supporting
Information). The pair reordering in this case is qualitative
due to the mixing of the sulfur atomic orbitals into the metal-
centered molecular orbitals.
We now turn our attention to the construction of the

localized orbitals. Within the active space, CAS(22,26), a
CASSCF(10,10) optimization has been performed, keeping
the inactive and virtual orbitals of the CAS(22,26) frozen to
their original shape. This procedure separates the open-shell 3d
orbitals from the ligand orbitals. Next, the Pipek−Mezey
localization procedure has been used only for the 10 open-shell

orbitals, leaving the molecular orbitals centered on the bridging
sulfur atoms and the double-shell orbitals delocalized. The
mixed localized/delocalized orbitals and their relative ordering
are available in the Supporting Information.
In Figure 11, the horizontal violet line corresponds to the

converged stochastic-CASSCF(22,26) energy, using 2 × 109

walkers (2B), the Slater determinant basis, and delocalized
canonical orbitals. Two important features emerge from Figure
11, (i) within the localized atom-separated orbital representa-
tion, the spin-adapted FCIQMC dynamics converges faster
than the Slater determinant counterpart with respect to the
walker population, and (ii) within the Slater-determinant-
based FCIQMC dynamics, the delocalized basis leads to fast
convergence with respect to the number of walkers. In the
localized basis already for a population of 100 × 106 walkers,
the spin-adapted FCIQMC projected energy estimate is ∼2
mHartree lower than the Slater-determinant-based FCIQMC
projected energy estimate and only ∼0.5 mHartree above the
reference value. The faster convergence of the spin-adapted
formalism is to be expected considering that the spin re-
coupling is implicitly accounted by GUGA, while, in Slater
determinant basis, spin re-coupling has to be handled explicitly
by the FCIQMC dynamics. The Slater determinant FCIQMC
dynamics, however, converges faster when delocalized and
pair-ordered orbitals are utilized. In this representation, the
leading determinants of the CI expansion have a relatively low
number of singly occupied orbitals (also referred to as seniority
in the literature), ranging from 0 to 2, greatly reducing the
explicit spin re-coupling with respect to the localized case. It is
the reduction of spin recombinations that favor the delocalized
orbital representation when utilizing Slater-determinant-based
FCIQMC dynamics.

4. CONCLUSIONS AND OUTLOOK
We have demonstrated that the sparsity of multiconfigurational
wave functions expanded in CSFs depends on the orbital
ordering, as well as orbital representation, the former feature

Figure 10. Structure of the [Fe2
(III)S2]

2− model system here
investigated.

Figure 11. Spin-adapted and Slater determinant FCIQMC con-
vergences with respect to walker population for the [Fe2S2]

2− cluster,
using a CAS(22,26) active space. The horizontal line corresponds to
the converged stochastic-CASSCF(22,26) wave function (in Slater
determinant basis), using 2 × 109 walkers, and lies at −5092.9513 ±
0.0002 au. The mauve band indicates the corresponding standard
deviation. The green triangles correspond to spin-adapted FCIQMC
dynamics for the localized/atom-separated orbitals. The orange
squares and the red diamonds correspond to FCIQMC dynamics in
Slater determinant basis and using delocalized/pair-ordered and
localized orbitals, respectively.
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being unique to CSF expansions. Orbital transformations can
be applied that greatly reduce the number of nonvanishing CI
coefficients of multiconfigurational wave functions. Bonding
and antibonding pair orderings for delocalized orbitals and
atom-separated ordering schemes for localized orbitals
maximally increase the sparsity of spin-adapted wave functions
for the examples discussed in this work. The increased sparsity
that follows from the orbital reordering is beneficial for
methods that approximate FCI wave functions, such as
FCIQMC. This procedure improves the convergence of the
spin-adapted FCIQMC algorithm and, in certain difficult cases,
is found to be the only viable way to stable dynamics. The
protocol is general and can be applied to molecular systems of
practical interest. A simple reordering of the CAS(22,26)
natural orbitals of a [Fe2S2]

2− model system has been
discussed.
The main aim of this work is to show how reordering

schemes within a chosen orbital representation (delocalized or
localized) may affect large CI expansion sparsity. Our results
indicate that, for complex molecular systems, a mixed
delocalized/localized orbital representation is preferable,
using a delocalized and pair-ordered representation for orbitals
that describe covalent bonds and a localized and atom-
separated representation for singly occupied orbitals. Local-
ization of covalent bonds can easily lead to unnecessary
complications at the level of the wave function, with new terms
appearing to account for the orbital mixing. On the other hand,
a localized representation for singly occupied orbitals
guarantees the highest sparsity for antiferromagnetically
coupled polynuclear spin systems, removing the unnecessary
entanglement of electrons that follows from using delocalized
orbitals for unpaired electrons (as already shown for the N2
system).
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