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Abstract

The European honey bee, Apis mellifera L., is the single most valuable managed pollinator

in the world. Poor colony health or unusually high colony losses of managed honey bees

result from a myriad of stressors, which are more harmful in combination. Climate change is

expected to accentuate the effects of these stressors, but the physiological and behavioral

responses of honey bees to elevated temperatures while under simultaneous influence of

one or more stressors remain largely unknown. Here we test the hypothesis that exposure

to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey

bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and

1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and

static protocols. Contrary to our expectations, acute exposure to sublethal doses of both

insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees

that ingested the higher doses of insecticides displayed a critical thermal maximum from 2

˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our

study suggests a resilience of honey bees to high temperatures when other stressors are

present, which is consistent with studies in other insects. We discuss the implications of

these results and hypothesize that this compensatory effect is likely due to induction of heat

shock proteins by the insecticides, which provides temporary protection from elevated

temperatures.

Introduction

Animal pollination is essential for plant reproduction, ecosystem maintenance, and food secu-

rity, as about 75% of the leading global food crops depend partially or fully on pollinators [1].

The single most valuable pollinator species in the world, found in both agricultural and natural

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240950 February 25, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gonzalez VH, Hranitz JM, McGonigle MB,

Manweiler RE, Smith DR, Barthell JF (2022) Acute

exposure to sublethal doses of neonicotinoid

insecticides increases heat tolerance in honey

bees. PLoS ONE 17(2): e0240950. https://doi.org/

10.1371/journal.pone.0240950

Editor: Nicolas Desneux, Institut Sophia

Agrobiotech, FRANCE

Received: September 29, 2020

Accepted: February 12, 2022

Published: February 25, 2022

Copyright: © 2022 Gonzalez et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: V.H.G. and J.M.H. are supported by

National Science Foundation’s REU program (DBI

1950805 to Charlotte Simmons, University of

Central Oklahoma). J.F.B. currently serves in the

Intergovernmental Personnel Act Program of the

National Science Foundation (NSF). Any opinions,

findings, and conclusions or recommendations

expressed in this material are those of the authors

https://orcid.org/0000-0002-4146-1634
https://orcid.org/0000-0002-8928-9466
https://doi.org/10.1371/journal.pone.0240950
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240950&domain=pdf&date_stamp=2022-02-25
https://doi.org/10.1371/journal.pone.0240950
https://doi.org/10.1371/journal.pone.0240950
http://creativecommons.org/licenses/by/4.0/


habitats, is the European honey bee Apis mellifera L. [2]. In the U.S. alone, honey bees provide

at least $15 billion worth of pollination services and generate from 300 to 500 million dollars

in harvestable honey and other products each year [3]. However, managed honey bees are

under pressure from myriad stressors that include habitat loss, parasites, diseases, pesticides,

and poor nutrition. Bees are now exposed to multiple, simultaneous stressors throughout their

lives, which has resulted in unusually high annual colony losses or significant declines in col-

ony health [4].

Several studies demonstrate that the combined effects of stressors are more harmful to bees

than one stressor alone [4]. For example, exposure to sublethal doses of neonicotinoid insecti-

cides and nutritional stress renders honey bees more susceptible to the impact of the micro-

sporidian parasite Nosema Nägueli, resulting in low brood and adult population sizes [5, 6]. In

addition, stressors may act synergistically and thus cause significant harm to bees. For

instance, hive mortality increases when bees are exposed to Nosema and to sublethal doses of

neonicotinoids or nutritional stress, since the latter two stressors may suppress immunity [7,

8]. Thus, understanding the potential effects resulting from interactions among stressors is rel-

evant for honey bee management and protection.

Climate change is a major new potential stressor altering global temperatures, rainfall, and

wind patterns [9]. More severe and frequent extreme weather events are expected, and these

will likely accentuate the effects of the stressors that honey bees already face. Alterations in

temperature and rainfall are likely to cause spatial, temporal, morphological, and recognition

mismatches between plants and pollinators [10]. Changes in the geographical distribution,

development, and productivity of honey bees are anticipated, and some studies already docu-

ment the negative effect of droughts on productivity and survival of honey bee colonies [11].

Climate change will also facilitate the spread of parasites and diseases or intensify their delete-

rious interactions with honey bees [12]. Clearly, assessing the physiological and behavioral

responses of honey bees to high temperatures under the influence of one or more stressors is a

priority.

Few studies have addressed honey bee thermal biology in the presence of other stressors,

and the results are not encouraging. For example, acute exposures to diesel exhaust reduces

heat tolerance in honey bees, which is concerning because air pollution continues to increase

due to rising human population levels and agricultural intensification [13]. In addition to the

direct mortality caused by pesticides, their sublethal effects can have significant impacts on

bees’ physiology and behavior [14]. Given that insecticides become more toxic at higher tem-

peratures, and that their use is expected to increase under global warming [15], we are there-

fore interested in determining if insecticides alter the heat tolerance of honey bees.

Here we assess the effect of acute sublethal doses (1/5, 1/20, and 1/100 of LD50) of imidaclo-

prid and acetamiprid on honey bees’ thermal tolerance. We chose these two systemic neonico-

tinoid insecticides because they are widely used in agriculture for pest control, and they have

been documented to cause detrimental effects on honey bees. Although imidacloprid is more

toxic to honey bees than acetamiprid [16], sublethal doses of both insecticides similarly affect

their physiology and behavior, such as learning and memory performance, homing ability, for-

aging, immunocompetence, and susceptibility to parasites [17–20]. To assess the effects of

each insecticide on the heat tolerance of honey bees, we use dynamic (ramping temperatures)

and static (constant temperature) protocols. In the dynamic protocol, we measure bees’ critical

thermal maximum (CTMax) or the temperature at which an organism loses motor control [21].

Such a physiological parameter has a strong predictive power for understanding bees’

responses to changes in climate as well as land use [22–24]. In the static protocol, we measure

bee survival after constant heat exposure. The results of this experiment will be informative

about the effects of insecticides on bees’ ability to tolerate a heat stress event. Given the

PLOS ONE Neonicotinoids and heat tolerance in honey bees

PLOS ONE | https://doi.org/10.1371/journal.pone.0240950 February 25, 2022 2 / 13

and do not necessarily reflect the views of the

National Science Foundation. The funder had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. There was no additional external

funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0240950


synergistic effects of neonicotinoids with other stressors [7, 8], we hypothesize that bees

exposed to acute sublethal doses of insecticides will display a lower CTMax and have a reduced

rate of survival in comparison to individuals not exposed to insecticides.

Materials and methods

We used honey bee foragers from an apiary located at the Native Medicinal Plant Research

Garden (39˚00’37”N, 95˚12’23”W, 254 m) of the University of Kansas, Lawrence, Kansas, U.S.

A. We conducted pilot studies with bees from a single Langstroth hive during the summer of

2020 and repeated experiments with bees from four additional hives during the summer of

2021. We trained bees to forage at a feeder containing a 1.5 M sucrose solution scented with

either lavender or mint. For all assays, we captured foraging bees between 9:00 and 10:00 h

with a glass vial at the feeder, which we then covered with a net mesh (1 mm in diameter). We

kept bees inside a cooler (16–19 ˚C) until we completed fieldwork. Once in the laboratory, we

immobilized bees in a refrigerator (3 ˚C) for 3–5 min and transferred them to 2 mL plastic

vials, which had a small opening (2–3 mm in diameter) at one end and a net mesh on the

other. Using a micropipette, we fed bees to satiation with 1.5 M sucrose solution through the

vial’s opening or the net mesh. As in Hranitz et al. [25], we held bees overnight (21–22 h) at

room temperature (21–22 ˚C) before experimentation to ensure all individuals had a similar

motivation to feed.

Insecticide doses

We used commercial formulations with imidacloprid (Macho1 4.0, Agri Star1, Albaugh LLC,

Ankeny, IA, USA) and acetamiprid (Ortho1, flower, fruit & vegetable insect killer, The Scotts

Company LLC, Marysville, OH, USA) to prepare stock solutions of each pesticide. We used

commercial formulations because we aimed to simulate field conditions by testing the prod-

ucts commonly applied by farmers. We used distilled water to prepare these stock solutions at

a concentration of 407 ng/μL for imidacloprid and 500 ng/μL for acetamiprid. We diluted

these stock solutions in 1.5 M sucrose to obtain the concentrations of insecticides used in the

experiments. We used doses of each insecticide based on the LD50 value calculated from acute

contact exposure from a topical application, 18 ng/bee for imidacloprid and 7100 ng/bee for

acetamiprid [16]. We used the following doses for each insecticide: imidacloprid, 3.6 ng/bee

(20% of the LD50), 0.9 ng/bee (5% of the LD50), and 0.18 ng/bee (1% of the LD50); acetamiprid,

1420 ng/bee (20% of the LD50), 355 ng/bee (5% of the LD50), and 71 ng/bee (1% of the LD50).

Henceforth, the doses 20%, 5%, and 1% are referred as 1/5, 1/20, and 1/100 of LD50. As a con-

trol, we used 1.5 M sucrose solution without insecticide. These concentrations of pesticides

did not induce mortality in the experimental population within the timeframe of the study.

We kept all solutions refrigerated and prepared a new stock every week. We administered

10 μL of treatment solutions to bees orally, as previous studies showed that honey bees freely

consumed solutions containing up to 40% of imidacloprid [19]. We measured bees’ CTMax

and survival after constant heat exposure at 4 h postfeeding, as previous studies indicated that

this is the period in which both insecticides have the most effect on honey bees’ behavior (J.

Hranitz, per. obs.).

CTMax assays

To measure CTMax, we followed Gonzalez et al. [26] in placing bees individually in sealed glass

vials (7.4 ml; 17 × 60 mm) and submerging them horizontally (attached to a metal tray) at

approximately 1 cm in depth within a water bath. We used a water bath with a volume of 12 L

controlled by a thermostat (18–100 ˚C; Bellco Sci-Era Hot Shaker, Vineland, New Jersey). We
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used a dynamic ramping protocol with an initial temperature of 26 ˚C and held bees for 10

min before increasing it 1 ˚C every 2.5 min with an accuracy of ±0.1 ˚C. To estimate the tem-

perature inside the tubes, we placed an iButton data logger (weight: 3.104 g; DS1923 Hygro-

chron™; Maxim Integrated, San Jose, California) inside a glass vial and submerged it in the

water bath. Thus, we report the temperature inside the tubes not the temperature displayed by

the thermostat of the water bath. Pilot experiments indicated that bees held in similar sealed

glass vials adjacent to the water bath at room temperature survived through the duration of the

CTMax assays. Thus, observed bees’ responses inside sealed vials during our assays were due to

changes in temperature, not to oxygen limitation. As an approximation of the CTMax, we used

the temperature at which bees lost muscular control, spontaneously flipping over onto their

dorsa and spasming [21, 27, 28]. We inspected and rotated each vial to determine if the bees

had lost muscle control at every Celsius degree until all bees had reached their upper thermal

limit.

Acute heat stress event

To assess whether acute exposure to sublethal doses of insecticides affect the ability of honey

bees to tolerate heat stress, we followed Reitmayer et al. [13] in exposing bees to 43 ˚C inside

an incubator and monitored their survival every hour during 5 hours. We conducted this

experiment during three consecutive days for each insecticide, collecting and feeding bees

with the same doses as indicated above. We placed bees individually inside glass vials and

plugged them with a moistened cotton ball (~ 0.2 mL of distilled water per cotton ball) to

ensure enough humidity during the experiment. The response variable in this experiment was

time to death.

Data analyses

We conducted statistical analyses in R [29] and created boxplots and line graphs using Graph-

Pad Prism version 7.04 (GraphPad Software, San Diego, CA, USA). We used a Linear Mixed-

Effect Model (LMM) to assess effects of insecticide treatments on the CTMax. In this model,

treatment served as a fixed factor while colony identity as a random factor. We implemented

this model using the lme4 package [30] and assessed the significance of fixed effects using a

Type II Wald χ2 test with the car package [31]. We used the lsmeans package [32] to conduct

multiple pairwise comparisons with Bonferroni adjustment to assess for differences among

groups. We used failure-time analyses to assess for differences in bee survival in the acute heat

stress assays. We implemented a Cox proportional hazard model using the survival package

[33], including treatment as a fixed factor and colony identity as a covariate, and conducting

post hoc pairwise comparisons with a Log-rank test. To check for the proportional hazard

assumption of each Cox model, we tested for independence between time and the correspond-

ing set of scaled Schoenfeld residuals of each variable (treatment and colony identity) using

the functions cox.zph in the survival package and ggcoxzph in the survminer package (S1 and

S2 Figs; S4 Table).

Results

The critical thermal maxima (CTMax) of honey bee foragers varied among treatments when we

exposed them to acute sublethal doses of both insecticides (imidacloprid: Wald χ2 = 99.1; acet-

amiprid: Wald χ2 = 39.5, DF = 3 and P< 0.001 in both cases). Pairwise comparisons with Bon-

ferroni adjustment detected differences in the CTMax between the control group and all other

bees treated with imidacloprid. The CTMax of bees was similar among imidacloprid treatments,

except for the highest dose (1/5 of LD50), and, on average, from 3.3 ˚C to 5.1 ˚C greater than
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that of the control group. We found a similar pattern in bees fed with acetamiprid, except that

the CTMax of bees fed with the lowest dose was like that of the control group. Bees fed with the

two highest doses (1/20 and 1/5 of LD50) displayed a greater CTMax, on average, from 2.2 ˚C to

2.7 ˚C higher than the control group and bees fed with the lowest dose (see Fig 1A and 1B;

S1 Table).

Bee survival also differed among treatments for both insecticides (imidacloprid: Wald χ2 =

153.6; acetamiprid: Wald χ2 = 78.6, DF = 7 and P< 0.001 in both cases). In general, survival

rapidly decreased over time in bees of both the control group and those fed with the lowest

dose (1/100 of LD50). However, bees fed with higher sublethal doses displayed greater survival

rates. In comparison to the control group, hazard ratios (HR) indicated that mortality is

reduced from 67% (HR: 0.33) in bees fed with 1/20 LD50 of acetamiprid, to 87% (HR: 0.13) in

bees fed with 1/5 of LD50 of imidacloprid (Table 1). Pairwise comparisons with Bonferroni

Fig 1. Effect of acute exposure to sublethal doses of neonicotinoid insecticides on the critical thermal maxima (CTMax) and survival of honey bee

foragers. a, b, boxplots display median, quartiles, and extreme values of CTMax. c, d, bee survival (means ± SE) during a heat stress event (43 ˚C) over 5 hours.

Different letters above boxplots and at the end of each survival curve indicate significant (P<0.05) mean differences.

https://doi.org/10.1371/journal.pone.0240950.g001
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adjustment indicated differences in the survival of bees among all treatments with imidaclo-

prid (S2 Table). For acetamiprid, bee survival was similar between the two higher doses, each

one higher than the lowest dose (1/100 of LD50) and the control (see Fig 1C and 1D; S3 Table).

Discussion

The deleterious effects on the development, behavior, physiology, and survival of honey bees

due to acute and chronic exposures to sublethal doses of neonicotinoid insecticides, including

imidacloprid and acetamiprid, have been widely documented in the literature [14, 20, 34–37].

Similarly, the synergistic adverse effects of insecticides with other stressors, such as poor nutri-

tion and parasites, have been demonstrated [5–8]. Contrary to our expectations, acute expo-

sure to sublethal doses of imidacloprid and acetamiprid had a positive effect on both honey

bees’ CTMax and survival following a heat stress event (43 ˚C). Bees fed with the higher doses

of pesticides (1/20 and 1/5 of LD50) displayed a CTMax from 2 ˚C to 5 ˚C greater than that of

the control group and 67%–87% reduction in mortality (Fig 1, Table 1). Thus, these results do

not support the hypothesis that acute, sublethal doses of neonicotinoid insecticides reduce

heat tolerance in honey bees.

While unanticipated, our results are consistent with studies in other insect species. For

example, Zhang et al. [38] indicate that a pesticide non-resistant strain of diamondback moth,

Plutella xylostella (L.), is more thermotolerant than a resistant strain. As noted by these

authors, the greater susceptibility to higher temperatures in the resistant strain likely relates to

weaker uploading of heat shock proteins (HSP), among other factors. Heat shock proteins are

chaperones that prevent the denaturing of other proteins under heat, as well as under other

forms of stress such as cold, starvation, bacterial infections, and exposure to chemicals includ-

ing pesticides [25, 39]. Inducible heat shock proteins in the HSP70 family of genes are variable

in their expression within species, as in the case of the diamondback moth [40]. Similarly, in

larval mosquitoes, induced cross-tolerance to a pesticide has been documented through pre-

conditioning at high but sublethal temperatures [41]. Indeed, in honey bees, Koo et al. [42]

indicate that heat shock protein expression varies with the type of stressor (including from

heat shock), suggesting that pesticides may induce specific responses to various chemical expo-

sures. Thus, we hypothesize that sublethal doses of insecticides activate a stress response in

honey bees, which confers further stress resistance to high temperatures. Future studies will

attempt to identify this expression profile in correlation with the pesticides used in this work.

The increase in CTMax and greater survival of honey bees after exposing them to sublethal

doses of neonicotinoids do not imply any potential benefits to honey bees’ thermal tolerance

nor to their resistance to global warming. Instead, our results demonstrate the short-term resil-

ience of honey bees to high temperatures when other stressors are present. The adverse effects

on the behavior and physiology of honey bee’s foragers due to neonicotinoid insecticides are

Table 1. Cox proportional hazards estimates of the survival of honey bees after exposure to three sublethal doses (LD50) of imidacloprid and acetamiprid.

Imidacloprid Acetamiprid

Treatment HR (95% CI) P-value HR (95% CI) P-value

1/100 LD50 0.66 (0.49–0.90) 0.009 0.67 (0.49–0.90) 0.009

1/20 LD50 0.38 (0.28–0.52) <0.001 0.33 (0.24–0.45) <0.001

1/5 LD50 0.13 (0.09–0.19) <0.001 0.44 (0.32–0.61) <0.001

Survival measured following a heat stress event (43 ˚C) over 5 hours. P-values refer to comparisons with the control treatment. Significant values in boldface.
HRHazard ratio
CIConfidence interval.

https://doi.org/10.1371/journal.pone.0240950.t001
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unquestionable, including for insecticides with low toxicity, such as acetamiprid, that have

been promoted as a “bee-friendly” pesticide in the market. For example, both acute and

chronic sublethal doses of imidacloprid adversely affect aversive learning and reduce overall

daily activity, number of foraging trips, and overall lifespan of honey bee foragers [19, 43].

Similarly, sublethal doses of acetamiprid affect locomotor activity, sucrose sensitivity, and

memory of honey bees [34]. Thus, although honey bee foragers exposed to acute sublethal

doses of insecticides may survive high temperatures, they are behaviorally and physiologically

impaired, which in the long-term will alter colony development and productivity.

Acute sublethal doses of pesticides also alter honey bees’ thoracic muscle activity, which

allows bees to warm up by shivering their muscles (thermogenesis) and move their wings dur-

ing flight and fanning the brood. Acute oral exposure to the neonicotinoid thiamethoxam

impairs thermogenesis in African honey bees from one hour after exposure and for at least

one day, which may not only affect their foraging activity but also other tasks within the col-

ony, such as nest thermoregulation [44]. Similar disruptions to the thermogenic capacity of

bees following acute and chronic exposures to both imidacloprid and acetamiprid have been

documented in bumble bees [45, 46] and solitary bees [47]. At least under simulated heat wave

events, honey bees increase water collection and brood ventilation by recruiting foragers [48].

Because these behaviors require bees to use their thoracic muscles, foragers under the influ-

ence of pesticides may be unable to accomplish these tasks successfully, which will influence

nest homeostasis.

Honey bee foragers are exposed to pesticides through oral and contact exposures via con-

taminated nectar, pollen, and/or water [4, 47, 49–52]. Because of pesticide persistence in the

environment, bees are exposed for long periods, not to one, but to a diverse array of pesticides

as well as to other agrochemicals that include fungicides and herbicides [49, 53]. However,

recent studies demonstrate that exposure to multiple compounds result in synergistic effects,

which often increase the toxicity of individual pesticides, although levels of synergism among

pesticides depend on the residue levels, ratio of pesticides, and their mode of action [54]. For

instance, acetamiprid becomes more toxic when combined with triazole fungicides because

the latter may inhibit P450-mediated detoxification [49]. Among 98 binary to octonary mix-

tures of acetamiprid in combination with seven pesticides, 45% of them exhibited synergistic

effects on honey bees [55]. Similarly, deltamethrin induces hypothermia on honey bees when

combined with the azole fungicide prochloraz, but not when used alone [14, 56]. Because we

used acute sublethal doses of individual pesticides in our laboratory experiments, we do not

know if bees would display similar responses to a combination of pesticides and to chronic

exposures. It is likely that cumulative toxicity due to a chronic exposure, as well as an increase

in toxicity by a combination of pesticides, would inhibit the stress protein response, thus

resulting in a lower heat tolerance. Doubtless, future studies should address both factors (com-

bination of agrochemicals and chronic exposures) to obtain a more realistic view of the effects

of pesticides on honey bee thermal biology. Similarly, future studies should assess for potential

synergistic effects of multiple stressors on the bees’ thermal biology, such as the combined

effects of pesticides with nutritional stress or parasites. To date, only one study has addressed

these effects in a species of dung beetle exposed to both ivermectin, a toxic parasiticide, and an

immune challenge [57]. The authors found no apparent additive or synergistic effects between

these two stressors, as heat tolerance increased only in immune-challenged beetles but not in

those exposed to ivermectin. Thus, this interesting study indicates that multiple stressors not

always induce additive or synergistic effects, and that responses are specific to each type of

stressor.

Although we tested bees collected from a feeder to select foragers, we were unable to control

for their age. Several studies have documented a negative relationship between age and heat
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tolerance in many insects [58, 59], including bumble bees [60]. Thus, the thermal tolerance of

honey bees as well as their response to pesticides may vary depending on age. A mixture of

bees from different ages could also explain the high variation in the CTMax observed in our

experiments, which ranged from 32 ˚C to 47 ˚C across treatments (Fig 1). In addition, we mea-

sured CTMax as the temperature at which a bee lost muscular control using a dynamic protocol,

which requires the visual detection of this physiological event [21]. Detecting this physiological

endpoint was particularly challenging in bees that ingested the highest doses of insecticides,

which were clearly lethargic from the beginning of the experiment. We are confident with our

measurements of CTMax because they are congruent with the results obtained using the static

protocol. However, using thermolimit respirometry may be a better approach in these cases, as

that method provides a more accurate measurement of CTMax by combining metabolic rate

(VCO2) and motor activity [61].

To our knowledge, this work is the first in documenting the effects of sublethal doses of pes-

ticides on the heat tolerance of any bee species. Although our results appear counterintuitive at

first, they are consistent with results from experiments in other insect species addressing simi-

lar questions [38, 40, 41]. Stimulatory responses to low doses of pesticides have been docu-

mented in some arthropods, particularly in pest species, but these effects often remain

unnoticed or unappreciated [62, 63]. As a post hoc hypothesis, we suggest that sublethal doses

of insecticides induce the expression of HSPs, which confers further stress resistance to high

temperatures. Despite the essential role of temperature and humidity in the development, sur-

vival, and health of honey bee colonies [64], as well as concerns about the impact of climate

change on pollinators and pollination, it is surprising that the effects of environmental stress-

ors on the bees’ thermal biology have been largely overlooked.
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