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Abstract
The advent of quantitative computed tomography (QCT) and artificial intelligence (AI) using high-
resolution computed tomography data has revolutionised the way interstitial diseases are studied. These
quantitative methods provide more accurate and precise results compared to prior semiquantitative
methods, which were limited by human error such as interobserver disagreement or low reproducibility.
The integration of QCT and AI and the development of digital biomarkers has facilitated not only
diagnosis but also prognostication and prediction of disease behaviour, not just in idiopathic pulmonary
fibrosis in which they were initially studied, but also in other fibrotic lung diseases. These tools provide
reproducible, objective prognostic information which may facilitate clinical decision-making. However,
despite the benefits of QCT and AI, there are still obstacles that need to be addressed. Important issues
include optimal data management, data sharing and maintenance of data privacy. In addition, the
development of explainable AI will be essential to develop trust within the medical community and
facilitate implementation in routine clinical practice.

Background
Interstitial lung disease (ILD) is a group of disorders characterised by lung tissue inflammation and/or
fibrosis. Overall, they represent complex clinical entities with nonspecific pulmonary symptoms and
functional findings. Patients present with progressive dyspnoea, dry cough and restrictive patterns on
pulmonary function tests. ILD is a broad term that encompasses many different conditions in which
inflammation or fibrosis of interstitium is found in variable proportions affecting disease behaviour and
response to treatment. At one end of the ILD spectrum is idiopathic pulmonary fibrosis (IPF), a fibrotic
disorder with an inexorably progressive course and poor prognosis (3–5 years) [1, 2]. However, there are
other ILDs that are mainly characterised by inflammation and have better outcomes with or without
treatment, and higher survival rates [3–6]. Although there has been significant progress in treatment of
these conditions in the past decade, in an addition to IPF, are other forms of pulmonary fibrosis which
progress regardless of treatment and demonstrate an IPF-like disease course. These non-IPF progressive
forms of fibrosis have recently been collectively named “progressive pulmonary fibrosis” [7–10].
High-resolution computed tomography (HRCT) of the chest is central to diagnosis in patients with
suspected fibrotic lung disease by providing detailed cross-sectional images of lungs and evaluating
disease distribution in three dimensions. In addition, HRCT may play a prognostic role in fibrotic lung
disease, and given that it is routinely performed in most patients with suspected fibrotic lung disease, is an
attractive target for biomarker research in these diseases [7, 11].

At the most basic level, a typical or probable usual interstitial pneumonia (UIP) pattern (so-called UIP-like
disease) is associated with a poor prognosis based on recent antifibrotic therapy trials in IPF and
progressive non-IPF disease [8, 12–16]. In addition to the HRCT phenotype, specific HRCT patterns can

Copyright ©The authors 2023

This version is distributed under
the terms of the Creative
Commons Attribution Non-
Commercial Licence 4.0. For
commercial reproduction rights
and permissions contact
permissions@ersnet.org

Received: 8 March 2023
Accepted: 3 May 2023

https://doi.org/10.1183/23120541.00145-2023 ERJ Open Res 2023; 9: 00145-2023

ERJ OPEN RESEARCH
REVIEW

F.N. FELDER AND S.L.F. WALSH

mailto:ffelder@ic.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1183/23120541.00145-2023&domain=pdf&date_stamp=
https://bit.ly/3M9H8Nb
https://bit.ly/3M9H8Nb
https://doi.org/10.1183/23120541.00145-2023
https://doi.org/10.1183/23120541.00145-2023
mailto:permissions@ersnet.org


be visually quantified (known as semiquantitative evaluation) and used as prognostic markers.
Honeycombing, a cardinal sign of fibrosis on HRCT and a key pattern in the identification of UIP, is
defined as clustered cystic air spaces, cysts of comparable diameters and cyst diameters typically <10 mm
surrounded by well-defined walls [17]. When scored for extent visually, either alone or in combination
with the extent of reticulation (sometimes called a “fibrosis score”), honeycombing has been linked
consistently to mortality idiopathic fibrotic lung disease (IPF and idiopathic nonspecific interstitial
pneumonia), connective tissue disease-related fibrotic lung disease (CTD-FLD) and fibrotic
hypersensitivity pneumonitis (FHP) over the past two decades [18–23]. In one study involving 315 patients
with IPF enrolled in a clinical trial of IFN-γ1b, LYNCH et al. [23] reported that the overall extent of fibrosis,
defined as the extent of reticular and honeycombing patterns combined, was the strongest predictor of
mortality. It is noteworthy that in this study, HRCT was a better predictor of mortality than pulmonary
function in IPF. The severity of traction bronchiectasis is also a strong predictor of mortality in multiple
fibrotic lung disease subsets [19, 20, 22, 24] and may be a sensitive surrogate marker of disease
progression in IPF [25]. Most recently, changes in aortosternal distance and fissural displacement measured
manually predict outcomes in patients with IPF [26]. In contrast, the presence of certain patterns may be
associated with a more favourable outcome. In FHP, the presence of mosaic attenuation and air trapping
may be associated with a more favourable survival [27]. Since disease severity based on HRCT fibrosis
extent and lung function decline have been reported as independent predictors of outcome, these variables
have been combined to create staging systems in IPF, systemic sclerosis related ILD and fibrotic
sarcoidosis [23, 28–31].

Despite this large body of literature reporting consistent findings, semiquantitative evaluation of HRCT is
associated with a number of well-documented limitations: it is 1) liable to significant interobserver
variability; 2) poorly reproducible; 3) insensitive to subtle changes in disease extent over short follow-up
periods; 4) time-consuming; and 5) requires domain expertise, which may not be available [7, 11, 32, 33].
This provides the rationale for applying computer-based image analysis to HRCT for both diagnostic
support as well as reliable disease quantification, also known as quantitative computed tomography (QCT)
(table 1).

QCT
Early studies
The earliest move toward QCT in pulmonary fibrosis used simple measures of lung density based on
density masks or whole-lung HRCT histogram analysis [11]. Since the computed tomography (CT)
histogram provides a graphical representation of lung density per voxel in a CT image, it allows the mean

TABLE 1 The tools of quantitative computed tomography (QCT) and deep learning

QCT The computer is trained to identify and quantify patterns in HRCT. Its development requires “function
engineering”, a human operator

CALIPER Uses volumetric local histogram and morphological analysis to characterise and quantify different HRCT patterns.
Including the novel VRS variable, which has been shown to be an independent predictor of mortality and a
potential tool to identify novel outcome-based radiologic phenotypes in various lung diseases

Adaptive multiple features
method

Identifies and quantifies HRCT patterns based on textural analysis (normal lung, GGO, emphysema, honeycombing
and nodules)

Quantitative lung fibrosis Quantifies fibrotic reticular patterns. A total ILD extent composite of quantitative ILD is the sum of quantitative
lung fibrosis, honeycombing and GGO patterns. It can provide complementary measures of disease progression
to conventional lung physiology

Functional respiratory
imaging

Combines low-dose HRCT with computer-based flow simulations. Functional respiratory imaging enables precise
quantification of lung structure and function, with low variability for airway volumes, blood vessel volumes and
airway resistances. In addition, it can evaluate airway volume, making it useful for measuring the severity of
traction bronchiectasis, which is a predictor of mortality

Deep learning Has the ability to autonomously identify patterns in high-dimensional data features (for example, HRCT scans). It
has no human operator

SOFIA The algorithm is trained to identify UIP-like features on HRCT. It provides a “UIP probability” score. It can predict
disease progression and mortality in patients with suspected IPF

Data-driven texture analysis Classifies image patches based on the presence of fibrosis and quantifies fibrosis extent on HRCT. It can stratify
patients based on fibrosis extent

CALIPER: Computer-Aided Lung Informatics for Pathology Evaluation and Rating; SOFIA: Systematic Objective Fibrotic Imaging Analysis Algorithm;
HRCT: high-resolution computed tomography; VRS: vascular-related structures; GGO: ground-glass opacities; ILD: interstitial lung disease; UIP: usual
interstitial pneumonia; IPF: idiopathic pulmonary fibrosis.
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lung attenuation, skewness and kurtosis to be calculated. Kurtosis describes the sharpness of the peak of
the histogram, whereas skewness is a measure of the lack of symmetry of the CT histogram. Lung fibrosis
increases the mean lung attenuation and reduces the kurtosis and leftward skewness of the histogram;
therefore, these metrics may be used as surrogates of fibrosis extent on CT. In 144 IPF patients, BEST et al.
[34] reported a correlation between kurtosis and physiological decline and mortality. A key difficulty with
this approach is that it cannot discriminate between different HRCT patterns commonly seen in patients
with IPF. ASH et al. [35] described local histogram-based objective quantification of different radiologic
patterns of disease in 46 patients with IPF and found strong correlations between visual and objective
histogram-based scores for disease extent as well as a poor prognosis in patients with higher fibrosis and
honeycombing extent scores.

Computer-Aided Lung Informatics for Pathology Evaluation and Rating
Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) has been used to
predict survival and future physiological decline in patients with IPF, using a computer vision based
technique based on volumetric local histogram and morphological analysis to characterise and quantify
different HRCT patterns [11]. Furthermore, CALIPER extracts the pulmonary vessels and provides an
estimation of the vessel volume, reported as a novel “vascular-related structures” (VRS) variable. In a
landmark study in 283 patients with IPF, JACOB et al. [36] demonstrated on multivariable survival analysis,
which included CALIPER and semiquantitative HRCT pattern scores, that only the computer-based
variables independently predicted mortality, with VRS being the strongest predictor among them. In a
subsequent study, published in 2018 [37], the same group used a VRS threshold for cohort enrichment in
an IPF drug trial setting to reduce the IPF drug trial population size by 25%. Importantly, the VRS score
identified a subset of patients in whom antifibrotic therapy reduced forced vital capacity (FVC) decline. It
is important to understand from these data that CALIPER was not originally designed to evaluate the
pulmonary vessels; this variable was generated as a by-product of the software image pre-processing
pipeline, which extracts the lung parenchyma from the airways and vessels. This finding is early evidence
that computer-based image analysis provides an opportunity to identify novel HRCT biomarkers, including
those that may not be accessible visually. CALIPER has also been applied to CTD-FLD and FHP. In a
cohort of 203 all-comers CTD-FLD, JACOB et al. [38] demonstrated that VRS was an independent predictor
of mortality across all CTD-FLD subgroups. In addition, the authors stratified patients into three
prognostically distinct groups based on CALIPER-related HRCT variables, demonstrating the potential of
this technology to identify novel outcome-based radiologic phenotypes in CTD. Likewise, in a cohort of
135 patients with a diagnosis of FHP, the same group [39] demonstrated stronger associations between
restrictive functional indices and CALIPER-defined total ILD extent than semiquantitative scores. In a
subsequent study, the authors applied a VRS threshold to identify a subgroup of patients with IPF-like
disease behaviour among 103 patients with FHP. Similar results have been reported applying CALIPER to
patients with unclassifiable fibrotic lung disease [40].

Adaptive multiple features method
The adaptive multiple features method (AMFM) identifies and quantifies HRCT patterns based on textural
analysis, including normal lung, ground-glass opacification (GGO), emphysema, honeycombing and
nodules [11]. Initially, this method was used to differentiate normal lung from the lung with emphysema.
In the late 1990s, UPPALURI et al. [41] compared AMFM with mean lung density (MLD) and
histogram-based analysis and demonstrated high precision for the AMFM method in discriminating
between normal and emphysematous lung. Later studies extended these experiments to patients with IPF
and sarcoidosis, comparing the AMFM with these two methods to objectively characterise four groups of
subjects: normal lung, emphysema, IPF and sarcoidosis. In all four groups, the AMFM method
demonstrated superiority over MLD and histogram-based analysis [42]. In 2017, SALISBURY et al. [43]
demonstrated in 199 IPF patients enrolled in the Prednisone, Azathioprine, and N-Acetylcysteine: a Study
that Evaluates Response in IPF (PANTHER-IPF) treatment trial, that baseline fibrosis (measured as
ground-glass reticular opacities (GGR)) measured by AMFM predicts disease progression. Interestingly,
changes in GGR only weakly correlated with FVC changes, suggesting that a combination of FVC change
and GGR change, as measured by the AMFM software, may provide improved prognostic signal over
either variable in isolation (figure 1).

Quantitative lung fibrosis
Quantitative lung fibrosis (QLF) quantifies fibrotic reticular patterns [11]. A total ILD extent composite of
quantitative interstitial lung disease (QILD) is the sum of QLF, honeycombing and GGO patterns. QLF has
been shown to correlate well with lung function measurement in ILD patients and has been used to
evaluate disease progression in IPF and scleroderma-related ILD treatment trials [44]. In a study of
cyclophosphamide versus mycophenolate in 142 patients with scleroderma related ILD, GOLDIN et al. [45]

https://doi.org/10.1183/23120541.00145-2023 3

ERJ OPEN RESEARCH REVIEW | F.N. FELDER AND S.L.F. WALSH



found that QLF scores did not change in the treatment arms of the study, while QILD scores did show a
small improvement in both treatment arms. The incorporation of QLF/QILD scores in secondary outcomes
of clinical trials demonstrates the utility of computer-based imaging analysis tools for providing
complementary measures of disease progression to conventional lung physiology (i.e. FVC) [46, 47]
(figure 2).

Functional respiratory imaging
Functional respiratory imaging (FRI) combines low-dose HRCT with computer-based flow simulations.
Respiratory gating using a handheld spirometer is performed during the acquisition to ensure repeatable
lung volumes (figure 3). FRI allows regional quantification of lung structure and function and shows low

Low GGRa)

High GGRb)

Normal

Bronchovascular bundles

Honeycombing

Ground glass

GGR

FIGURE 1 Adaptive multiple features method. a) A patient with low ground-glass reticular (GGR) texture and b) a
patient with high GGR. Courtesy of Eric Hoffman (University of Iowa Caver College of Medicine, Iowa City, IA, USA).
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variability (1–3%) for airway volumes, blood vessel volumes and airway resistances [48]. In addition, FRI
can assess airway volume and therefore can quantify the severity of traction bronchiectasis, a potent
predictor of mortality based on several studies that applied semiquantitative airway assessments. Studies in

FIGURE 3 Functional respiratory imaging. Visualisation and quantification of airway volumes (blue), lobe
volume, fibrosis (green), emphysema (black) and blood vessel volume (red). Reproduced with permission from
Fluidda (Kontich, Belgium).

a) b)

FIGURE 2 Coronal and axial computed tomography (CT) images with quantitative lung fibrosis (QLF)
characterisation. a) Coronal CT with the classification of QLF (left) and original coronal CT image (right).
b) Annotated axial high-resolution CT images with the classification of QLF (blue and red) and the
corresponding original images. In whole lung, QLF extent is 10.6% and QLF score is 393 mL in volume. QLF
scores in the right and left lungs are 11.5% and 9.5%, respectively. QLF scores were 20.1% and 19.7% in the
right and left lower lobes (142 mL and 105 mL), respectively. The QLF score quantifies the extent and
characterises the distribution of pulmonary fibrosis as predominantly lower lung disease. Courtesy of Grace
Hyun J. Kim and Jonathan G. Goldin (University of California (UCLA), Los Angeles, CA, USA).
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IPF show that disease progression, as determined by FVC decline, is associated with a reduction in
CT-measured lung volumes (R2=0.80, p<0.001) and an increase in relative airway volumes (R2=0.29,
p<0.001). Changes in FVC are correlated with changes in lung volumes (R2=0.18, p<0.001) and changes
in relative airway calibre (R2=0.15, p<0.001) [49]. Lobe and airway volumes can be significantly affected
by IPF, whereas conventional measures such as FVC remain within the normal (healthy) range, while FRI
metrics capture early changes. Additional studies are needed to determine minimal clinically important
differences.

Deep learning
A key drawback of many of the QCT tools described is that their development requires some degree of
“feature engineering”: the computer is trained to identify and quantify specific HRCT patterns by human
operators. This means that, in principle, all the limitations associated with visual HRCT assessment are
incorporated into the system. A second significant issue is that the features upon which the computer is
trained need to be known a priori, negating the possibility that novel, visually inaccessible HRCT
biomarkers might be discovered. Both of these challenges can be overcome if the computer can learn to
extract the most predictive features from the images in an autonomous fashion. This is the key advantage
of deep learning.

Deep learning is a form of machine learning that has the capacity to autonomously identify patterns in
high-dimensional data (e.g. HRCT scans) and map these patterns to end-points such as diagnosis and
future disease progression [7, 50–52]. Deep learning is very efficient at identifying subtle features within
images that are important while at the same time ignoring irrelevant variations between images including
those introduced by different HRCT techniques. The key advantage of deep learning over many existing
QCT techniques is that it simultaneously optimises feature extraction and classification during algorithm
training; a priori knowledge of what image features to quantify for a given classification problem is not
necessary. More concretely, deep learning bypasses the need to train computers on specific patterns; the
computer learns itself, during training, which patterns on HRCT are most important for predicting a given
task. In addition, this approach has the added advantage of avoiding all the limitations associated with
visual HRCT assessment. Perhaps most importantly, since the computer learns autonomously without
explicit programming, an opportunity is created for the identification of novel HRCT biomarkers, including
those that are not readily identified visually. In respiratory medicine, deep learning has been applied
successfully to lung cancer detection, predicting mortality in patients with COPD and classifying fibrotic
lung disease on CT scans [7, 50, 53].

Applications of deep learning to fibrotic lung disease
In principle, deep learning can be applied to a number of unresolved research questions related to imaging
in fibrotic lung disease. Two important unanswered questions relate to 1) predicting progressive fibrotic
lung disease using baseline imaging and clinical data; and 2) early detection of clinically significant
fibrotic lung disease.

Identifying patients with progressive fibrotic lung disease
The reliable identification of progressive fibrotic lung disease using baseline imaging and clinical data is of
immediate clinical importance [8–10, 54–58 ]. Since antifibrotic therapy is currently only licensed in those
patients who demonstrate progression (i.e. progressive pulmonary fibrosis), patients must first undergo a
period of progression before they qualify for treatment, meaning that an opportunity to initiate early
treatment and reduce functional decline is missed. Based on published data from recent clinical trials, UIP
and probable UIP (UIP-like disease) in general exhibit progressive disease behaviour, but the progressive
disease is not confined to patients with UIP-like disease; currently, we cannot accurately predict
progression using baseline HRCT data in this non-UIP group [8, 59].

Recently, a deep learning algorithm, Systematic Objective Fibrotic Imaging Analysis Algorithm (SOFIA),
trained to identify UIP-like features on HRCT and provide a “UIP probability” score was used to predict
progression in a cohort of 504 suspected IPF patients, drawn from the Australian IPF Registry [7]. This
novel HRCT biomarker, the UIP probability score, was predictive of mortality, independently of disease
severity (when expressed as a total fibrosis score on HRCT, or lung function). Furthermore, on subgroup
analysis in patients whose HRCT was considered indeterminate (i.e. the HRCT was considered unhelpful
based on visual assessment by two expert thoracic radiologists), the UIP probability score was again a
strong predictor of mortality (hazard ratio (HR) 1.73, 95% CI 1.40–2.14; p<0.0001). Finally, in patients
who underwent surgical lung biopsy (n=86), the UIP probability score predicted mortality independently of
guideline-based histologic diagnosis and total fibrosis extent, with both these latter variables failing to
reach statistical significance (HR 1.75, 95% CI 1.37–2.25; p<0.0001). It is important to point out that
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radiologists can also provide a UIP probability score, and this outperforms guideline-based HRCT
diagnosis in survival analysis [7]. However, in this setting, radiologists tend to default to the extremes of
this scale (i.e. they tend to assign a UIP probability of 0% or 100%), whereas SOFIA provides a granular
probability score as a continuous variable, regardless of the HRCT pattern; subjective biases to which
human assessment are vulnerable do not exist (figure 4).

It is important to highlight that further work is needed to decode the outputs of SOFIA, particularly in
cases where there is significant disagreement between the algorithm and radiologists. More generally, a key
challenge in deep learning is that the complexity that makes neural networks so efficient at identifying
patterns in large datasets can also make them difficult to interpret. Neural networks are often regarded as
“black boxes”, which is viewed as an obstacle to their implementation. Explainability is an increasingly
important component of algorithm development, particularly when algorithmic decision-making is based
on features contained within the images that are invisible to human observers. In addition, efficient deep
learning relies on being able to understand why an algorithm misclassifies certain images, making
algorithm interpretability crucial.

Deep learning based QCT has been developed. Data-driven texture analysis (DTA) is a deep learning
based tool which utilises a convolutional neural network to classify image patches based on the presence
of fibrosis and quantifies fibrosis extent on HRCT. DTA fibrosis score has demonstrated good correlation
with lung function and visual quantification of fibrosis by experts and can stratify patients based on
fibrosis extent (figure 5). By quantifying baseline line fibrosis extent, it can also be used to predict disease
progression (HR 1.14, 95% CI 1.08–1.19; p<0.0001) [60–62]. HUMPHRIES et al. [62] reported significant
associations with FVC and diffusing capacity of the lung for carbon monoxide decline in a cohort of 393
IPF patients, as well as statistically significant outcome prediction, independent of lung function.

Detection of early fibrotic lung disease
The second open research question to which deep learning can be applied is the characterisation of
interstitial lung abnormalities (ILAs). ILAs are defined as interstitial abnormalities that exceed 5% extent
of the total lung volume on HRCT, and they present thorny clinical problem. Data extracted from
longitudinal lung cancer and cardiovascular cohort studies show shared clinical and genetic associations
between incidentally detected ILAs on HRCT and IPF. ILAs are associated with ageing and are more
commonly seen in smokers. ILAs are also seen in those expressing MUC5B promoter polymorphism
positivity [63, 64] and ILA progression correlates to physiological decline. However, ILAs are common,
seen in 7–9% of lung cancer screening subjects, exceeding the prevalence of IPF by almost two orders of
magnitude [65]. The current challenge is that it is not possible to predict which ILAs will progress to

a) b)

FIGURE 4 Systematic Objective Fibrotic Lung Disease Analysis Algorithm (SOFIA). a) Four-slice high-resolution
computed tomography montage of segmented lung slices depicted peripheral honeycombing consistent with a
usual interstitial pneumonia (UIP) pattern. SOFIA scores for this case were UIP 0.9963; probable UIP 0.0036;
indeterminate 0.0001; and alternative diagnosis 0.000. b) Saliency map for a), highlighting regions within the
montage that were the most influential in algorithmic decision-making.
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clinically significant fibrotic lung disease and which will not. As with diagnosis in established fibrotic lung
disease, the current ILA classification is based on visually defined morphology, rather than disease
behaviour, which means that classification of incidentally identified ILAs is associated with all the
limitations associated with visual HRCT evaluation. Furthermore, the current ILA definition represents an
umbrella term encompassing a range of nonfibrotic and fibrotic patterns. This definition will need
refinement if progressive ILAs are to be identified reliably. As with predicting progressive behaviour when
fibrosis is established, one solution might be found in deep learning based analysis; algorithmic training
could be anchored to ILA behaviour with no a priori assumptions as to the importance of individual ILA
patterns. A major challenge to this approach will be the collating of sufficiently large datasets to
adequately power algorithm training.

Challenges to development and implementation
The use of QCT as a biomarker in fibrotic lung disease faces several barriers. These include access to
high-quality data in sufficient quantities to drive novel QCT development; recognising and minimising
biases in algorithm training; improving algorithm explainability; ensuring equal access for patients to
artificial intelligence (AI)-based technology; and establishing reference standards for training, testing and
algorithm deployment.

The availability of large and diverse datasets is a critical factor in the development of effective machine
learning models. Open-source datasets such as the Open Source Imaging Consortium (OSIC; www.osicild.org)
can help address these limitations by making data more accessible and secure, while also addressing privacy
and ethical concerns. The multidisciplinary nature of OSIC, engaging radiologists, clinicians and computer

a) b)

c) d)

FIGURE 5 Data-driven texture analysis (DTA). Coronal computed tomography (CT) sections on a 66-year-old
female with idiopathic pulmonary fibrosis. a) Visual CT pattern was indeterminate for usual interstitial
pneumonia. Baseline CT with b) DTA classification as red overlay. DTA score (calculated as percentage of lung
volume classified as fibrosis) was 33.0 at baseline. c) Follow-up CT at 1 year and d) DTA classification as red
overlay. DTA score increased to 39.0 at 1 year follow-up. Courtesy of Stephen M. Humphries (National Jewish
Health, Denver, CO, USA).
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and data scientists, as well as industry stakeholders helps to ensure the credibility and trustworthiness of the
dataset, thus making it a valuable resource for the development of AI-powered healthcare solutions.

The integration of machine learning with pathogenetics can have a major impact on drug development.
Machine learning can help identify patterns and correlations in large population data, allowing the testing
of hypotheses on a larger scale. This can lead to more personalised and effective treatments, as well as a
deeper understanding of disease mechanisms. By leveraging the power of machine learning, drug
development can be more efficient and targeted, ultimately improving patient outcomes.

Deep learning algorithms come with unique risks, because of they can reinforce biases in training data.
Missing or unbalanced data can affect algorithm performance and amplify inequalities in healthcare in
ways that are difficult to detect. Subgroups of patients with rare diseases may not see the benefit of these
AI-based imaging analysis techniques because of insufficient data for algorithm development [66]. In
addition, deep learning algorithms may be manipulated to output conclusions that trend toward the use of
specific third-party tests. Establishing ethical frameworks with buy-in from all stakeholders (and in
particular, patients) will be needed to foster trust in this technology. Bespoke governance frameworks that
are tailored to address the unique challenges associated with AI will probably be needed. Preserving trust
and transparency will be of paramount importance. Finding ways to encode ethical standards into AI
training will be essential, as well as preserving trust and transparency.

Encouraging the medical community to fully embrace AI and machine learning tools may be hampered by
a lack of understanding and concerns about quality, safety and accuracy. However, it is important to
consider that first the quantitative analysis provided by these tools can offer more reliable and objective
data for disease assessment and precision medicine [67–71]. Second, this can aid in clinical
decision-making and improve the accuracy of predictions about disease progression. It will also be
important for all stakeholders to receive appropriate education and training on the use of these tools and
how to appraise and overcome their limitations.

Conclusion
Increasingly, QCT and AI are recognised as valuable tools in the diagnosis and prognosis of ILDs. Two
key advantages are 1) they offer the advantage of being more precise and efficient compared to
semiquantitative methods; and 2) they can help in decision-making for physicians. However, there are still
challenges in terms of acceptance by the medical community and the navigation of technical and
bureaucratic hurdles.
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