

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Tetrahedron 89 (2021) 132159

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of phosphonate derivatives of 2'-deoxy-2'fluorotetradialdose D-nucleosides and tetradialdose D-nucleosides

Tetrahedror

Tomáš Lášek ^{a, b}, Juraj Dobiáš ^a, Miloš Buděšínský ^a, Jaroslav Kozák ^a, Barbora Lapuníková ^a, Ivan Rosenberg ^a, Gabriel Birkuš ^a, Ondřej Páv ^{a, *}

^a IOCB Prague, Flemingovo Nám. 2, 160 00, Prague, Czech Republic ^b UCT Prague, Technická 5, 166 28, Prague, Czech Republic

A R T I C L E I N F O

Article history: Received 4 March 2021 Received in revised form 2 April 2021 Accepted 9 April 2021 Available online 16 April 2021

Keywords: Nucleoside phosphonate Triphosphate Prodrug Tetradialdose D-nucleoside 2'-Fluoronucleoside

ABSTRACT

Analogs of nucleosides and nucleotides represent a promising pool of potential therapeutics. This work describes a new synthetic route leading to 2'-deoxy-2'-fluorotetradialdose D-nucleoside phosphonates. Moreover, a new universal synthetic route leading to tetradialdose D-nucleosides bearing purine nucleobases is also described. All new compounds were tested as triphosphate analogs for inhibitory potency against a variety of viral polymerases. The fluorinated nucleosides were transformed to phosphoramidate prodrugs and evaluated in cell cultures against various viruses including influenza and SARS-CoV-2.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Synthesis of phosphonate derivatives of nucleosides, followed by the preparation of an appropriate phosphonodiphosphate or a prodrug form, represents a validated approach in the search for novel nucleoside-based antiviral agents [1]. In general, the introduction of a phosphonate group brings several advantages. It directly bypasses the first phosphorylation step in the cascade, which is often the rate-limiting step, leading to a biologically active nucleoside triphosphate. Moreover, unlike nucleoside monophosphates, phosphonates exhibit increased metabolic stability against cleavage by phosphoesterases [1]. To profile their biological activity, the phosphonodiphosphates and lipophilic prodrugs of phosphonate derivatives of nucleosides were prepared. The former can be used directly in enzyme assays, whereas the latter can be screened in cell-based assays due to the improved uptake compared to parent nucleotides.

Continuing our search for novel nucleoside phosphonates [2–4], we turned our attention to a tetradialdose nucleosides bearing *O*-phosphonomethyl group. Tetradialdose nucleoside **1** was first

* Corresponding author. E-mail address: ondrej.pav@uochb.cas.cz (O. Páv). prepared by Kim et al., in 1991 (Fig. 1) [5]. More recently, teams of Herdewijn [6,7] (**2**, **3**) and Cihlář [8] (**4**) reported synthesis of 3'-fluoro nucleosides and nucleosides derived from L-sugars. Potent anti-HIV activity was reported in the case of compound **4**. The potential of 2'-fluoro nucleosides has been demonstrated by the use of sofosbuvir, an approved medication used to treat HCV [9]. Surprisingly, the synthesis of D-2'-fluorotetradialdose nucleoside phosphonates has not been reported so far. Moreover, in the case of D-tetraaldose phosphonates bearing purine nucleobase, only the synthesis of adenine derivative **1** has been published [5]. Therefore, we report here the synthesis of novel 2'-fluorotetradialdose nucleoside phosphonates **5** and phosphonate analogs **6** (Fig. 2), and their biochemical evaluation against several types of viruses including influenza and coronavirus.

2. Results and discussion

2.1. Synthesis of D-2'-fluorotetradialdose nucleoside phosphonates

The synthetic strategy leading to 2'-fluoro analogs was developed based on the previously published synthetic route leading to L-dialdose analogs **3** [7]. Starting from L-xylose **7**, we prepared methyl glycoside **9** with 5'-protected hydroxyl in two steps (Scheme 1). The first key step of the synthetic sequence consisted of

Fig. 1. Examples of the reported tetradialdose nucleoside phosphonates.

Fig. 2. Structures of the prepared tetradialdose nucleoside phosphonates.

the introduction of the fluorine atom. To avoid elimination reactions and the formation of side products during the fluorination step, it was reported that the reaction had to be performed on a precursor bearing unprotected trans diol [10,11]. Therefore, L-xylose glycoside **9** was treated with DAST to afford the fluorinated product in 54% yield. In agreement with the literature [6,7], we observed the regioselective formation of 3-fluoro-L-ribofuranoside 10. Compound **10** was then treated with sulfuric acid in a mixture of acetic anhydride and acetic acid. In the next step, the 1-O-acetyl derivative was converted to phosphonate using the Vorbrüggen reaction in the presence of diisopropyl trimethylsilvloxvmethylphosphonate. In our case, the reaction using silvlated hydroxymethylphosphonate afforded improved vield of the glycosidation reaction over the reaction performed in the presence of hydroxymethylphosphonate [7]. Afterwards, the acyl groups were removed under basic conditions to afford phosphonate 12. The next goal was to prepare a precursor with free primary hydroxyl. Therefore, we protected the primary hydroxyl with the dimethoxvtrityl group and the secondary hydroxyl with benzoyl, and we then deprotected the primary hydroxyl with TFA to obtain the precursor 13. In the next steps, we transformed the hydroxymethyl group to acetate, which was then used for the nucleosidation step [7]. Specifically, the hydroxymethyl group of the compound 13 was oxidized to the carboxylate 14 using (diacetoxyiodo)benzene in the presence of TEMPO, followed by oxidative decarboxylation using lead tetraacetate to yield acetate 15. This precursor could be used for a nucleosidation reaction under the Vorbrüggen conditions. The precursor 15 was treated with silvlated 6-N-benzoyladenine in the presence of tin tetrachloride. Because of the absence of the directing 2-O-acyl group, the reaction resulted in a mixture of β and α anomers in a 2:1 ratio, resp. The mixture was separated on a silica gel, and the desired β -anomer **16a** was deprotected to yield the novel D-2'-fluorotetradialdose nucleoside phosphonate **5a** product. Using a similar approach with silvlated 2-N-acetyl-6-O-diphenylcarbamoylguanine, we also prepared guanine derivative 5b (Scheme 1, Fig. 2).

Scheme 1. Synthesis of 2'-fluorotetradialdose nucleoside phosphonates. Reagents and conditions: (a) HCl, MeOH, rt, 16 h, quant.; (b) *p*-Toluoyl chloride, pyridine, 0 °C to rt, 16 h, 48%; (c) DAST, MeCN, 0 °C to rt, 16 h, 54%; (d) H₂SO₄, Ac₂O, AcOH, 0 °C to rt, 2 h, 84%; (e) hexamethyldisilazane, (iPrO)₂P(O)CH₂OH, saccharine, 100 °C, 8 h; (f) SnCl₄, MeCN, 55 °C, 1 h; (g) MeNH₂, EtOH, rt, 16 h, 85%; (h) DMTrCl, pyridine, rt, 16 h; (i) BZCl, DMAP, pyridine, rt, 8 h; (j) TFA, DCM, rt, 10 min, 74%; (k) Phl(OAc)₂, TEMPO, MeCN, rt, 16 h, 90%; (l) Pb(OAc)₄, THF, rt, 16 h, 60%; (m) SnCl₄, DCE, BSA, N6-benzoyladenine, rt, 30 min 43%; (n) TMSBr, pyridine, rt, 8 h; (o) MeNH₂, EtOH, rt, 73%.

Scheme 2. Synthesis of tetradialdose nucleoside phosphonates. Reagents and conditions: (a) HCl, MeOH, rt, 16 h; (b) H₂SO₄, Ac₂O, AcOH, 0 °C to rt, 2 h; (c) hexamethyldisilazane, (iPrO)₂P(O)CH₂OH, saccharine, 100 °C, 8 h; (d) SnCl₄, MeCN, 55 °C, 1 h; (e) NH₃, MeOH, 90%; (f) TBDPSCl, imidazole, DMF, rt, 24 h; (g) BzCl, Et₃N, DMAP, DCM, rt, 2 h; (h) TBAF, THF, rt, 8 h; 78%; (i) Phl(OAc)₂, TEMPO, MeCN/H₂O, rt, 16 h; (j) Pb(OAc)₄, THF, rt, 16 h; 53% (k) SnCl₄, MeCN, BSA, N6-benzoyladenine, 50%; (l) TMSBr, pyridine, rt, 8 h; (m) MeNH₂, EtOH, rt, 80%.

2.2. Synthesis of *D*-tetradialdose nucleoside phosphonates

In our experiment, the synthetic sequence for the preparation of 2'-hydroxy compound **1** described by Kim et al. [5] failed to afford the guanine derivative **6a**. Therefore, we adapted a synthetic approach similar to the approach used for the 2'-fluoro nucleosides. Starting from L-ribose, we prepared D-nucleoside **1** and the new nucleosides **6a-6c** bearing guanine, 8-azaadenine and 8-azaguanine, resp. (Scheme 2, Fig. 2).

L-Tetraacetylribose 18 was phosphonylated using the Vordiisopropyl trimethylsilyloxbrüggen reaction with ymethylphosphonate. Then, the acetyl groups were removed under basic conditions to afford the phosphonate 19. Next, the primary hydroxyl was protected with the TBDPS group, and cis diol was protected with the benzoyl groups. The TBDPS group was subsequently removed using TBAF to obtain the phosphonate **20**. The hydroxymethyl group was converted to acetate **21** using the abovementioned sequence. A nucleosidation reaction using the Vorbrüggen reaction, silvlated 6-N-benzoyladenine and 2-N-acetyl-6-O-diphenylcarbamoylguanine afforded compounds 22a and 22b as adenin-9-yl and guanin-9-yl β-anomers in good yields. After deprotection, compounds 1 and 6a were obtained.

In contrast, in the case of the 8-azaadenine derivative, we observed the formation of 8-azaadenin-7-yl, 8-azaadenin-8-yl and 8-azaadenin-9-yl regioisomers during the Vorbrüggen reaction. Thus, the nucleosidation of acetate 21 with 8-azaadenine afforded a mixture of three regioisomers 23, 24 and 25 in a 2:1:6 ratio (Scheme 2, Fig. 3). It is worth noting that the nucleosidation using silylated 8-azaadenine afforded the undesired regioisomer 24 as the only product. Regioisomer 24 was separated easily on a silica gel. Unfortunately, we were not able to separate the mixture of regioisomers 23 and 25 (in ratio 1:3), either on a silica gel or by using reverse phase chromatography. Therefore, we took advantage of the reported difference in the stability of the regioisomers of 8azaadenosine under acidic conditions. It has been shown that the N7-regioisomer of 2'-deoxy-8-azaadenosine was hydrolyzed 75 times faster than the N9-regioisomer [12]. As an analogy, we exploited this phenomena to depurinate undesired N7-regioisomer **25**. First, we treated the mixture of compounds **23** and **25** with ammonia in methanol to remove the benzoyl groups, and then

Fig. 3. Assignment of the structure of 8-azaadenine derivatives.

treated it with 80% AcOH until the *N*7-regioisomer depurinated. The *N*9-regioisomer **22c** was then easily purified on reverse phase, affording the desired 8-azaadenin-9-yl derivative as a β -anomer. After the final cleavage of protecting groups, compound **6b** was obtained (Scheme 2).

We performed NMR study to assign the structures of *N*9-, *N*8and *N*7-regioisomers **23**, **24** and **25** (Fig. 3). These regioisomers could be distinguished on the basis of long-range C,H couplings observed in the 2D-H,C-HMBC spectra. The only C–H proton of 8azaadenine, proton H-2, has long-range couplings with carbon C-4 and C-6 in all three regioisomers *N*9, *N*8 and *N*7 (see red arrows in **23**, **24** and **25** in Fig. 3). However, ribose proton H-1' showed coupling to carbon C-4 in the *N*9-regioisomer, and coupling to C-5 in the *N*7-regioisomer (see blue arrows in **23** and **25** in Fig. 3), while it had no coupling to base carbons in the *N*8-regioisomer (proton H-1' is separated by four bonds from both C-4 and C-5).

In the case of the 8-azaguanine derivative, we obtained the desired *N*9-regioisomer using the nucleosidation reaction in the presence of silylated 8-azaguanine (Scheme 2). The nucleosidation of acetate **21** afforded only two regioisomers. The 8-azaguanin-9-yl (**22d**) and 8-azaguanin-7-yl (**22e**) were obtained in a 1:5 ratio. The regioisomers were easily separated on a silica gel. Finally, the compound **22d** was deprotected to afford nucleotide **6c**. The structure of the regioisomers was assigned based on the 2D-H,C-HMBC spectra, as in case of 8-azaadenine derivative **6b**.

Scheme 3. Synthesis of nucleoside phosphonodiphosphates. Reagents and conditions: (a) Imidazole, trioctylamine, PPh₃, Aldrithiol[™], DMF, 16 h, rt; (b) tributylammonium pyrophosphate, DMF, 16 h, rt; (c) Dowex[®] 50 (Na⁺ cycle), 45%.

2.3. Synthesis of nucleoside phosphonodiphosphates

Next, we continued with the preparation of nucleoside phosphonodiphosphates. The tetrabutylammonium salts of the phosphonic acids **5a-5b**, **1** and **6a-6c** were converted to the corresponding phosphonoimidazolide using PPh₃, imidazole and AldrithiolTM [13]. Afterwards the imidazolides were converted to the corresponding phosphonodiphosphates **26a-f** using tributylammonium salt of pyrophosphate, and finalized as sodium salts (Scheme 3). The compound **26c** was already prepared and tested as a substrate of RNA polymerase *in vitro* assay by Koh et al. [14].

2.4. Synthesis of phosphoramidate prodrugs

The prodrug forms of the phosphonates **27a-27b** were prepared according to combined procedures of Klejch et al. [15] and Mackman et al. [16] (Scheme 4). We selected L-phenylalanine butyl ester phosphoramidates as a prodrug candidate based on the positive results of similar prodrug forms reported in the literature [17]. The phosphonic acids **5a-5b** were treated with L-phenylalanine butyl ester and phenol in the presence of triphenylphosphine and AldrithiolTM to afford epimeric mixtures of the phosphoramidates in approximately a 1:1 ratio. Despite all efforts, we were not able to separate the epimeric mixtures, and therefore the phosphoramidate prodrugs were screened as a mixture of both epimers.

2.5. Biochemical evaluation

The phosphonodiphosphates **26a-26f** were tested for the inhibition of RNA template elongation by viral polymerases (RdRp) from Zika virus, HCV and Poliovirus, according to the conditions published previously [18,19]. Radioactivity based competition assay did not show any inhibition of these enzymes at a 20 μ M

Scheme 4. Synthesis of prodrugs. Reagents and conditions: (a) Phenol, L-phenylalanine butyl ester, Et₃N, pyridine, 15 min, 60 °C (b) PPh₃, AldrithiolTM, pyridine, 16 h, 60 °C, 56%.

concentration of phosphonodiphosphates 26a-26f.

The potential antiviral effect of the prodrugs **27a-27b** was determined by screening against Coxsackie B3, Dengue 2, Influenza A, HIV-1 and Sars-CoV-2 viruses as published previously [20]. Unfortunately, the prodrugs showed low or no inhibition activity of these viruses.

3. Conclusion

We developed a synthetic route leading to the novel 2'-fluoro-Dtetraaldose nucleoside phosphonates and the synthesis of D-tetraaldose nucleoside phosphonates suitable for the preparation of tetraaldose nucleosides bearing purine nucleobases. These compounds were converted to appropriate phosphonodiphosphates and tested against viral polymerases from the Zika virus, HCV and Poliovirus. 2'-Fluoro nucleotides were also converted to prodrugs and screened against coxsackie, dengue, influenza, HIV-1 and Sars-CoV-2 viruses. Unfortunately, no biological activity was found. Nevertheless, the tetraaldose nucleoside phosphonates represent an interesting group of compounds and further exploration of its potential, e.g. synthesis of oligonucleotides bearing isosteric phosphonomethoxy linkages, is in progress.

4. Experimental section

Unless stated otherwise, all solvents used were anhydrous. Mass spectra were recorded on the ZAB-EQ (VG Analytical) instrument using FAB (ionization with Xe, accelerating voltage 8 kV; glycerol and thioglycerol as matrices) and on the LTO Orbitrap XL (Thermo Fisher Scientific) using ESI ionization. The NMR spectra were measured on a Bruker AVANCE-600 instrument (¹H at 600.13 MHz and ¹³C at 150.9 MHz) with a cryoprobe and a Bruker AVANCE-500 instrument with a cryoprobe (${}^{31}P$ at 202.4 MHz) in DMSO- d_6 and/or D₂O at 25 °C. The ¹H and ¹³C spectra in DMSO were referenced to the solvent peak (using $\delta_{\rm H}({\rm DMSO})$ = 2.50 ppm; $\delta_{\rm C}({\rm DMSO}) = 39.7$ ppm) and spectra in D₂O were referenced to internal dioxane (using $\delta_{\rm H}({\rm dioxane}) =$ 3.75 DDM: $\delta_{\rm C}({\rm dioxane}) = 69.30$ ppm). The ³¹P spectra were referenced to external H₃PO₄. The structural assignment of the proton and carbon signals was achieved combining 1D-¹H and ¹³C-spectra with homonuclear 2D-H,H-COSY, 2D-H,H-ROESY and heteronuclear 2D-H,C-HSQC and 2D-H,C-HMBC spectra. IR spectra were recorded on a Nicolet 6700 (Thermo Electron Corp.).

4.1. Methyl L-xylofuranoside (8)

A solution of acetyl chloride (5 mL; 70 mmol) and dry MeOH (100 mL) was added dropwise to a suspension of L-xylose 7 (100 g; 0.66 mol) in dry MeOH (1.2 L), and the reaction mixture was vigorously stirred for 16 h at room temperature. When the solution became homogenous, Dowex® 1×4 (OH⁻ cycle) was added until its pH became neutral. The resin was filtered, and the reaction mixture was concentrated. Methyl L-xylofuranoside 8 (112 g, quant. yield) was obtained as a colorless viscous oil, and was used in the next step without further purification.

4.2. Methyl 5-O-(4-methylbenzoyl)-L-xylofuranoside (9)

p-Toluoyl chloride (88 mL; 0.66 mol) in 200 mL of dry pyridine was added dropwise to a solution of methyl L-xylofuranoside 8 (112 g; 0.66 mol) in dry pyridine (500 mL) at 0 °C. The reaction mixture was warmed to room temperature, stirred for 16 h, then quenched by the addition of 50 mL of water, evaporated and extracted (1 L EtOAc/500 mL NaCl and 2×500 mL NaHCO₃). The

organic phase was dried over MgSO₄, and product **9** was isolated by chromatography on a silica gel (0–100% EtOAc in toluene) affording 90 g (48% over two steps) as a colorless viscous oil. Compound 9 was characterized by low resolution mass spectrometry: $(M + H)^+$ for C₁₄H₁₉O₆ calculated: 283.1; measured: 283.1.

4.3. Methyl 3-deoxy-3-fluoro-5-O-(4-methylbenzoyl)-*L*-xylofuranoside (**10**)

DAST (135 mL, 0.96 mol) diluted with 300 mL of ACN was added dropwise to a solution of compound **9** (90 g, 0.32 mol) in ACN (1 L). The reaction mixture was warmed to room temperature and stirred for 16 h. Next, 100 mL of water was added. The reaction mixture was evaporated and extracted (1 L toluene/500 mL sat. NaCl and 2×500 mL of sat. NaHCO₃). The organic phase was dried over MgSO₄, and product **10** was isolated by chromatography on a silica gel (0–60% EtOAc in cyclohexane) as a mixture of both anomers in a yield of 49 g (54%) of colorless viscose oil. Alpha anomer: HRMS (M + Na)⁺ for C₁₄H₁₇O₅FNa calculated: 307.09522; measured: 307.09492; IR (coating, cm⁻¹): 2841, 1720, 1612, 1450, 1380, 1272, 1179, 1074, 1020, 790, 752, 691, 475. For NMR data, see table Ia and Ib.

Beta anomer: HRMS $(M + Na)^+$ for $C_{14}H_{17}O_5FNa$ calculated: 307.09522; measured: 307.09494; IR (coating, cm⁻¹): 2841, 1720, 1612, 1450, 1380, 1272, 1179, 1074, 1020, 790, 752, 691, 475. For NMR data, see table Ia and Ib.

4.4. 1,2-Di-O-acetyl-3-deoxy-3-fluoro-5-O-(4-methylbenzoyl)-L-xylofuranose (11)

 H_2SO_4 (1 mL), diluted with 20 mL of Ac₂O, was added dropwise to a solution of compound **10** (49 g; 172 mmol) in AcOH (80 mL) and Ac₂O (160 mL). The mixture was stirred at room temperature for 2 h, and then treated with water (200 mL). Then, the reaction mixture was neutralized with 10 g of NaHCO₃ and concentrated. The crude mixture was extracted (1 L DCM/500 mL sat. NaCl and 2 × 500 mL of sat. NaHCO₃). The organic phase was dried over MgSO₄, and product **11** was isolated by chromatography on a silica gel (0–10% EtOAc in toluene) as a mixture of both anomers in a yield of 51 g (84%). HRMS (M + Na)⁺ for C₁₇H₁₉O₇FNa calculated: 377.10070; measured: 377.10126; IR (coating, cm⁻¹): 1751, 1723, 1612, 1454, 1374, 1310, 1274, 1239, 1179, 1109, 1061, 1047, 883, 790, 667, 602, 474. For NMR data, see table Ia and Ib.

4.5. Diisopropylphosphonomethyl 3-deoxy-3-fluoro- β -*L*-ribofuranoside (**12**)

Hexamethyldisilazane (100 mL) and a catalytic amount of saccharin were added to diisopropyl (hydroxymethyl)phosphonate (30.4 g; 190 mmol), and the reaction mixture was stirred for 8 h at 100 °C. Hexamethyldisilazane was evaporated, and the residue was diluted with toluene and co-evaporated (3 \times 100 mL). Then the compound 11 (34.4 g; 97 mmol) was added to silylated diisopropyl (trimethylsilyloxymethyl)phosphonate in ACN (1 L). Finally, SnCl₄ (24 mL; 200 mmol) was added. The reaction mixture was stirred for 1 h at 55 °C, quenched with 65 mL of pyridine, filtered and concentrated. Next, the crude mixture was dissolved in 800 mL of 33% MeNH₂ in EtOH, stirred for 8 h and concentrated. Product 12 was isolated by chromatography on a silica gel (0-10% EtOH in CHCl_3) in a yield of 26.9 g (84%). HRMS $(M+Na)^+$ for $C_{12}H_{24}O_7FNaP$ calculated: 353.11359; measured: 353.11368; IR (coating, cm-1): 3340, 1468, 1387, 1376, 1238, 1179, 1105, 1054, 999. For NMR data, see table Ia and Ib.

4.6. Diisopropylphosphonomethyl 2-O-benzoyl-3-deoxy-3-fluoro- β - ι -ribofuranoside (**13**)

DMTr-Cl (14.2 g; 40 mmol) was added to a solution of phosphonate 12 (12.7 g; 38 mmol) in 400 mL of pyridine, and the reaction mixture was stirred at room temperature for 8 h. Next. BzCl (6.6 mL; 57 mmol) and DMAP (3 g; 24.6 mmol) were added. The reaction mixture was stirred for 8 h at room temperature, treated with water (100 mL), evaporated and extracted (1 L toluene/500 mL sat. NaCl and 2×500 mL of sat. NaHCO3). The organic phase was dried over MgSO₄, filtered, concentrated, diluted with 400 mL of dry DCM, and treated with TFA (5 mL) for 10 min at room temperature. The solution was neutralized by the addition of 20 mL of mixture MeOH/Et₃N (1:3) and concentrated. Product 13 was isolated by chromatography on a silica gel (0–90% EtOAc in toluene) in a yield of 12.2 g (74%). HRMS (M + Na) $^+$ for $C_{19}H_{28}O_8FNaP$ calculated: 457.13980; measured: 457.13949; IR (coating, cm-1): 3372, 2981, 1730, 1602, 1585, 1491, 1452, 1387, 1376, 1316, 1273, 1179, 1142, 1062, 998, 891, 857, 713, 673. For NMR data, see table Ia and Ib.

4.7. (2S,3R,4R,5R)-4-(benzoyloxy)-5-((diisopropoxyphosphoryl) methoxy)-3-fluorotetrahydrofuran-2-carboxylic acid (**14**)

BAIB (18 g; 56 mmol) and a catalytic amount of TEMPO were added to a solution of **13** (12.2 g; 28 mmol) in 50% ACN/water, and the reaction mixture was stirred for 16 h at room temperature. The reaction was quenched by the addition of 100 mL of EtOH, concentrated and adsorbed onto a silica gel. Product **14** was isolated by chromatography on a silica gel (0–100% EtOAc in cyclohexane), and then eluted by 20% MeOH in CHCl₃ in a yield of 12.5 g (quantitative). HRMS (M + Na)⁺ for C₁₉H₂₆O₉FNaP calculated: 471.11907; measured: 471.11857; IR (coating, cm⁻¹): 3159, 2591, 1732, 1695, 1602, 1583, 1452, 1416, 1388, 1377, 1316, 1276, 1270, 1179, 1105, 1006, 938, 893, 850, 712, 677. For NMR data, see table Ia and Ib.

4.8. (2R,3R,4R)-5-acetoxy-2-((diisopropoxyphosphoryl)methoxy)-4-fluorotetrahydrofuran-3-yl benzoate (**15**)

Pb(OAc)₄ (25 g, 56 mmol) was added to a solution of **14** in THF (300 mL), and the reaction mixture was stirred for 8 h at room temperature. The resulting suspension was filtered and concentrated, and the acetate **15** was isolated by chromatography on a silica gel (0–50% EtOAc in toluene) in a yield of 7.8 g (60%). HRMS (M + Na)⁺ for C₂₀H₂₈O₉FNaP calculated: 485.13472; measured: 485.13416; IR (coating, cm⁻¹): 2981, 1755, 1733, 1602, 1585, 1493, 1453, 1386, 1376, 1317, 1272, 1246, 1179, 1106, 1025, 1006, 990, 889, 846, 713, 673, 603. For NMR data, see table Ia and Ib.

4.9. (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((diisopropoxyphosphoryl)methoxy)-4-fluorotetrahydrofuran-3-yl benzoate (**16a**)

Bis(trimethylsilyl)acetamide (7.3 mL; 30 mmol) was added to *N*benzoyladenine (3.1 g; 13 mmol) in 1,2-dichloroethane (100 mL), and the reaction mixture was stirred for 1 h at 60 °C. The mixture was concentrated, co-evaporated with dry toluene (2×50 mL), added to the acetate **15** (3 g, 6.5 mmol) in 1,2-dichloroethane (100 mL) and finally SnCl₄ (6 mL; 52 mmol) was added. The reaction was stirred for 1 h at room temperature. Next, it was cooled in ice bath, quenched by the addition 16 mL of pyridine, filtered and concentrated. The reaction afforded mixture of compounds **16a** and **16c** in a 2:1 ratio. The product **16a** was isolated by chromatography on a silica gel (25–35% acetone in toluene) in a yield of 1.8 g (43%) as a faster eluting isomer. HRMS (M + Na)⁺ for C₃₀H₃₃O₈N₅FNaP calculated: 664.19430; measured: 664.19346; IR (coating, cm-1): 3068, 3032, 1700, 1603, 1582, 1512, 1490, 1452, 14101335, 1317, 1274, 1247, 1220, 1178, 1119, 1106,1080, 1031, 989, 904, 853, 797, 754, 711, 687, 646, 506. For NMR data, see table IIa and IIb.

4.10. (2R,3R,4R,5R)-5-(2-acetamido-6-((diphenylcarbamoyl)oxy)-9H-purin-9-yl)-2-((diisopropoxyphosphoryl)methoxy)-4fluorotetrahydrofuran-3-yl benzoate (**16b**)

Nucleoside phosphonate **16b** was prepared according to the synthesis of compound **16a**, starting from the acetate **15** (2 g;

Table	Ia	

¹H NMR data of compounds **10–15** and **19–21**.^k

4.33 mmol) and *N*2-acetyl-O6-(diphenylcarbamoyl)guanine (550 mg; 1.4 mmol). The reaction afforded a mixture of compounds **16b** and **16d** in a 1:1 ratio. Compound **16b** was isolated in a yield of 662 mg (19%) as a faster eluting isomer. HRMS (M + Na)⁺ for $C_{38}H_{40}O_{10}N_6FNaP$ calculated: 813.24198; measured: 813.24189; IR (coating, cm⁻¹): 3219, 3094, 3065, 3040, 2980, 2873, 1738, 1696, 1622, 1591, 1525, 1492, 1452, 1412, 1387, 1374, 1335, 1271, 1249, 1170, 1107, 989, 713, 700. For NMR data, see table IIa and IIb.

Compound	Solvent	H-1	H-2	Н-3	H-4	H-5a; H-5b
$MeO_{i} \stackrel{1}{\overset{0}{}} \stackrel{4}{\overset{5}{}} \stackrel{5}{\overset{6}{}} \stackrel{6}{\overset{6}{}} \stackrel{6}{\overset{6}{}} \stackrel{6}{\overset{7}{}} \stackrel{6}{} \stackrel{6}{} \stackrel{6}{}} \stackrel{6}{} \stackrel$	DMSO ^a	4.86 d 1,2 = 4.7	4.045 bdq 2,1 = 4.7 2,F = 26.5 2, OH = 7.5 2,3 = 5.5	4.91 ddd 3,F = 56.2 3,2 = 5.5 3,4 = 1.4	4.44 dtd 4.F = 26.6 4.5b = 4.4 4.5a = 3.9 4.3 = 1.4	4.38 dd 5 a , 5 b = 11.8; 5 a ,4 = 3.9 4.35 dd 5 b , 5 a = 11.8; 5 b ,4 = 4.4
$MeO \downarrow O \downarrow$	DMSO ^b	4.77 t 1,2 = 2.0 1,F = 2.0	4.06 um	5.08 dt 3,F = 53.7 3,2 = 4.5 3,4 = 4.5	4.42 m	4.44 m 4.30 m
Acom	DMSO ^c	6.09 d 1,2 = 2.6 1,F = 1.4	5.36 ddd 2,F = 11.0 2,3 = 4.8 2,1 = 2.6	5.52 ddd 3,F = 52.0 3,2 = 4.8 3,4 = 3.8	4.65 dq 4,F = 20.9 4,5b = 4.2 4,3 = 3.8 4,5a = 3.6	4.56 dd 5 a , 5 b = 12.2; 5 a ,4 = 3.6 4.39 dd 5 b , 5 a = 12.2; 5 b ,4 = 4.2
Aco F alpha ¹ 1 beta anomer (56:44)		6.39 d 1,2 = 4.8	5.20 dt 2,F = 25.1 2,3 = 5.2 2,1 = 4.8	5.37 ddd 3,F = 55.0 3,2 = 5.2 3,4 = 1.3	4.76 dtd 4,F = 26.7 4,5b = 4.2 4,5a = 3.7 4,3 = 1.3	4.44 dd 5 a , 5 b = 12.0; 5 a ,4 = 3.7 4.42 dd 5 b , 5 a = 12.0; 5 b ,4 = 4.2
iPrO-P iPrO HO F 12	DMSO d	4.905 dd 1,2 = 2.6	4.03 dddd 2,1 = 2.6 2,3 = 4.4 2, OH = 5.7 2,F = 11.7	4.86 dt 3,2 = 4.4 3.F = 53.9 3,4 = 3.8	4.08 dtd 4,3 = 3.8 4,F = 20.9 4,5a = 5.5 4,5b = 5.5	3.45 m (2H)
iPrO-P iPrO BzO F 13	DMSO ^e	5.40 dd 1,2 = 3.1 1,F = 1.4	5.31 ddd 2,1 = 3.1 2,3 = 4.9 2,F = 11.7	5.30 ddd 3,2 = 4.9 3.F = 53.6 3,4 = 3.1	$\begin{array}{l} 4.29 \text{ dtd} \\ 4.3 = 3.1 \\ 4.F = 22.6 \\ 4.5a = 5.4 \\ 4.5b = 5.0 \end{array}$	3.57 m (2H)
iPrO-P iPrO BZO F 14	DMSO ^f	5.47 dd 1,2 = 2.4 1,F = 1.3	5.34 ddd 2,1 = 2.4 2,3 = 4.7 2,F = 9.4	5.53 ddd 3.2 = 4.7 3.F = 52.6 3.4 = 3.4	4.77 dd 4,3 = 3.4 4,F = 23.2	_
iPrO-P iPrO BZO F	DMSO ^g data for major β-epimer only	5.65 d 1,2 = 3.1	5.38 ddd 2,1 = 3.1 2,3 = 4.4 2,F = 17.0	5.44 ddd 3.2 = 4.4 3.F = 50.5 3.4 = 1.2	6.31 dd 4,3 = 1.2 4,F = 10.8	-
iPrO-P iPrO O HO OH HO OH	DMSO ^h	4.80 s 1,2 = 0	3.74 bd 2,1 = 0 2,3 = 4.6	3.87 dd 3,2 = 4.6 3,4 = 7.2	3.78 ddd 4,3 = 7.2 4,5a = 3.2 4,5b = 6.1	3.54 dd 5 a , 5 b = 11.8; 5 a ,4 = 3.2 3.34 dd 5 b , 5 a = 11.8; 5 b ,4 = 4.4

Table Ia (continued)

Compound	Solvent	H-1	H-2	H-3	H-4	H-5a; H-5b
iPrO-P iPrO BzO [°] OBz 20	DMSO ⁱ	5.38 d 1,2 = 1.5	5.51 dd 2,1 = 1.5 2,3 = 5.0	5.54 dd 3,2 = 5.0 3,4 = 5.8	$\begin{array}{l} 4.42 \ \text{dd} \\ 4.3 = 5.8 \\ 4.5a = 4.6 \\ 4.5b = 5.1 \end{array}$	3.68 ddd 5a, 5b = 12.0; 5a,4 = 4.6 5a, $OH = 5.8$ 3.61 ddd 5b, 5a = 12.0; 5b,4 = 5.1 5b, $OH = 6.0$
$iPrO - P' \rightarrow O \rightarrow O \rightarrow OAc$ $iPrO - BzO \rightarrow OBz$ beta and ab ha epimers (76:24)	DMSO ^j	5.65 d 1,2 = 2.1 5.64 d 1,2 = 0.9	5.60 dd 2,1 = 2.1 2,3 = 5.1 5.59 dd 2,1 = 0.9 2,3 = 5.1	5.67 dd 3,2 = 5.1 3,4 = 2.4 5.67 dd 3,2 = 5.1 3,4 = 4.9	6.46 d 4,3 = 2.4 6.60 d 4,3 = 4.9	_

^a 1-OMe: 3.33 s; 2-OH: 5.12 br; 5-OTol: 7.84 m (2x o-ArH), 7.35 m (2x m-ArH), 2.385 s (CH₃).

^b **1-OMe**: 3.22 s; **2-OH**: 5.70 br; **5-OTol**: 7.88 m (2x *o*-ArH), 7.35 m (2x *m*-ArH), 2.38 s (CH₃).

^c α-anomer: 1-OAc: 1.88 s; 2-OAc: 2.13 s; 5-OTol: 7.92 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 2.39 s (CH₃); β-anomer: 1-OAc: 2.07 s; 2-OAc: 2.12 s; 5-OTol: 7.87 m (2x *o*-ArH), 7.36 m (2x *m*-ArH), 7.36 m (2x m

7.34 m (2x *m*-ArH), 2.39 s (CH₃). ^d **2-OH**: 5.66 bd, J = 5.7 Hz; **5-OH**: 4.96 bt, J = 5.5 Hz; **O-CH₂-P** = **O(OiPr)₂**: 3.84 dd, J = 13.8, 9.0 Hz and 3.73 dd, J = 13.8, 9.1 Hz (P-CH₂-O), 4.59 m, 2H, 1.235 d, J = 6.2 Hz, 1.237 d, J = 6.2 Hz, 1.244 d, J = 6.2 Hz and 1.246 d, J = 6.2 Hz (2x OiPr).

^e **2-OB***z*: 8.01 m (2x *o*-ArH), 7.57 m (2*x m*-ArH), 7.71 m (*p*-ArH); **5-OH**: 5.14 bt, *J* = 5.6 Hz; **O**-CH₂-**P** = **O**(**OiPr**)₂: 3.95 dd, *J* = 13.9, 9.0 Hz and 3.87 dd, *J* = 13.9, 8.9 Hz (P-CH₂-O), 4.69 m, 2H, 1.213 d, 3H, *J* = 6.2 Hz, 1.218 d, 3H, *J* = 6.2 Hz, 1.223 d, 3H, *J* = 6.2 Hz and 1.231 d, 3H, *J* = 6.2 Hz (2x OiPr).

^f **2-OBz**: 8.00 m (2x o-ArH), 7.57 m (2x *m*-ArH), 7.71 m (*p*-ArH); **O-CH₂-P** = **O(OiPr)₂**: 4.06 dd, *J* = 13.8, 8.2 Hz and 3.92 dd, *J* = 13.8, 9.4 Hz (P-CH₂-O), 4.59 m, 2H, 1.210 d, 6H, *J* = 6.2 Hz, 1.221 d, 3H, *J* = 6.2 Hz, 1.225 d, 3H, *J* = 6.2 Hz (2x OiPr).

^g **2-OB***z*: 8.02 m (2x o-ArH), 7.58 m (2x m-ArH), 7.73 m (*p*-ArH); **4-OA***c*: 2.10 s; **O**-**CH**₂-**P** = **O**(**OiPr**)₂: 3.92 m, 2H (P-CH₂-O), 4.60 m, 2H, 1.205 d, 3H, *J* = 6.0 Hz, 1.213 d, 3H, *J* = 6.2 Hz, 1.216 d, 3H, *J* = 6.0 Hz and 1.231 d, 3H, *J* = 6.1 Hz (2x OiPr).

b $O-CH_2-P = O(OiPr)_2$: 3.84 dd, J = 13.8, 8.9 Hz and 3.65 dd, J = 13.8, 8.7 Hz (P-CH₂-O), 4.58 m, 2H, 1.245 d, 3H, J = 6.2 Hz, 1.242 d, 3H, J = 6.2 Hz and 1.234 d, 6H, J = 6.6 Hz (2x OiPr).

ⁱ **2-OBz**: 7.87 m (2x o-ArH), 7.47 m (2x m-ArH), 7.65 m (p-ArH); **3-OBz**: 7.85 m (2x o-ArH), 7.44 m (2x m-ArH), 7.62 m (p-ArH); **5-OH**: 5.08 t, *J* = 5.8 and 6.0 Hz; **O-CH₂-P** = **O(OiPr)**₂: 4.00 dd, *J* = 13.8, 9.0 Hz and 3.87 dd, *J* = 13.8, 8.9 Hz (P-CH₂-O), 4.64 m, 2H, 1.260 d, 6H, *J* = 6.2 Hz, 1.264 d, 3H, *J* = 6.2 Hz and 1.268 d, 3H, *J* = 6.2 Hz (2x OiPr). ^j **Major epimer: 2-OBz**: 7.88 m (2x o-ArH), 7.465 m (2x m-ArH), 7.655 m (p-ArH); **3-OBz**: 7.88 m (2x o-ArH), 7.465 m (2x m-ArH), 7.655 m (p-ArH); **0-CH₂-P** = **O(OiPr)**₂: 3.95 dd, *J* = 13.7, 9.3 Hz (P-CH₂-O), 4.64 m, 2H, 1.250 d, 3H, *J* = 6.2 Hz, 1.266 d, 3H, *J* = 6.2 Hz and 1.270 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.92 dd, *J* = 13.7, 9.3 Hz (P-CH₂-O), 4.64 m, 2H, 1.250 d, 3H, *J* = 6.2 Hz, 1.266 d, 3H, *J* = 6.2 Hz and 1.270 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.92 dd, *J* = 13.7, 9.3 Hz (P-CH₂-O), 4.64 m, 2H, 1.250 d, 3H, *J* = 6.2 Hz, 1.266 d, 3H, *J* = 6.2 Hz and 1.270 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.92 dd, *J* = 13.7, 9.3 Hz (P-CH₂-O), 4.64 m, 2H, 1.250 d, 3H, *J* = 6.2 Hz, 1.266 d, 3H, *J* = 6.2 Hz and 1.270 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.96 dd, *J* = 13.7, 8.7 Hz (P-CH₂-O), 4.64 m, 2H, 1.252 d, 6H, *J* = 6.2 Hz, 1.273 d, 3H, *J* = 6.2 Hz and 1.277 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.96 dd, *J* = 13.7, 8.7 Hz (P-CH₂-O), 4.64 m, 2H, 1.252 d, 6H, *J* = 6.2 Hz, 1.273 d, 3H, *J* = 6.2 Hz and 1.277 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**95 dd, *J* = 13.7, 9.0 Hz and 3.96 dd, *J* = 13.7, 8.7 Hz (P-CH₂-O), 4.64 m, 2H, 1.252 d, 6H, *J* = 6.2 Hz, 1.273 d, 3H, *J* = 6.2 Hz and 1.277 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**99 dd, *J* = 13.7, 9.0 Hz and 3.96 dd, *J* = 13.7, 8.7 Hz (P-CH₂-O), 4.64 m, 2H, 1.252 d, 6H, *J* = 6.2 Hz, 1.273 d, 3H, *J* = 6.2 Hz and 1.277 d, 3H, *J* = 6.2 Hz (2x OiPr). **3.**99 dd, *J* = 13.7, 9.0 Hz and 3.96 dd, *J* = 13.7, 8.7 Hz (

^k Coupling constants are written in italics in a shortened form (e.g. instead J(1',2') = 8.6 Hz we type simply 1,2 = 8.6).

4.11. (2R,3R,4R,5S)-5-(6-benzamido-9H-purin-9-yl)-2-((diisopropoxyphosphoryl)methoxy)-4-fluorotetrahydrofuran-3-yl benzoate (**16c**)

Nucleoside phosphonate **16c** was prepared as a side product of the preparation of nucleoside phosphonate **16a**.

Alpha anomer was isolated as a slower eluting isomer in a yield of 980 mg (23%). HRMS $(M + Na)^+$ for $C_{30}H_{33}O_8N_5FNaP$ calculated: 664.19430; measured: 664.19348; IR (coating, cm⁻¹): 3416, 3238, 3164, 3064, 2980, 2934, 2875, 1733, 1700, 1603, 1583, 1511, 1490, 1452, 1386, 1375, 1340, 1316, 1296, 1275, 1252, 1178, 1118, 1105, 1080, 1027, 996, 904, 889, 798, 753, 710, 686, 644, 506. For NMR data, see table IIa and IIb.

4.12. (2R,3R,4R,5S)-5-(2-acetamido-6-((diphenylcarbamoyl)oxy)-9H-purin-9-yl)-2-((diisopropoxyphosphoryl)methoxy)-4fluorotetrahydrofuran-3-yl benzoate (**16d**)

Nucleoside phosphonate **16d** was prepared as a side product of the preparation of phosphonate nucleoside **16b**. Alpha anomer was isolated in a yield of 430 mg (13%) as a slower eluting isomer. HRMS $(M + Na)^+$ for C38H40O10N6FNaP calculated: 813.24198; measured: 813.24215; IR (coating, cm-1): 3217, 3064, 2980, 2870, 2854, 1738, 1700, 1623, 1600, 1591, 1511, 1492, 1452, 1386, 1375, 1335, 1316, 1272, 1246, 1179, 1170, 1135, 1121, 1106, 1078, 1061, 1026, 1003, 991, 907, 889, 758, 713, 700, 695, 666, 641, 532, 510. For NMR data, see table IIa and IIb.

4.13. ((((2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic acid (**5a**)

Bromotrimethylsilane (410 μ L; 3.1 mmol) was added to the phosphonate **16a** (200 mg; 0.31 mmol) in pyridine (5 mL), and the mixture was stirred for 8 h at room temperature and concentrated. The residue was diluted with saturated NH₃ in 50% MeOH/H₂O (20 mL), stirred for 16 h at room temperature, and then concentrate. The nucleotide **5a** was isolated by reverse phase chromatography (first 10 min of isocratic elution with 0.1 M TEAB, then 40 min gradient 0–15% MeOH in 0.1 M TEAB) in a yield of 100 mg (92%): HRMS (M – H)⁻ for C₁₀H₁₂O₆N₅FP calculated: 348.05147; measured: 348.05117; IR (KBr, cm₋₁): 3388, 3273, 2755, 2679, 2530, 2492, 1687, 1642, 1575, 1474, 1421, 1296, 1245, 1212, 1087, 1050, 796, 720, 642. For NMR data, see table IIa and IIb.

4.14. ((((2R,3R,4R,5R)-5-(2-amino-6-hydroxy-9H-purin-9-yl)-4fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic acid (**5b**)

The compound **5b** was prepared according to the synthesis of compound **5a**, starting from **16b** (586 mg; 0.74 mmol) in a yield of 229 mg (84%): HRMS (M – H)⁻ for $C_{10}H_{12}O_7N_5FP$ calculated: 364.04639; measured: 364.04587; IR (coating, cm⁻¹): 3466, 3129, 2958, 2934, 2874, 2743, 1693, 1654, 1610, 1532, 1488, 1467, 1377, 1142, 1106, 1068, 889, 796, 779, 688. For NMR data, see table IIa and IIb.

4.15. 1,2,3,5-Tetraacetyl-L-ribofuranose (18)

Acetyl chloride (3.5 mL; 50 mmol) in 100 mL of dry MeOH was added to a solution of L-ribose 17 (100 g; 0.67 mol) in dry MeOH (1200 mL), and the reaction mixture was stirred for 16 h at 4 °C. Afterwards, it was filtered through the column of Dowex® 1 \times 4

Table Ib ${}^{13}C^{31}P$ and ${}^{19}E$ NMR data of compounds **10**-15 and **19**-21 k

(150 mL; OH⁻ cycle) and evaporated. The crude mixture was diluted with dioxane and co-evaporated (3×100 mL). H₂SO₄ (3 mL; 56 mmol) in Ac₂O (20 mL) was added dropwise to the solution of crude methyl L-ribofuranoside in AcOH (250 mL) and Ac₂O (500 mL) at 0 °C, and the reaction mixture was stirred for 2 h at room temperature. Next, the reaction was quenched by the

Compound	Solvent	C-1	C-2	C-3	C-4	C-5	³¹ P	¹⁹ F
$\begin{array}{c} \text{MeO}_{n,1} \bigcirc 4 & 5 \\ \text{HO}^{2} & F \\ \textbf{10} \\ (alpha-anomer) \end{array}$	DMSO ^a	102.64	71.74 2,F = 16.4	90.88 3,F = 185.2	80.09 4,F = 24.8	64.09 5,F = 10.3	_	-189.10
$\begin{array}{c} MeO \\ HO \\ HO \\ \hline F \\ 10 \\ (beta-anomer) \end{array}$	DMSO ^b	108.19 1,F = 3.2	73.35 2,F = 15.0	92.11 3,F = 186.6	78.47 4,F = 25.0	64.03 5,F = 5.9	_	-205.56
AcO m O O O O O O O O O O O O O O O O O O	DMSO ^c β-epimer α-epimer	98.20 1,F = 1.9 93.30	74.69 2,F = 14.2 71.00 2,F = 14.7	89.68 3,F = 189.9 88.84 3,F = 188.1	81.91 4,F = 24.7 81.09 4,F = 24.8	63.20 5,F = 6.8 63.63 5,F = 10.1	_	-203.10 -190.71
beta and alpha anomers (56:44) PO - P - O - O - O - O - O - O - O - O -	DMSO d	107.71 1,P = 12.0 1,F = 2.4	73.56 2,F = 15.3	82.48 3,F = 185.8	82.32 4,F = 22.2	61.78 5,F = 6.3	20.56	-203.93
iPrO-P iPrO BzO F 13	DMSO ^e	105.30 1,P = 12.2 1,F = 1.4	75.56 2,F = 14.2	90.81 3,F = 188.1	83.40 4, <i>F</i> = 21.9	61.29 5,F = 7.3	19.95	-201.10
iPrO-P iPrO BzO F 14	DMSO ^f	105.47 1,P = 12.1	74.82 2,F = 13.8	92.21 3,F = 193.1	80.56 4,F = 23.4	170.81 5,F = 9.2	19.92	-199.95
iPrO - P O O $OAciPrO$ BZO F	DMSO ^g data for major β-epimer only	107.10 1,P = 13.4	75.26 2,F = 14.3	91.96 3,F = 188.8	98.26 4,F = 33.1	_	18.98	-206.24
iPrO-P iPrO O HO OH HO OH	DMSO ^h	107.73 1,P = 11.6	74.40	70.73	84.03	62.80	21.08	_
iPrO-P iPrO BzO OH	DMSO ⁱ	105.23 1,P = 12.2	74.87	72.27	82.20	61.98	20.12	_

20

Table Ib (continued)

Compound	Solvent	C-1	C-2	C-3	C-4	C-5	³¹ P	¹⁹ F
	DMSO ^j β-epimer	106.98 1,P = 13.1	74.63	75.29	98.82	_	18.03	-
iPrO BZO OBz	α-epimer	105.53 1,P = 12.3	72.28	70.16	93.14	_	19.19	_

21 beta and alpha epimers (76:24)

Substituents

a 1-OMe: 55.11; 2-OTol: 165.61 (C=O), 126.77 (i-ArC), 129.43 (2x o-ArC), 129.61 (2x m-ArC), 144.11 (p-AQrC), 21.38 (CH₃).

^b 1-OMe: 55.16; 2-OTol: 165.65 (C=O), 126.92 (i-ArC), 129.46 (2x o-ArC), 129.53 (2x m-ArC), 144.03 (p-ArC), 21.37 (CH₃).

^c α-anomer: 1-OAc: 169.19 (C=O), 20.74 (CH₃); 2-OAc: 169.53 (C=O), 20.48 (CH₃); 2-OTol: 165.42 (C=O), 126.71 (*i*-ArC), 129.53 (2x *o*-ArC), 129.58 (2x *m*-ArC), 144.20 (*p*-ArC), 21.35 (CH₃); β-anomer: 1-OAc: 169.77 (C=O), 21.06 (CH₃); 2-OAc: 169.73 (C=O), 20.40 (CH₃); 2-OTol: 165.50 (C=O), 126.59 (*i*-ArC), 129.48 (2x *o*-ArC), 129.56 (2x *m*-ArC), 144.20 (*p*-ArC), 144.20 (*p*-ArC), 21.34 (CH₃).

^d **O-CH₂-P** = **O(OiPr)**₂: 61.12 d, *J* = 166.9 Hz (P-CH₂-O), 70.70 d, *J* = 5.0 Hz and 70.57 d, *J* = 5.0 Hz (2x O-CH<), 23.93 d, *J* = 4.6 Hz (2x CH₃), and 24.06 d, *J* = 3.4 Hz (2x CH₃). ^e **2-OBz**: 164.92 (C=O), 128.74 (*i*-ArC), 129.67 (2x o-ArC), 129.22 (2x m-ArC), 134.29 (p-ArC), **O-CH₂-P** = **O(OiPr)**₂: 61.46 d, *J* = 166.3 Hz (P-CH₂-O), 70.81 d, *J* = 6.3 Hz (2x O-CH<), 23.88 d, *J* = 4.6 Hz (CH₃), 23.87 d, *J* = 4.6 Hz (CH₃), 24.03 d, *J* = 3.7 Hz (CH₃) and 24.03 d, *J* = 3.7 Hz (CH₃).

^f **2-OBz:** 164.82 (C=O), 128.61 (*i*-ArC), 129.68 (2x *o*-ArC), 129.19 (2x *m*-ArC), 134.30 (*p*-ArC), **O**-CH₂-P = **O**(**OiPr**)₂: 60.85 d, *J* = 165.6 Hz (P-CH₂-O), 70.77 d, *J* = 6.2 Hz and 70.80 d, *J* = 6.2 Hz (2x O-CH<), 23.82 d, *J* = 4.7 Hz (CH₃), 23.86 d, *J* = 4.7 Hz (CH₃), 23.97 d, *J* = 3.6 Hz (CH₃) and 24.00 d, *J* = 3.8 Hz (CH₃).

^g **2-OBz:** 164.86 (C=O), 128.41 (*i*-ArC), 129.81 (2x *o*-ArC), 129.32 (2x *m*-ArC), 134.54 (*p*-ArC), **4-OAc:** 169.17 (C=O), 21.03 (CH₃); **0**-CH₂-P = **O(OiPr)**₂: 62.32 d, *J* = 166.0 Hz (P-CH₂-O), 70.95 d, *J* = 6.2 Hz and 70.93 d, *J* = 6.1 Hz (2x O-CH<), 23.87 d, *J* = 4.4 Hz (2x CH₃), 24.03 d, *J* = 3.5 Hz (2x CH₃).

^h **O-CH₂-P** = **O(OiPr)**₂: 60.47 d, *J* = 166.9 Hz (P-CH₂-O), 70.46 d, *J* = 6.0 Hz and 70.42 d, *J* = 6.0 Hz (2x O-CH<), 24.02 d, *J* = 4.5 Hz (2x CH₃), 23.89 d, *J* = 4.8 Hz (2x CH₃). ⁱ **2-OB**₂: 164.73 (C=O), 128.88 (*i*-ArC), 129.43 (2x o-ArC), 129.01 (2x *m*-ArC), 134.09 (*p*-ArC), **3-OB**₂: 165.06 (C=O), 128.73 (*i*-ArC), 129.37 (2x o-ArC), 128.92 (2x *m*-ArC), 133.94 (*p*-ArC); **0-CH₂-P** = **O(OiPr)**₂: 61.07 d, *J* = 166.6 Hz (P-CH₂-O), 70.71 d, *J* = 6.3 Hz (2x O-CH<), 23.86 d, *J* = 4.5 Hz (2x CH₃), 24.00 d, *J* = 3.7 Hz (2x CH₃).

^j Major β-epimer: 2-OBz: 164.67 (C=O), 128.42 (*i*-ArC), 129.56 (2x o-ArC), 129.03 (2x m-ArC), 134.25 (*p*-ArC), **3-OBz**: 164.62 (C=O), 128.41 (*i*-ArC), 129.50 (2x o-ArC), 129.00 (2x m-ArC), 134.21 (*p*-ArC), **3-OBz**: 164.62 (C=O), 128.41 (*i*-ArC), 129.50 (2x o-ArC), 129.00 (2x m-ArC), 134.21 (*p*-ArC), **3-OBz**: 164.62 (C=O), 128.41 (*i*-ArC), 129.50 (2x o-ArC), 129.00 (2x m-ArC), 134.21 (*p*-ArC), **3-OBz**: 164.67 (C=O), 128.41 (*i*-ArC), 129.50 (2x o-ArC), 129.00 (2x m-ArC), 134.21 (*p*-ArC), **3-OBz**: 164.67 (C=O), 128.41 (*i*-ArC), 129.50 (2x o-ArC), 129.00 (2x m-ArC), 134.21 (*p*-ArC), **3-OBz**: 164.70 (C=O), 20.81 d, 2C, *J* = 4.6 Hz (2x CH₃), 23.96 d, *J* = 3.5 Hz and 23.97 d, *J* = 3.7 Hz (2x CH₃); **4-OAc**: 169.39 (C=O), 20.95 (CH₃); **minor** α-**epimer**: **2-OBz**: 164.70 (C=O), 128.83 (*i*-ArC), 129.54 (2x o-ArC), 129.14 (2x m-ArC), 134.23 (*p*-ArC), **3-OBz**: 164.46 (C=O), 128.44 (*i*-ArC), 129.28 (2x o-ArC), 129.03 (2x m-ArC), 134.15 (*p*-ArC); **O-CH₂-P = O(OiPr)**₂: 61.82 d, *J* = 166.1 Hz (P-CH₂-O), 70.83 d, *J* = 6.2 Hz and 70.77 d, *J* = 6.2 Hz (2x O-CH<), 23.98 d, *J* = 3.7 Hz (2x CH₃), 23.86 d, *J* = 4.6 Hz (CH₃) and 23.84 d, *J* = 4.6 Hz (CH₃); **4-OAc**: 169.27 (C=O), 20.85 (CH₃).

^k Coupling constants are written in italics in a shortened form (e.g. instead J(C2,F) = 16.4 Hz we type simply 2,F = 16.4).

addition of 100 mL of dry MeOH, and after 5 min of stirring, AcONa (6 g, 73 mmol) was added. The reaction product was evaporated, diluted with toluene (1 L) and washed with brine (500 mL) and sat. NaHCO₃ (aq., 500 mL). The organic layer was dried over MgSO₄, filtrated and evaporated. Crude acetate **18** was used for the next step without further purification.

4.16. Diisopropylphosphonomethyl β -L-ribofuranoside (**19**)

Hexamethyldisilazane (400 mL) and a catalytic amount of saccharin were added to diisopropyl (hydroxymethyl)phosphonate (137 g; 700 mmol), and the reaction mixture was stirred for 8 h at 100 °C. Hexamethyldisilazane was evaporated, and the silylated phosphonate was coevaporated with toluene (3 \times 100 mL). The crude acetate 18 was added to the silylated phosphonate in dry ACN (1.5 L). Finally, SnCl₄ (100 mL; 850 mmol) was carefully added. The reaction mixture was stirred for 1 h at 55 °C, then quenched with 280 mL of pyridine, filtered and concentrated. Next, the crude mixture was dissolved in sat. NH₃ in MeOH (1 L), and stirred for 16 h at room temperature. Product 19 was isolated by chromatography on a silica gel (0-10% MeOH in CHCl₃) in a yield of 195 g (90% over 4 steps): HRMS $(M + Na)^+$ for $C_{12}H_{25}O_8NaP$ calculated: 351.11793; measured: 351.11835; IR (CHCl₃, cm⁻¹): 3355, 2981, 2934, 2878, 1467, 1454, 1387, 1376, 1234, 1180, 1104, 1054, 996, 891, 721. For NMR data, see table Ia and Ib.

4.17. Diisopropylphosphonomethyl 2,3-O-dibenzoyl- β -*L*-ribofuranoside (**20**)

TBDPSCl (20 mL; 77 mmol) was added dropwise to the solution of phosphonate **19** (22.7 g; 69 mmol) in dry pyridine (500 mL), and the reaction mixture was stirred for 16 h at room temperature. Next, Et₃N (20 mL; 140 mmol) and DMAP (1 g; 8 mmol) were added, followed by the dropwise addition of BzCl (17 mL; 140 mmol). The mixture was then stirred for another 8 h at room

temperature. The reaction was guenched by the addition of water (50 mL), and concentrated. The residue was diluted with Et₂O (1 L), and extracted with a saturated solution of brine (500 mL) and sodium bicarbonate (2×500 mL). The organic phase was dried over Na₂SO₄, filtered, concentrated and dried by co-evaporation with toluene (3 \times 100 mL). Next, the residue was diluted with THF (400 mL), TBAF \times 3H₂O was added (25.3 g; 80 mmol), and the mixture was stirred for 1 h at room temperature. The reaction was quenched by the addition of 20 mL of water, concentrated, diluted with Et₂O (500 mL) and extracted between Et₂O and saturated aqueous NH₄Cl (3 \times 300 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. Product **20** was isolated by chromatography on a silica gel (0-50% EtOAc in toluene) in a yield of 28.85 g (78%): HRMS $(M + Na)^+$ for $C_{42}H_{51}O_{10}NaPSi$ calculated: 797.28813; measured: 797.28842; IR (CHCl₃, cm⁻¹): 2978, 2892, 1732, 1602, 1585, 1491, 1472, 1464, 1452, 1428, 1386, 1375, 1362, 1316, 1276, 1178, 1125, 1113, 1070, 1028, 991, 938, 889, 708, 615, 505. For NMR data, see table Ia and Ib.

4.18. (3R,4S,5R)-2-acetoxy-5-((diisopropoxyphosphoryl)methoxy) tetrahydrofuran-3,4-diyl dibenzoate (**21**)

2,2,6,6-Tetramethylpiperidine 1-oxyl (156 mg; 1 mmol) and (diacetoxyiodo)benzene (6.5 g; 20 mmol) were added to the phosphonate **20** (5.3 g; 10 mmol) in 30% water in ACN (100 mL), and the mixture was stirred for 16 h at room temperature. The reaction was quenched by the addition of 20 mL of EtOH, evaporated and co-evaporated with water (5 \times 50 mL) and then with toluene (3 \times 30 mL). The reaction intermediate was used in the next step without further purification.

Pb(OAc)₄ (5.5 g; 12.3 mmol) was added to crude carboxylic acid dissolved in 100 mL dry THF. The reaction mixture was stirred for 2 h at room temperature, filtered and concentrated. Product **21** was isolated by chromatography on a silica gel (0–30% EtOAc in toluene) in a yield of 2.95 g (53% over two steps): HRMS (M + Na)⁺

 Table IIa

 ¹H NMR data of compounds 5, 6, 16 and 22–27 ×

Compound	Solvent	H-1'	H-2'	H-3'	H-4'	Base
$HO - P \rightarrow O \xrightarrow{4'} O \xrightarrow{1'} B \rightarrow O \xrightarrow{4'} O \xrightarrow{1'} B \rightarrow O \rightarrow$	D ₂ O ^a	6.44 dd 1,2 = 4.3 1,F = 14.6	5.71 dt 2,F = 50.8 2,1 = 4.3 2,3 = 4.4	4.59 ddd 3,2 = 4.4 3,F = 7.1 3,4 = 2.0	5.33 dd 4,3 = 2.0 4,F = 1.7	H-2: 8.15 s H-8: 8.33 s
5a B = Adenin-9-yl HO- P O B OH F	D ₂ O ^b	6.31 dd 1,2 = 4.2 1,F = 15.4	5.72 dt 2, $F = 51.1$ 2,1 = 4.2 2,3 = 4.4	4.62 ddd 3.2 = 4.4 3.F = 8.1 3.4 = 2.3	5.32 dd 4,3 = 2.3 4,F = 1.6	H8: 8.06 s
5b B = Guanin-9-yl Pro - P - O - O - B Pro - B - F	DMSO ^c	6.74 dd 1,2 = 3.6 1,F = 17.0	6.35 ddd 2,1 = 3.6 2,F = 49.8 2,3 = 4.9	5.91 ddd 3,2 = 4.9 3,F = 9.2 3,4 = 2.5	5.71 dd 4.3 = 2.5 4.F = 1.0	H-2: 8.80 s H-8: 8.65 s
16a B = 6- <i>N</i> -benzoyladenin-9-yl $PrO-P \to O \to B$ $PrO-P \to O \to B$ $BzO \to F$ 16b B = 2 N append 6 O diphonul	DMSO d	6.59 dd 1,2 = 3.2 1,F = 17.6	6.31 ddd 2,1 = 3.2 2,F = 49.9 2,3 = 5.0	$6.02 \text{ ddd} \\ 3.2 = 5.0 \\ 3.F = 10.3 \\ 3.4 = 2.7$	5.70 dd 4,3 = 2.7 4,F = 0.6	H-8: 8.59 s
iPrO = 2 - iV - acetyr-o-O-clippinenyrcarbamoylguanin-9-yliPrO = 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	DMSO ^e	6.995 dd 1,2 = 3.7 1,F = 16.8	5.79 ddd 2,1 = 3.7 2,F = 52.2 2,3 = 4.5	5.72 ddd 3,2 = 4.5 3,F = 15.3 3,4 = 3.5	5.95 dd 4,3 = 3.5 4,F = 1.3	H-2: 8.81 s H-8: 8.60 d 8,F = 2.7
16c B = 6- <i>N</i> -benzoyladenin-9-yl iPrO-P iPrO BzO F	DMSO ^f	6.82 dd 1,2 = 3.8 1,F = 16.2	5.74 ddd 2,1 = 3.8 2,F = 52.1 2,3 = 4.7	5.67 ddd 3,2 = 4.7 3,F = 16.1 3,4 = 3.9	6.08 dd 4,3 = 3.9 4,F = 1.2	H-8: 8.55 d 8,F = 2.5
16d B = 2- <i>N</i> -acetyl-6- <i>O</i> -diphenyl carbamoylguanin-9-yl HO-P OH HO HO HO	D ₂ O ^g	6.02 d 1,2 = 6.5	4.97 ddd 2,1 = 6.5 2,3 = 4.4 2,4 = 0.6	4.37 dt 3,2 = 4.4 3,4 = 0.6 3,P = 0.6	5.21 t 4,3 = 0.6 4,2 = 0.6	H-8: 8.09 s
6a B = guanin-9-yl HO- P O O B OH HO OH	D ₂ O ^h	6.42 d 1,2 = 5.8	5.55 dd 2,1 = 5.8 2,3 = 4.6	4.52 dd 3,2 = 4.6 3,4 = 0.7	5.31 d 4,3 = 0.7	H-2: 8.34 s
6b B = 8-azaadenin-9-yl HO-P O B O B	D ₂ O ^{<i>i</i>}	6.20 d 1,2 = 6.1	5.39 dd 2,1 = 6.1 2,3 = 4.6	4.46 dd 3,2 = 4.6 3,4 = 0.8	5.27 d 4,3 = 0.8	-
6c B = 8-azaguanin-9-yl PrO - P PrO - P PrO - P PrO - P	DMSO ^j	6.87 d 1,2 = 5.7	6.51 dd 2,1 = 5.7 2,3 = 5.0	5.96 dd 3,2 = 5.0 3,4 = 1.1	5.70 d 4,3 = 1.1	H-2: 8.78 s H-8: 8.71 s
22a B = 6-N-benzoyladenin-9-yl iPrO - P O B BzO OBz	DMSO ^k	6.71 d 1,2 = 5.7	6.46 dd 2,1 = 5.7 2,3 = 5.0	5.94 dd 3,2 = 5.0 3,4 = 1.2	5.68 d 4,3 = 1.2	H-8: 8.645 s

22b B = 2-*N*-acetyl-6-O-diphenyl carbamoylguanin-9-yl

T. Lášek, J. Dobiáš, M. Buděšínský et al.

Table IIa (continued)

Compound	Solvent	H-1'	H-2'	H-3'	H-4'	Base
	DMSO ¹	6.245 d 1,2 = 6.4	5.22 td 2,1 = 6.4 2,3 = 4.4 2, OH = 6.7	4.15 td 3,2 = 4.4 3,4 = 1.1 3, OH = 4.5	5.68 d 4,3 = 1.1	H-2: 8.33 s NH ₂ : 8.53 br and 8.18 br
22c B = 8-azaadenin-9-yl						
iPrO-P iPrO BZO OBZ	DMSO ^m	6.59 d 1,2 = 4.7	6.52 t 2,1 = 4.7 2,3 = 4.8	5.93 dd 3,2 = 4.7 3,4 = 2.1	5.72 d 4,3 = 2.1	CO-NH: 11.15 bs
22d B = 8-azaguanin-9-yl						
	DMSO ⁿ	6,94 d 1,2 = 4.0	6.56 dd 2,1 = 4.0 2,3 = 5.1	5.95 dd 3,2 = 5.1 3,4 = 2.3	5.765 d 4,3 = 2.3	CONH: 11.47 bs NH ₂ : 6.60 br
22e B = 8-azaguanin-7-yl						
BzOOBz	DMSO ^o	6.95 d 1,2 = 4.2	6.70 q 2,1 = 4.2 2,3 = 5.1	6.03 dd 3,2 = 5.1 3,4 = 2.2	5.76 d 4,3 = 2.2	H-2: 8.36 s NH ₂ : 8.67 br and 8.26 br
o iPrO-PO-O iPrO BzO OBz	DMSO ^p	7.14 d 1,2 = 6.4	6.18 t 2,1 = 6.4 2,3 = 6.0	5.73 dd 3,2 = 6.0 3,4 = 1.3	6.10 d 4,3 = 1.3	H-2: 8.295 s NH ₂ : 8.37 br and 8.15 br
25 B = 8-azaadenin-7-yl						
HO - P - O -	D ₂ O ^{<i>q</i>}	6.52 dd 1,2 = 4.3 1,F = 14.5	5.78 dt 2,F = 50.8 2,1 = 4.3 2,3 = 4.5	4.65 ddd 3.2 = 4.5 3.4 = 1.8 3.F = 7.0	5.40 t 4,3 = 1.8 4,F = 1.8	H-2: 8.24 s H-8: 8.42 s
26a B = adenin-9-yl						
$\begin{array}{c} O & O \\ HO - P - O - P - O - P \\ HO & HO \\ HO & HO \\ HO \end{array} \xrightarrow{I}_{HO} \begin{array}{c} O \\ O \\ O \\ O \\ HO \\ HO \\ HO \\ HO \\ HO$	D ₂ O ^r	6.32 dd 1,2 = 4.5 1,F = 15.1	5.77 dt 2,F = 51.0 2,1 = 4.5 2,3 = 4.5	$\begin{array}{l} 4.66 \ \text{ddd} \\ 3.2 = 4.5 \\ 3.4 = 1.8 \\ 3.F = 6.7 \end{array}$	5.36 t 4,3 = 1.8 4,F = 1.9	H-8: 8.05 s
26b B = guanin-9-yl						
0 0 0 HO-P-O-P-O-P HO HO HO HO HO O HO	D ₂ O ^s	6.04 d 1,2 = 6.7	5.01 ddd 2,1 = 6.7 2,3 = 4.5 2,4 = 0.5	4.42 dt 3,2 = 4.5 3,4 = 0.6 3,P = 0.6	5.27 t 4,3 = 0.6 4,2 = 0.5	H-8: 8.09 s
26d B = guanin-9-yl						
0000 HO-P-O-P-O-P-O-O-B HÓ HÓ HÓ HÔ OH	D ₂ O ^t	6.43 d 1,2 = 6.2	5.56 dd 2,1 = 6.2 2,3 = 4.6	4.555 dd 3,2 = 6.2 3,4 = 0.9	5.395 d 4,3 = 0.9	H-2: 8.37 s
26e B = 8-azaadenin-9-yl						
	D ₂ O ^{<i>u</i>}	6.235 d 1,2 = 6.6	5.43 dd 2,1 = 6.6 2,3 = 4.6	4.49 bd 3,2 = 4.6 3,4 < 1.0	5.34 bs 4,3 < 1.0	-
26f B = 8-azaguanin-9-yl						
	DMSO ^v Major	6.39 dd 1,2 = 5.0 1,F = 14.7	5.81 dt 2, $F = 51.3$ 2, $1 = 5.0$ 2, $3 = 4.5$	4.37 qd 3,2 = 4.5 3,4 = 1.7 3,F = 5.0	5.16 t 4,3 = 1.7 4,F = 1.7	H-2: 8.17 s H-8: 8.25 s
$BuO - \bigvee_{OPh} OPh = OPh $ HO F 27a B = adenin-9-vl	Minor	6.38 dd 1,2 = 5.0 1,F = 14.7	5.78 dt 2,F = 51.3 2,1 = 5.0 2,3 = 4.5	3, $OH = 5.0$ 4.355 qd 3,2 = 4.5 3,4 = 1.7 3,F = 5.0	5.02 t 4,3 = 1.7 4,F = 1.7	H-2: 8.17 s H-8: 8.21 s
Mixture of diastereomers 53:47				3, OH = 5.0		

(continued on next page)

Table IIa (continued)

Compound	Solvent	H-1'	H-2'	H-3'	H-4'	Base
	DMSO ^w Major	6.175 dd 1,2 = 5.4 1,F = 14.3	5.605 dt 2,F = 51.6 2,1 = 5.4 2,3 = 4.3	4.27 qd 3,2 = 4.3 3,4 = 1.7 3,F = 5.0 3, OH = 5.1	5.11 t 4,3 = 1.7 4,F = 1.6	H-8: 7.79 s
BuO OPh OPh F 27b B = guanin-9-yl	minor	6.16 dd 1,2 = 5.6 1,F = 14.2	5.58 dt 2,F = 51.7 2,1 = 5.6 2,3 = 4.3	4.25 qd 3,2 = 4.3 3,4 = 1.6 3,F = 5.0 3, OH = 5.1	4.96 t 4,3 = 1.6 4,F = 1.5	H-8: 7.77 s

Substituents.

^a **O**–**CH**₂–**P** = **O**(**OH**)₂: 3.81 dd, J = 12.9, 8.9 Hz and 3.62 dd, J = 12.9, 9.7 Hz.

^b **O**–**CH**₂–**P** = **O**(**OH**)₂: 3.76 m and 3.53 m.

^c **3-OBz**: 8.10 m (2x *o*-ArH), 7.62 m (2x *m*-ArH), 7.465 m (*p*-ArH); **O**-**CH**₂-**P** = **O**(**OiPr**₂: 3.97 dd, *J* = 13.9; 9.1 Hz and 3.92 dd, *J* = 13.9; 9.1 Hz (P-CH₂-O), 4.54 m (2x O-CH<), 1.204 d, *J* = 6.2 Hz, 1.207 d, *J* = 6.2 Hz, 1.233 d, *J* = 6.2 Hz, 1.238 d, *J* = 6.2 Hz (2x OiPr); **NHBz**: 11.30 br (NH), 8.05 m (2x *o*-ArH), 7.56 m (2x *m*-ArH), 7.56 m (*p*-ArH). ^d **NHAc**: 10.82 s (NH), 2.18 s (CH₃); **3-OBz**: 8.07 m (2x *o*-ArH), 7.61 m (2x *m*-ArH), 7.75 m (*p*-ArH); **O**-**CH**₂-**P** = **O**(**OiPr**₂): 3.95 d, *J* = 9.5 Hz (P-CH₂-O), 4.57 m (2x O-CH<), 1.121 d, *J* = 6.2 Hz, 1.156 d, *J* = 6.2 Hz, 1.160 d, *J* = 6.2 Hz, 1.186 d, *J* = 6.2 Hz (2x OiPr); **O**-**CO**-**N**(**C**₆**H**₅): 7.51 m (4x *o*-ArH), 7.45 m (4x *m*-ArH), 7.33 (2x *p*-ArH).

^e **3-OB***z*: 8.05 m (2x o-ArH), 7.60 m (2x m-ArH), 7.735 m (p-ArH); **O–CH**₂–**P** = **O**(**OiPr**)₂: 4.08 dd, *J* = 14.0; 9.2 Hz and 4.02 dd, *J* = 14.0; 9.4 Hz (P–CH₂–O), 4.64 m (2x O–CH<), 1.234 d, *J* = 6.2 Hz, 1.240 d, 6H, *J* = 6.2 Hz and 1.254 d, *J* = 6.2 Hz (2x OiPr); **NHB***z*: 11.29 bs (NH), 8.055 m (2x o–ArH), 7.65 m (2x m-ArH), 7.65 (p-ArH).

^f **3-OB2**: 8.00 m (2x *o*-ArH), 7.57 m (2x *m*-ArH), 7.72 m (*p*-ArH); **O**-**CH**₂-**P** = **O**(**OiPr**)₂: 4.05 dd, *J* = 13.9; 9.0 Hz and 4.035 dd, *J* = 13.9; 9.1 Hz (P-CH₂-O), 4.63 m (2x O-CH<), 1.214 d, *J* = 6.2 Hz, 1.225 d, *J* = 6.2 Hz, 1.226 d, *J* = 6.2 Hz and 1.239 d, *J* = 6.2 Hz (2x OiPr); **NHAC**: 10.76 s (NH), 2.23 s (CH₃); **O**-**CO**-**N**(**C**₆**H**₅)₂: 7.49 br m (4x *o*-ArH), 7.44 m (4x *m*-ArH), 7.32 (2x *p*-ArH).

^g **O**–**CH**₂–**P** = **O**(**OH**)₂: 3.75 dd, J = 12.8, 8.6 Hz and 3.50 dd, J = 12.8, 9.8 Hz.

^h **O**-**CH**₂-**P** = **O**(**OH**)₂: 3.62 dd, J = 13.4, 8.4 Hz and 3.50 dd, J = 13.4, 9.5 Hz.

ⁱ **O**–**CH**₂–**P** = **O**(**OH**)₂: 3.67 dd, J = 13.1, 8.1 Hz and 3.46 dd, J = 13.1, 9.7 Hz.

^j **3-OB***z*: 7.82 m (2x o-ArH), 7.43 m (2x *m*-ArH), 7.625 m (*p*-ArH); **3-OB***z*: 8.045 m (2x o-ArH), 7.57 m (2x *m*-ArH), 7.72 m (*p*-ArH); **0-CH**₂-**P** = **0**(**OIPr**)₂: 3.98 m (P-CH₂-**O**), 4.65 m (2x O-CH<), 1.247 d, *J* = 6.2 Hz, 1.255 d, *J* = 6.2 Hz, 1.266 d, 6H, *J* = 6.4 Hz (2x OiPr); **NHB***z*: 11.27 br (NH), 8.055 m (2x o-ArH), 7.555 m (2x *m*-ArH), 7.65 m (*p*-ArH). ^k **2-OB***z*: 7.80 m (2x o-ArH), 7.41 m (2x *m*-ArH), 7.61 m (*p*-ArH); **3-OB***z*: 8.005 m (2x o-ArH), 7.56 m (2x *m*-ArH), 7.71 m (*p*-ArH); **O-CH**₂-**P** = **0**(**OIPr**)₂: 3.97 d, *J* = 9.4 Hz (P-CH₂-**O**), 4.65 m (2x O-CH<), 1.236 d, *J* = 6.2 Hz, 1.256 d, *J* = 6.2 Hz, 1.263 d, *J* = 6.0 Hz and 1.273 d, *J* = 6.0 Hz (2x OiPr); **NHAc**: 10.76 s (NH), 2.215 s (CH₃); **O-CO-N(C₆H₅)₂:** 7.505 m (4x o-ArH), 7.44 m (4x *m*-ArH), 7.32 (2x *p*-ArH).

¹ **O**-**CH**₂-**P** = **O**(**OH**)₂: 3.69 d, 2H, J = 8.8 Hz; **2-OH**: 5.66 d, J = 6.7 Hz; **3-OH**: 5.73 d, J = 4.5 Hz.

^m **2-OB2**: 7.97 m (2x o-ArH), 7.53 m (2x m-ArH), 7.70 m (p-ArH); **3-OB2**: 7.85 m (2x o-ArH), 7.45 m (2x m-ArH), 7.64 m (p-ArH); **0-CH₂-P = O(OiPr)₂**: 3.88 d, 2H, J = 9.0 Hz (P-CH₂-O), 4.58 m (2x O-CH<), 1.196 d, J = 6.2 Hz, 1.209 d, J = 6.2 Hz, 1.222 d, J = 6.2 Hz and 1.235 d, J = 6.2 Hz (2x OiPr).

ⁿ **2-OBz**: 7.94 m (2x *o*-ArH), 7.51 m (2x *m*-ArH), 7.69 m (*p*-ArH); **3-OBz**: 7.87 m (2x *o*-ArH), 7.46 m (2x *m*-ArH), 7.65 m (*p*-ArH); **O**-**CH**₂-**P** = **O**(**OiPr**₂: 3.88 dd, *J* = 13.9; 9.4 Hz and 3.80 dd, *J* = 13.9; 8.5 Hz, (P-CH₂-O), 4.56 m (2x O-CH<), 1.165 d, *J* = 6.2 Hz 1.196 d, *J* = 6.2 Hz, 1.202 d, *J* = 6.2 Hz and 1.208 d, *J* = 6.2 Hz (2x OiPr).

^o **2-OBz**: 7.86 m (2x *o*-ArH), 7.44 m (2x *m*-ArH), 7.645 m (*p*-ArH); **3-OBz**: 8.00 m (2x *o*-ArH), 7.52 m (2x *m*-ArH), 7.70 m (*p*-ArH); **0–CH₂–P** = **0(0iPr)**₂: 3.88 dd, *J* = 13.9; 9.4 Hz and 3.78 dd, *J* = 13.9; 8.6 Hz, (P–CH₂–O), 4.55 m (2x O–CH<), 1.141 d, *J* = 6.2 Hz, 1.185 d, *J* = 6.2 Hz, 1.187 d, *J* = 6.2 Hz and 1.202 d, *J* = 6.2 Hz (2x OiPr).

^p **2-OB2**: 7.24 m (2x o-ArH), 7.15 m (2x m-ArH), 7.46 m (p-ArH); **3-OB2**: 8.00 m (2x o-ArH), 7.45 m (2x m-ArH), 7.64 m (p-ArH); **O-CH₂-P** = **O(OiPr)**₂: 4.14 dd, *J* = 14.0; 9.0 Hz and 4.12 dd, *J* = 14.0; 8.8 Hz, (P-CH₂-O), 4.68 m (2x O-CH<), 1.282 d, *J* = 6.2 Hz, 1.285 d, *J* = 6.2 Hz and 1.290 d, 6H, *J* = 6.2 Hz (2x OiPr).

^q **0-CH₂-P(=0)(OH)-O-P(=0)(OH)-O-P(=0)(OH)₂:** 3.99 dd, *J* = 13.3; 8.5 Hz and 3.89 dd, *J* = 13.2; 10.1 Hz (P-CH₂-O).

^r **O-CH₂-P(= O)(OH)-O-P(= O)(OH)-O-P(= O)(OH)₂:** 3.98 dd, J = 13.3; 8.4 Hz and 3.86 dd, J = 13.3; 10.3 Hz (P-CH₂-O).

^s $O-CH_2-P(=0)(OH)-O-P(=0)(OH)-O-P(=0)(OH)_2$: 3.95 dd, J = 13.3; 8.2 Hz and 3.82 dd, J = 13.3; 10.3 Hz (P-CH₂-O).

^t \mathbf{O} -CH₂-P(= \mathbf{O})(OH)- \mathbf{O} -P(= \mathbf{O})(OH)- \mathbf{O} -P(= \mathbf{O})(OH)₂: 3.775 dd, J = 13.8; 7.7 Hz and 3.75 dd, J = 13.8; 9.1 Hz (P-CH₂-O).

```
<sup>u</sup> \mathbf{O}-CH<sub>2</sub>-P(= \mathbf{O})(OH)-\mathbf{O}-P(= \mathbf{O})(OH)-\mathbf{O}-P(= \mathbf{O})(OH)<sub>2</sub>: 3.875 dd, J = 13.6; 7.4 Hz and 3.765 dd, J = 13.6; 9.9 Hz (P-CH<sub>2</sub>-\mathbf{O}).
```

^v **Major diastereomer: 3-OH:** 6.165 d, J = 5.0 Hz; **Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O:** 0.81 t, 3H, J = 7.4 Hz, 1.18 m, 2H, 1.39 m, 2H, 3.92 m, 2H (Bu-O-); 4.05 m, 1H, 2.94 m, 1H and 2.735 m, 1H (O–CH–CH₂); 7.38 br, 1H (NH); 7.00–7.30 m, 10H (10x ArH); 3.45 dd, 1H, J = 13.5; 8.8 Hz and 3.405 dd 1H, J = 13.5; 8.2 Hz (P–CH₂–O); **minor diastereomer: 3-OH:** 6.155 d, J = 5.0 Hz; **Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O:** 0.785 t, 3H, J = 7.4 Hz, 1.18 m, 2H, 1.39 m, 2H, 3.90 m, 2H (Bu-O-); 4.07 m, 1H, 2.91 m, 1H and 2.72 m, 1H (O–CH–CH₂); 7.395 br, 1H (NH); 7.00–7.30 m, 10H (10x ArH); 3.84 dd, 1H, J = 13.7; 8.8 Hz and 3.69 dd 1H, J = 13.7; 7.0 Hz (P–CH₂–O). ^w **Major diastereomer: 3-OH:** 6.13 d, J = 5.1 Hz; **Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O:** 0.805 t, 3H, J = 7.4 Hz, 1.19 m, 2H, 1.39 m, 2H, 3.90 m, 2H (Bu-O-); 4.07 m, 1H, 2.91 m, 1H and 2.72 m, 1H (O–CH–CH₂); 7.395 br, 1H (NH); 7.00–7.30 m, 10H (10x ArH); 3.84 dd, 1H, J = 13.7; 8.8 Hz and 3.69 dd 1H, J = 13.7; 7.0 Hz (P–CH₂–O). ^w **Major diastereomer: 3-OH:** 6.13 d, J = 5.1 Hz; **Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O:** 0.805 t, 3H, J = 7.4 Hz, 1.195 m, 2H, 1.41 m, 2H, 3.93 m, 2H (Bu-O); (4.07 m, 1H, 2.915 ddd, 1H, J = 13.6; 6.6; 2.0 Hz and 2.72 dd, 1H, J = 13.6; 8.5 Hz (O–CH–CH₂); 7.38 br, 1H (NH); 7.025–7.275 m, 10H (10x ArH); 3.88 dd, 1H, J = 13.5; 9.1 Hz and 3.695 dd 1H, J = 13.5; 6.2; 2.0 Hz and 2.72 dd, 1H, J = 13.5; 6.2; 1.5 Hz and 2.75 dd, 1H, J = 13.5; 9.1 Hz (O–CH–CH₂); 7.395 br, 1H (NH); 7.025–7.275 m, 10H (10x ArH); 3.85 dd, 1H, J = 7.4 Hz, 1.195 m, 2H (1.41 m, 2H, 3.905 m, 2H (Bu-O); **minor diastereomer: 3-OH:** 6.12 d, J = 5.1 Hz; **Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O)**: 0.805 t, 3H, J = 7.4 Hz, 1.195 m, 2H, 1.41 m, 2H, 3.905 m, 2H (Bu-O); 4.07 m, 1H, 2.96 ddd, 1H, J = 13.5; 6.2; 1.5 Hz and 2.75 dd, 1H, J = 13.5; 9.1 Hz (O–CH–CH₂); 7.395 br, 1H (NH); 7.025–7.275 m, 10H (10x ArH); 3.46 dd, 1H,

^x Coupling constants are written in italics in a shortened form (e.g. instead j(1',2') = 4.3 Hz we type simply 1,2 = 4.3).

for C₂₇H₃₃O₁₁NaP calculated: 587.16527; measured: 587.16534; IR (CHCl3, cm⁻¹): 2981, 2878, 1734, 1602, 1492, 1467, 1452, 1386, 1375, 1364, 1281, 1263, 1224, 1179, 1163, 1123, 1071, 1024, 991, 981, 888, 711. For NMR data, see table Ia and Ib.

4.19. (2R,3R,4S,5R)-2-(6-benzamido-9H-purin-9-yl)-4-benzoyl-5-((diisopropoxyphosphoryl)methoxy)tetrahydrofuran-3-yl benzoate (**22a**)

Bis(trimethylsilyl)acetamide (1.1 mL; 4.5 mmol) was added to 6*N*-benzoyladenine (335 mg; 1.4 mmol) in 1,2-dichloroethane (14 mL), and the reaction mixture was stirred for 1 h at 60 °C. The mixture was concentrated and co-evaporated with dry toluene (2 × 20 mL). Next, acetate **21** (565 mg; 1 mmol) in ACN (10 mL) was added, followed by SnCl₄ (600 μ L; 5.1 mmol). The mixture was stirred for 2 h at room temperature. The reaction was then

quenched by the addition of 1 mL of pyridine, filtered and concentrated. Product **22a** was isolated by chromatography on a silica gel (0-5% methanol in chloroform) in a yield of 160 mg (50%). HRMS $(M + Na)^+$ for $C_{37}H_{38}O_{10}N_5NaP$ calculated: 766.22485; measured: 766.22449; IR (coating, cm-1): 3227, 3090, 3065, 3032, 2978, 2925, 2870, 2854, 1733, 1700, 1610, 1602, 1583, 1512, 1490, 1452, 1386, 1376, 1334, 1316, 1269, 1252, 1178, 1158, 1126, 1105, 1063, 1024, 990, 937, 889, 711, 672, 642, 528. For NMR data, see table IIa and IIb.

4.20. (2R,3R,4S,5R)-2-(2-acetamido-6-((diphenylcarbamoyl)oxy)-9H-purin-9-yl)-5-((diisopropoxyphosphoryl)methoxy) tetrahydrofuran-3,4-diyl dibenzoate (**22b**)

Bis(trimethylsilyl)acetamide (1.1 mL; 4.5 mmol) was added to N2-acetyl-O6-(diphenylcarbamoyl)guanine (550 mg; 1.4 mmol) in

Table IIb¹³C and ³¹P NMR data of compounds 5, 6, 16 and 22–27 x

Compound	Solvent	C-1'	C-2'	C-3'	C-4'	Base	³¹ P	¹⁹ F
HO-P OH OH HO ^{'3'} F	D ₂ O ^{<i>a</i>}	88.14 1,F = 34.0	96.60 2,F = 192.0	75.51 3,F = 15.1	112.10 4,P = 12.1 4,F = 3.2	C-2: 155.51 C-4: 151.41 C-5: 121.14 C-6: 158.18 C-8: 142.68	14.93	-210.06
5a B = Adenin-9-yl								
HO - P - O - O - B - B - B - B - B - B - B - B	D ₂ O ^b	87.78	96.18	75.27	111.87	C-2: n.d. C-4: 154.37 C-5: 118.81 C-6: n.d. C-8: 140.52	14.15	-209.59
iPrO - P $iPrO - P$ BrO BzO F 16a B = 6-N-benzoyladenin-9-yl	DMSO ^c	86.31 1,F = 34.4	91.24 2,F = 193.1	74.45 3,F = 14.0	106.69 4,P = 12.4 4,F = 1.1	C-2: 152.62 C-4: 152.14 C-5: 125.77 C-6: 150.94 C-8: 143.32	18.29	-204.85
$iPrO - P \rightarrow O \rightarrow O \rightarrow B$ $iPrO - P \rightarrow O \rightarrow O \rightarrow B$ BzO = F 16b B = 2- <i>N</i> -acetyl-6-O-diphenyl carbamov(quanin-9-y)l	DMSO d	86.57 1,F = 15.0	91.14 2,F = 192.6	74.33 3,F = 13.9	106.95 4,P = 13.2	C-2: 150.19 C-4: 154.35 C-5: 120.32 C-6: 152.57 C-8: 144.37	18.93	-203.23
$BzO^{+}F$ 16c B = 6-N-benzoyladenin-9-yl	DMSO ^e	82.10 1,F = 15.6	88.90 2,F = 197.1	74.78 3,F = 14.0	105.04 4,P = 11.7	C-2: 152.33 C-4: 152.13 C-5: 124.96 C-6: 150.75 C-8: 142.98 8F = 55	19.18	-207.71
$BzO \xrightarrow{F}$ 16d B = 2- <i>N</i> -acetyl-6- <i>O</i> -diphenyl carbamoylguanin-9-yl	DMSO ^f	82.59 1,F = 15.7	88.63 2,F = 197.5	74.61 3,F = 16.1	105.42 4,P = 12.2	C-2: 150.19 C-4: 154.55 C-5: 119.67 C-6: 152.75 C-8: 144.05 8,F = 5.1	19.09	-206.65
HO - P O O B O HO - P O O O B O HO O B O HO O B O HO O H O B O H O B O B	D ₂ O ^g	89.27	77.15	76.56	111.95 4,P = 11.8	C-2: 156.79 C-4: 154.74 C-5: 118.76 C-6: 161.68 C-8: 140.52	14.35	_
	D ₂ O ^h	91.41	75.65	76.69	112.28 4,P = 11.0	C-2: 159.86 C-4: 152.00 C-5: 127.19 C-6: 158.94	15.93	_
$\begin{array}{c} O \\ HO - P \\ OH \\ HO \end{array} \xrightarrow{O} O \\ HO \end{array} \xrightarrow{O} OH \\ HO $	D ₂ O ^{<i>i</i>}	91.09	76.23	76.57	112.17 4,P = 10.9	C-2: 158.82 C-4: 155.02 C-5: 127.40 C-6: 160.97	15.38	_
B = 6-a2ayudrini-9-yi	DMSO ^j	85.82	74.08	74.44	106.20 4,P = 12.4	C-2: 152.16 C-4: 152.38 C-5: 125.72 C-6: 150.80 C-8: 149.09	19.16	-
iPrO - P O O B BzO OBz $BzO OBz$ $22b B = 2-N-acetyl-6-O-diphenyl carbamoylguanin-9-yl$	DMSO ^k	86.12	73.82	74.43	106.34 4,P = 13.4	C-2: 150.23 C-4: 154.72 C-5: 120.36 C-6: 152.70 C-8: 144.24	19.42	-

(continued on next page)

T. Lášek, J. Dobiáš, M. Buděšínský et al.

Table IIb (continued)

Compound	Solvent	C-1'	C-2'	C-3'	C-4'	Base	³¹ P	¹⁹ F
iPrO-P iPrO HO OH	DMSO ¹	88.35	72.46	73.92	108.70 4,P = 11.8	C-2: 157.39 C-4: 149.95 C-5: 124.14 C-6: 156.38	19.77	_
22c B = 8-azaadenin-9-yl $PrO - P \rightarrow O - B = BzO \rightarrow OBz$	DMSO ^m	86.13	73.22	74.63	106.54 4,P = 12.9	C-2: 155.69 C-4: 152.30 C-5: 124.66 C-6: 156.25	19.06	_
22d B = 8-azaguanin-9-yl iPrO - P O G B iPrO BzO OBz	DMSO ⁿ	89.10	73.65	74.75	107.15 4,P = 12.4	C-2: 154.29 C-4: 153.72 C-5: 113.66 C-6: 161.55	18.70	-
$\frac{O}{PO-P} \xrightarrow{O} O \xrightarrow{O} B$	DMSO ^o	86.94	73.36	74.41	106.97 4,P = 12.5	C-2: 157.61 C-4: 149.56 C-5: 124.12 C-6: 156.46	18.20	_
24 B = 8-azaadenin-8-yl PrO - P - O - O - B BrO - B - B - B - B - B - B - B - B - B -	DMSO ^p	91.99	70.82	72.63	107.40 4,P = 11.7	C-2: 157.80 C-4: 157.12 C-5: 126.12 C-6: 158.00	n.d.	_
$\begin{array}{c} O & O \\ HO - P - O - P - O - P \\ HO \\ $	D ₂ O ^q	88.24 1,F = 34.1	96.51 2,F = 192.3	75.42 3,F = 14.9	112.14 4,P = 12.2 4,F = 3.2	C-2: 155.49 C-4: 151.68 C-5: 121.36 C-6: 158.30 C-8: 142.89	P _a : 8.39 $\alpha,\beta = 25.6$ P _β : 22.10 $\beta,\alpha = 25.6$ $\beta,\gamma = 19.7$ P _γ : 9.48	-210.72
0 0 0 HO-P-O-P-O-P HO HO HO HO F 26b B = guanin-9-yl	D ₂ O ^{<i>r</i>}	87.85 1,F = 33.9	95.38 2,F = 191.8	75.11 3,F = 14.9	111.72 4,P = 12.0 4,F = 3.2	C-2: 156.71 C-4: 154.34 C-5: 118.85 C-6: 161.67 C-8: 140.50	$\gamma,\beta = 19.7$ $P_{\alpha}: 8.62$ $\alpha,\beta = 25.7$ $P_{\beta}: 22.02$ $\beta,\alpha = 25.7$ $\beta,\gamma = 16.7$ $P_{\gamma}: 9.60$	-210.89
0 0 0 HO-P-O-P-O-P HO HO HO HO HO HO HO O OH HO O OH	D ₂ O ^s	89.36	76.78	76.41	111.82 4,P = 12.0	C-2: 156.79 C-4: 154.81 C-5: 118.84 C-6: 161.75 C-8: 140.59	$\gamma,\beta = 16.7$ $P_{\alpha}: 8.36$ $\alpha,\beta = 25.8$ $P_{\beta}: 22.51$ $\beta,\alpha = 25.8$ $\beta,\gamma = 19.6$ $P_{\gamma}: 9.82$	-
0 0 0 HO-Ë-O-Ë-O-Ë HÓ HÓ HÓ HÔ OH 26e B = 8-azaadenin-9-vl	D ₂ O ^t	91.38	75.54	76.52	112.34 4,P = 9.8	C-2: 159.95 C-4: 152.13 C-5: 127.33 C-6: 159.08	$\gamma, \beta = 19.6$ $P_{\alpha}: 9.06$ $\alpha, \beta = 26.2$ $P_{\beta}: 22.03$ $\beta, \alpha = 26.2$ $\beta, \gamma = 19.4$ P _Y : 9.27 $\gamma, \beta = 19.4$	_
$\begin{array}{c} O & O & O \\ HO - P - O - P - O - P \\ HO & HO \\ HO & HO \\ HO \\ \end{array} \begin{array}{c} O & O \\ O \\$	D ₂ O ^{<i>u</i>}	91.34	74.71	76.23	111.88 4,P = 10.5	C-2: 160.82 C-4: 154.82 C-5: 127.39 C-6: 158.54	$P_{\alpha}: 9.21$ α,β = 26.2 P _β : 22.30 β,α = 26.2 β,γ = 19.4 P _γ : 9.84 γ β = 19.4	-
	DMSO ^v Major	84.73 1,F = 33.0	93.16 2,F = 191.1	72.35 3,F = 15.0	108.30 4,P = 10.8 4,F = 4.1	C-2: 153.24 C-4: 149.67 C-5: 118.93 C-6: 156.33 C-8: 139.06	23.18	-211.17
Buo $N-P$ OPh HO F 27a B = adenin-9-yl Mixture of diastereomers 53:47	Minor	84.63 1,F = 33.2	93.30 2,F = 191.2	72.30 3,F = 15.0	108.38 4,P = 11.8 4,F = 3.2	C-0: 139.00 C-2: 153.24 C-4: 149.68 C-5: 118.88 C-6: 156.33 C-8: 139.03	22.74	-211.28

Table IIb (continued)

Compound	Solvent	C-1'	C-2'	C-3'	C-4'	Base	³¹ P	¹⁹ F
	DMSO ^w Major	84.14 1,F = 32.5	93.37 2,F = 191.7	72.22 3,F = 15.0	108.00 4,P = 4.2	C-2: 154.22 C-4: 151.52 C-5: 116.69 C-6: 156.85 C-8: 135.00	23.29	-212.34
BuO HO OPh HO F 27b B = guanin-9-yl Mixture of diastereomers 57:43	minor	84.11 1,F = 32.5	93.20 2,F = 191.6	72.16 3,F = 15.0	108.08 4,P = 4.2	C-2: 154.19 C-4: 151.48 C-5: 116.78 C-6: 156.88 C-8: 135.23	22.95	-212.81

Substituents.

^a \mathbf{O} -**CH**₂-**P** = **O**(**OH**)₂: 68.13 d, J = 155.9 Hz.

^b $O-CH_2-P = O(OH)_2$: 68.59.

^c **O-CH₂-P** = **O(OiPr)**₂: 62.62 d, *J* = 166.0 Hz (P-CH₂-O), 71.02 d, *J* = 6.3 Hz (2x O-CH<), 23.97 d, *J* = 3.5 Hz, 23.99 d, *J* = 3.5 Hz, 24.04 d, *J* = 4.4 Hz, 24.12 d, *J* = 3.8 Hz (2x OiPr); 3-**OBz**: 164.78 (C=O), 128.50 (*i*-ArC), 129.86 (2x o-ArC), 129.32 (2x *m*-ArC), 134.52 (*p*-ArC); **NHBz**: 165.98 (C=O), 133.55 (*i*-ArC), 128.78 (2x o-ArC and 2x *m*-ArC), 132.82 (*p*-ArC).

^d NHAC: 168.71 (C=O), 24.71 (CH₃); 3-OB2: 164.45 (C=O), 128.53 (*i*-ArC), 129.70 (2x *o*-ArC), 129.22 (2x *m*-ArC), 134.35 (*p*-ArC); **O**-CH₂-P = **O**(**OiPr**)₂: 62.24 d, *J* = 166.3 Hz (P-CH₂-O), 70.85 d, *J* = 6.3 Hz (2x O-CH<), 23.69 d, *J* = 6.3 Hz, 23.72 d, *J* = 4.4 Hz, 23.86 d, *J* = 4.0 Hz, 23.89 d, *J* = 4.0 Hz (2x OiPr); **O**-CO-N(C₆H₅)₂: 155.54 (C=O), 141.75 (2x *i*-ArC), 126.67 (4x *o*-ArC), 129.61 (4x *m*-ArC), 127.10 (2x *p*-ArC).

^e **O-CH₂-P** = **O(OiPr)**₂: 62.31 d, *J* = 165.8 Hz (P-CH₂-O), 70.80 d, *J* = 6.2 Hz and 70.81 d, *J* = 6.2 Hz (2x O-CH<), 23.84 d, *J* = 4.6 Hz, 23.85 d, *J* = 4.4 Hz and 23.98 d, 2C, *J* = 3.8 Hz (2x OiPr); 3-**OBz**: 164.64 (C=O), 128.42 (*i*-ArC), 129.72 (2x o-ArC), 129.23 (2x *m*-ArC), 134.40 (*p*-ArC); **6-NHBz**: 165.85 (C=O), 133.45 (*i*-ArC), 128.71 (2x o-ArC), 128.68 (2x *m*-ArC), 132.72 (*p*-ArC).

^f **O**–**CH**₂–**P** = **O**(**OiPr**)₂: 62.47 d, *J* = 166.0 Hz (P–CH₂–O), 70.77 d, *J* = 5.9 Hz (2x O–CH<), 23.79 d, *J* = 4.5 Hz, 23.81 d, *J* = 4.5 Hz and 23.95 d, 2C, *J* = 3.7 Hz (2x OiPr); **3-OBz**: 164.62 (C=O), 128.40 (*i*-ArC), 129.67 (2x *o*-ArC), 129.17 (2x *m*-ArC), 134.34 (*p*-ArC); **NHAc**: 169.19 (C=O), 24.86 (CH₃); **O**–**CO**–**N**(**C**₆**H**₅)₂: 155.45 (C=O), 141.71 (2x *i*-ArC), 127.17 (4x *o*-ArC), 129.60 (4x *m*-ArC), 127.53 (2x *p*-ArC).

^g **O**–**CH₂–P** = **O**(**OH**)₂: 67.95 d, *J* = 154.5 Hz.

^h **O**-**CH**₂-**P** = **O**(**OH**)₂: 66.72 d, J = 156.7 Hz.

ⁱ $\mathbf{O} - \mathbf{CH}_2 - \mathbf{P} = \mathbf{O}(\mathbf{OH})_2$: 67.37 d, J = 154.8 Hz.

^j**0–CH₂–P** = **O(OiPr)**₂: 62.09 d, *J* = 166.3 Hz (P–CH₂–O), 70.91 d, *J* = 6.3 Hz and 70.92 d, *J* = 6.3 Hz (2x 0–CH<), 23.82 d, 2C, *J* = 4.6 Hz, 23.94 d, *J* = 4.1 Hz and 23.97 d, *J* = 4.1 Hz (2x 0iPr); **2-OBz**: 164.63 (C=O), 128.31 (*i*-ArC), 129.49 (2x o-ArC), 128.95 (2x *m*-ArC), 134.20 (*p*-ArC); 3-**OBz**: 164.66 (C=O), 128.53 (*i*-ArC), 129.67 (2x o-ArC), 128.10 (*i*-ArC), 134.34 (*p*-ArC); **NHBz**: 165.82 (C=O), 133.50 (*i*-ArC), 128.69 (2x o-ArC), 128.66 (2x *m*-ArC), 132.67 (*p*-ArC).

^k **O-CH₂-P** = **O(OiPr)**₂: 61.97 d, *J* = 167.1 Hz (P-CH₂-O), 70.99 d, *J* = 6.3 Hz and 71.09 d, *J* = 6.3 Hz (2x O-CH<), 23.79 d, *J* = 4.4 Hz, 23.81 d, *J* = 4.4 Hz and 23.94 d, 2C, *J* = 3.6 Hz (2x OiPr); **2-OBz**: 164.63 (C=O), 128.32 (*i*-ArC), 129.53 (2x *o*-ArC), 128.93 (2x *m*-ArC), 134.20 (*p*-ArC); **3-OBz**: 164.61 (C=O), 128.56 (*i*-ArC), 129.60 (2x *o*-ArC), 129.18 (2x *m*-ArC), 134.36 (*p*-ArC); **NHAc**: 169.06 (C=O), 24.76 (CH₃); **O-CO-N(C₆H₅)**₂: 155.53 (C=O), 141.76 (2x *i*-ArC), 127.12 (4x *o*-ArC), 129.60 (4x *m*-ArC), 127.54 (2x *p*-ArC). ¹ **O-CH₂-P** = **O(OiPr)**₂: 61.20 d, *J* = 165.2 Hz (P-CH₂-O), 70.50 d, *J* = 6.2 Hz and 70.65 d, *J* = 6.2 Hz (2x O-CH<), 23.81 d, *J* = 4.7 Hz, 23.82 d, *J* = 4.5 Hz, 23.96 d, *J* = 3.7 Hz and 24.00 d. *J* = 3.7 Hz (2x OiPr).

^m **O**–**CH**₂–**P** = **O**(**OiPr**)₂: 61.94 d, *J* = 164.2 Hz (P–CH₂–O), 70.87 d, *J* = 6.2 Hz and 70.92 d, *J* = 6.2 Hz (2x O–CH<), 23.75 d, *J* = 4.7 Hz, 23.78 d, *J* = 4.6 Hz, 23.93 d, *J* = 3.8 Hz and 23.94 d, *J* = 3.9 Hz (2x OiPr); **2-OBz**: 164.69 (C=O), 128.49 (*i*-ArC), 129.61 (2x *o*-ArC), 129.14 (2x *m*-ArC), 134.34 (*p*-ArC); 3-**OBz**: 164.66 (C=O), 128.33 (*i*-ArC), 129.56 (2x *o*-ArC), 129.03 (2x *m*-ArC), 134.27 (*p*-ArC).

ⁿ **O**–**CH**₂–**P** = **O**(**OiPr**)₂: 62.22 d, *J* = 165.0 Hz (P–CH₂–O), 70.77 d, *J* = 6.2 Hz and 70.88 d, *J* = 6.2 Hz (2x O–CH<), 23.73 d, *J* = 4.5 Hz, 23.76 d, *J* = 4.5 Hz, 23.91 d, *J* = 3.5 Hz and 23.93 d, *J* = 3.5 Hz (2x OiPr); **2-OBz**: 164.67 (C=O), 128.46 (*i*-ArC), 129.56 (2x *o*-ArC), 129.13 (2x *m*-ArC), 134.33 (*p*-ArC); 3-**OBz**: 164.62 (C=O), 128.34 (*i*-ArC), 129.59 (2x *o*-ArC), 129.02 (2x *m*-ArC), 134.27 (*p*-ArC).

^o **O-CH₂-P** = **O(OiPr)**₂: 62.13 d, *J* = 165.7 Hz (P-CH₂-O), 70.70 d, *J* = 6.2 Hz and 70.83 d, *J* = 6.2 Hz (2x O-CH<), 23.69 d, *J* = 4.7 Hz, 23.74 d, *J* = 4.6 Hz, 23.89 d, *J* = 3.8 Hz and 23.92 d, *J* = 3.8 Hz (2x OiPr); **2-OBz**: 164.67 (C=O), 128.37 (i-ArC), 129.59 (2x o-ArC), 128.97 (2x m-ArC), 134.22 (p-ArC); **3-OBz**: 164.72 (C=O), 128.48 (*i*-ArC), 129.68 (2x o-ArC), 129.10 (2x m-ArC), 134.31 (p-ArC).

^p**O-CH₂-P** = **O(OiPr)**₂: 62.14 d, *J* = 166.0 Hz (P-CH₂-O), 71.04 d, *J* = 6.3 Hz and 71.06 d, *J* = 6.3 Hz (2x O-CH<), 23.96 d, 2C, *J* = 4.4 Hz, 24.07 d, *J* = 3.6 Hz and 24.08 d, *J* = 3.8 Hz (2x OiPr); **2-OBz**: 163.83 (C=O), 127.81 (*i*-ArC), 129.03 (2x *o*-ArC), 128.74 (2x *m*-ArC), 134.22 (*p*-ArC); **3-OBz**: 164.81 (C=O), 128.47 (*i*-ArC), 129.94 (2x *o*-ArC), 128.99 (2x *m*-ArC), 134.22 (*p*-ArC); **3-OBz**: 164.81 (C=O), 128.47 (*i*-ArC), 129.94 (2x *o*-ArC), 128.99 (2x *m*-ArC), 134.22 (*p*-ArC).

^q $\mathbf{O}-\mathbf{CH_2}-\mathbf{P}(=\mathbf{O})(\mathbf{OH})-\mathbf{O}-\mathbf{P}(=\mathbf{O})(\mathbf{OH})-\mathbf{O}-\mathbf{P}(=\mathbf{O})(\mathbf{OH})_2$: 67.24 d, J = 164.5 Hz (P-CH₂-O).

^r **O-CH₂-P(** = **O**)(**OH**)-**O-P(** = **O**)(**OH**)-**O-P(** = **O**)(**OH**)₂: 66.96 d, J = 164.9 Hz (P-CH₂-O).

^s **O-CH₂-P(= 0)(OH)-O-P(= 0)(OH)-O-P(= 0)(OH)₂**: 66.54 d, J = 164.8 Hz (P-CH₂-O); ^s

^t **O-CH₂-P(= 0)(OH)-O-P(= 0)(OH)-O-P(= 0)(OH)₂:** 66.39 d, J = 163.7 Hz (P-CH₂-O).

^u **O-CH₂-P(** = **O**)(**OH**)-**O-P(** = **O**)(**OH**)-**O-P(** = **O**)(**OH**)₂: 66.18 d, J = 164.2 Hz (P-CH₂-O).

^v **Major diastereomer: Bu-O-CH(CH₂C₆H₅)–CO–NH–P(= 0)(O–C₆H₅)–CH₂–O: 13.73, 18.62, 30.16, 64.49 (Bu-O-); 55.41, 39.74 (O–CH–CH₂); 150.30 and 137.10 (2x** *i***-ArC), 120.7–129.7 (10x ArC); 172.49 (C=O), 63.34 d,** *J* **= 156.5 Hz (P–CH₂–O); minor diastereomer: Bu-O-CH(CH₂C₆H₅)–CO–NH–P(= O)(O–C₆H₅)–CH₂–O**: 13.68, 18.62, 30.19, 64.37 (Bu-O-); 55.35, 39.46 (O–CH–CH₂); 150.25 and 137.19 (2x *i*-ArC), 120.7–129.7 (10x ArC); 172.71 (C=O), 63.07 d, *J* = 154.7 Hz (P–CH₂–O).

^w Major diastereomer: Bu-O-CH(CH₂C₆H₅)–CO–NH–P(= O)(O–C₆H₅)–CH₂–O: 13.66, 18.61, 30.15, 64.48 (Bu-O-); 55.37, 39.46 (O–CH–CH₂); 137.06 (*i*-ArC), 129.41 (2x *o*-ArC), 128.37 (2x *m*-ArC), 124.56 (*p*-ArC) (C₆H₅), 172.68 d, *J* = 2.6 Hz (C=O), 150.20 d, *J* = 9.2 Hz (*i*-ArC), 120.68 d, *J* = 4.5 Hz (2x *o*-ArC), 129.65 (2x *m*-ArC), 126.67 (*p*-ArCH) (C₆H₅); 62.96 d, *J* = 154.9 Hz (P–CH₂–O); minor diastereomer: Bu-O-CH(CH₂C₆H₅)–CO–NH–P(=O)(O–C₆H₅)–CH₂–O: 13.70, 18.60, 30.17, 64.36 (Bu-O-); 55.33, 39.70 (O–CH–CH₂); 137.18 (*i*-ArC), 129.52 (2x *o*-ArC), 128.29 (2x *m*-ArC), 124.62 (*p*-ArC) (C₆H₅), 172.48 d, *J* = 2.5 Hz (C=O), 150.27 d, *J* = 9.2 Hz (*i*-ArC), 120.74 d, *J* = 4.5 Hz (2x *o*-ArC), 129.63 (2x *m*-ArC), 126.67 (*p*-ArC) (C₆H₅); 63.25 d, *J* = 157.6 Hz (P–CH₂–O).

^x Coupling constants are written in italics in a shortened form (e.g. instead J(C1',F) = 34.0 Hz we type simply 1,F = 34.0).

1,2-dichloroethane (14 mL), and the reaction mixture was stirred for 1 h at 60 °C. The mixture was concentrated and co-evaporated with dry toluene (3 \times 20 mL). Then, the acetate **21** (565 mg; 1 mmol) in ACN (10 mL) was added, followed by SnCl₄ (600 μ L; 5.1 mmol). The mixture was stirred for 2 h at room temperature. The reaction was then quenched by the addition of 1 mL of pyridine, filtered and concentrated. Product **22b** was isolated by chromatography on a silica gel (0-100% EtOAc in toluene) in a yield of 340 mg (42%). HRMS $(M + Na)^+$ for $C_{45}H_{45}O_{12}N_6NaP$ calculated: 915.27253; measured: 915.27259; IR (CHCl₃, cm⁻¹): 3318, 3185, 1737, 1699, 1618, 1598, 1591, 1519, 1511, 1492, 1452, 1386, 1374, 1315, 1298, 1273, 1219, 1180, 1168, 1123, 1106, 1023, 989, 907, 887, 805, 728, 719, 713, 641, 531. For NMR data, see table IIa and IIb.

Tetrahedron 89 (2021) 132159

T. Lášek, J. Dobiáš, M. Buděšínský et al.

4.21. Diisopropyl ((((2R,3S,4R,5R)-5-(7-amino-3H-[1,2,3]triazolo [4,5-d]pyrimidin-3-yl)-3,4-dihydroxytetrahydrofuran-2-yl)oxy) methyl)phosphonate (**22c**)

SnCl₄ (2.6 mL; 22 mmol) was added dropwise to the heterogenic mixture of the acetate 21 (4.15 g; 7.35 mmol) and 8-azaadenine (1 g; 7.35 mmol) in dry acetonitrile (30 mL). The mixture was warmed to 60 °C and stirred for 3 h. The reaction was then quenched by the addition of pyridine (3 mL), filtered and adsorbed on a silica gel. The product of nucleosidation was isolated by chromatography on a silica gel (0-6% methanol in chloroform) as a mixture of 23 and 25 regioisomers (in ratio 1:3 according NMR) in a yield of 3.06 g (65%) as faster eluting derivatives followed by compound 24 in a yield of 850 mg (18%) as a slower eluting regioisomer. The mixture of regioisomers 23 and 25 was then stirred in sat. NH₃ in 50% aq. MeOH (30 mL) for 16 h at room temperature, concentrated, dissolved in 80% aq. AcOH (20 mL) and stirred for 1 day at room temperature. The 8-azaadenine-7-yl derivative de-purinated, and product 22c was isolated by chromatography on a silica gel (0-12% methanol in chloroform) in a yield of 500 mg (16%). HRMS $(M + Na)^+$ for $C_{15}H_{25}O_7N_6NaP$ calculated: 455.14145; measured: 455.14099; IR: 3449, 2980, 1700, 1652, 1574, 1466, 1409, 1376, 1335, 1264, 1226, 1178, 1139, 1106, 1081, 1040, 992, 926, 889. For NMR data, see table IIa and IIb.

4.22. (2R,3R,4S,5R)-2-(5-amino-7-hydroxy-3H-[1,2,3]triazolo[4,5d]pyrimidin-3-yl)-5-((diisopropoxyphosphoryl)methoxy) tetrahydrofuran-3,4-diyl dibenzoate (**22d**)

Bis(trimethylsilyl)acetamide (3 mL; 12 mmol) was added to 8azaguanine (400 mg; 2.6 mmol) in 1,2-dichloroethane (18 mL), and the reaction mixture was stirred for 1 h at 60 °C. The mixture was concentrated, co-distilled with dry toluene (2 \times 20 mL), and then added to the acetate 21 (1.52 g; 2.7 mmol) in ACN (20 mL). Finally, SnCl₄ (2 mL; 17 mmol) was added in one portion, and the mixture was stirred for 2 h at room temperature. The reaction was then quenched by the addition of 2 mL of pyridine, filtered and concentrated. The reaction afforded a mixture of compounds 22d and 22e in a 1:5 ratio. Product 22d was isolated by chromatography on a silica gel (0-5% methanol in DCM) in a yield of 160 mg (10%) as a faster eluting regioisomer. HRMS $(M + Na)^+$ for $C_{29}H_{33}O_{10}N_6NaP$ calculated: 679.18880; measured: 679.18901; IR (CHCl₃, cm-1): 3319, 3165, 2980, 2875, 1733, 1706, 1643, 1601, 1493, 1466, 1452, 1386, 1376, 1316, 1274, 1243, 1179, 1121, 1106, 1026, 996, 891, 774, 712, 685. For NMR data, see table IIa and IIb.

4.23. (2R,3R,4S,5R)-2-(5-amino-7-hydroxy-1H-[1,2,3]triazolo[4,5d]pyrimidin-1-yl)-5-((diisopropoxyphosphoryl)methoxy) tetrahydrofuran-3,4-diyl dibenzoate (**22e**)

Nucleoside phosphonate **22e** was prepared as an undesired product of the preparation of nucleoside phosphonate **22d**. Product **22e** was isolated by chromatography on a silica gel (0-5% methanol in DCM) in a yield of 830 mg (50%) as a slower regioisomer. For NMR data, see table IIa and IIb.

4.24. ((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4dihydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic acid (1)

Bromotrimethylsilane (490 μ L; 3.7 mmol) was added to **22a** (275 mg; 0.37 mmol) in pyridine (5 mL), and the mixture was stirred for 6 h and concentrated. The residue was diluted with saturated NH3 in 50% MeOH/H₂O (20 mL), stirred for 16 h at room temperature and then concentrated. Nucleotide **1** was isolated by reverse phase chromatography (first 15 min of isocratic elution

with 0.1 M TEAB, then 35 min gradient 0–15% MeOH in 0.1 M TEAB) in a yield of 134 mg (80%).

Spectral data were in accordance with literature values [5].

4.25. ((((2R,3S,4R,5R)-5-(2-amino-6-hydroxy-9H-purin-9-yl)-3,4dihydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic acid (**6a**)

Bromotrimethylsilane (490 µL; 3.7 mmol) was added to **22b** (330 mg; 0.37 mmol) in pyridine (5 mL), the mixture was stirred for 6 h, and then concentrated. The residue was diluted with saturated NH₃ in 50% MeOH/H₂O (20 mL), stirred for 16 h at room temperature and concentrated. Nucleotide **6a** was isolated by reverse phase chromatography (first 15 min of isocratic elution with 0.1 M TEAB, then 35 min gradient 0–15% MeOH in 0.1 M TEAB) in a yield of 138 mg (80%). HRMS (M – H)⁻ for C₁₀H₁₃O₈N₅P calculated: 362.05072; measured: 362.05020; IR (CHCl3, cm⁻¹): 3402, 3153, 2823, 2739, 2680, 2492, 1693, 1645, 1605, 1571, 1480, 1451, 1398, 1229, 1162, 1093, 1038, 999, 965, 783, 682, 574. For NMR data, see table IIa and IIb.

4.26. ((((2R,3S,4R,5R)-5-(7-amino-3H-[1,2,3]triazolo[4,5-d] pyrimidin-3-yl)-3,4-dihydroxytetrahydrofuran-2-yl)oxy)methyl) phosphonic acid (**6b**)

Bromotrimethylsilane (1.6 mL; 11.6 mmol) was added to **22c** (500 mg; 1.16 mmol) in pyridine (20 mL). The mixture was stirred for 6 h and concentrated. Nucleotide **6b** was isolated by reverse phase chromatography (first 15 min of isocratic elution with 0.1 M TEAB, then 35 min gradient 0–15% MeOH in 0.1 M TEAB) in a yield of 980 mg (84%). HRMS (M – H)⁻ for C₉H₁₂O₇N₆P calculated: 347.05106; measured: 347.05098; IR (coating MeOH, cm⁻¹): 3395, 3325, 3165, 2738, 2677, 2571, 2491, 2349, 1660, 1607, 1577, 1468, 1266, 1140, 1061, 1061, 1061, 913, 849, 799, 684, 645. For NMR data, see table IIa and IIb.

4.27. ((((2R,3S,4R,5R)-5-(5-amino-7-hydroxy-3H-[1,2,3]triazolo [4,5-d]pyrimidin-3-yl)-3,4-dihydroxytetrahydrofuran-2-yl)oxy) methyl)phosphonic acid (**6c**)

Bromotrimethylsilane (330 μ L; 2.5 mmol) was added to **22d** (160 mg; 0.24 mmol) in pyridine (5 mL), the mixture was stirred for 6 h, and then concentrated. The residue was diluted with saturated NH₃ in 50% MeOH/H₂O (10 mL), stirred for 16 h at room temperature, and then concentrated. Nucleotide **6c** was isolated by reverse phase chromatography (first 15 min of isocratic elution with 0.1 M TEAB, then 35 min gradient 0–15% ACN in 0.1 M TEAB) in a yield of 100 mg (90%). HRMS (M – H)⁻ for C₉H₁₂O₈N₆P calculated: 363.04597; measured: 363.04563; IR (CHCl₃, cm⁻¹): 3419, 3167, 2686, 2491, 1711, 1639, 1532, 1457, 1240, 1112, 1056, 1039, 788, 682; NMR: For NMR data, see table IIa and IIb.

4.28. ((((2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic diphosphoric anhydride (**26a**)

Triethylammonium salt of phosphonate **5a** (90 mg; 0.2 mmol) was converted to tetrabutylammonium salt (Dowex® 50WX 8 in tetrabutylammonium cycle) and dried by co-evaporation with anhydrous pyridine. The mixture of phosphonate salt, imidazole (211 mg; 3.1 mmol), and tri-*N*-octylamine (0.57 mL; 1.3 mmol) was dried by co-evaporation with anhydrous DMF (2×10 mL). The semi-solid residue was dissolved in anhydrous DMF (12 mL), triphenylphosphine (341 mg; 1.3 mmol), and 2,2'-dipyridyldisulfide (AldrithiolTM, 286 mg; 1.3 mmol) were added, and the mixture was

stirred for 16 h at room temperature.

The reaction mixture was added dropwise to the precipitation solution: sodium perchlorate monohydrate (702 mg; 5 mmol) and triethylamine (4 mL) in peroxide free mixture of acetone (60 mL) and diethylether (36 mL) at 0 °C. The solution was allowed to precipitate at 0 °C for about 30 min. The precipitate was then separated by centrifugation (10000 RPM, 3 °C, 20 min), washed with the precipitation solution, and then with the dry diethylether. Solid imidazolide was dried in vacuo. Tributylammonium pyrophosphate (0.5 M solution in DMSO, 1.2 mL; 0.6 mmol) was added to imidazolide, and the solution was kept at room temperature for 48 h. The phosphonodiphosphate was purified by column chromatography on reverse phase (Phenomenex Luna C18 5 μ m), using a linear gradient of acetonitrile (0–5%) in triethylamine bicarbonate buffer (0.1 M).

Triethylammonium salt of the product was converted to sodium salt using Dowex® 50WX 8, Na⁺ cycle yielding 93 mg (65%) of desired triphosphate analogue **26a.** HRMS (M – H)⁻ for C₁₀H₁₄O₁₂N₅FP₃ calculated: 507.98413; measured: 507.98370; IR (KBr, cm⁻¹): 3428, 1695, 1647, 1579, 1479, 1424, 1332, 1247, 1077, 1042, 899, 842, 719. For NMR data, see table IIa and IIb.

4.29. ((((2R,3R,4R,5R)-5-(2-amino-6-hydroxy-9H-purin-9-yl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic diphosphoric anhydride (**26b**)

Phosphonodiphosphate **26b** was prepared according to the procedure described for compound **23a**, starting from **5b** (45 mg; 0.12 mmol) in a yield of 14 mg (20%). HRMS (M - H)⁻ for C₁₀H₁₄O₁₃N₅FP₃ calculated: 523.97905; measured: 523.97839; IR (KBr, cm⁻¹): 3455, 3303, 3126, 2963, 2876, 2760, 2361, 1696, 1654, 1606, 1534, 1378, 1252, 1215, 1129, 1094, 1077, 1003, 932, 799, 688, 637, 529, 479. For NMR data, see table IIa and IIb.

4.30. ((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4dihydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic diphosphoric anhydride (**26c**)

Phosphonodiphosphate **26c** was prepared according to the procedure described for compound **26a**, starting from **1** (90 mg; 0.2 mmol) in a yield of 50 mg (45%).

Spectral data were in accordance with values from the literature [14].

4.31. ((((2R,3S,4R,5R)-5-(2-amino-6-hydroxy-9H-purin-9-yl)-3,4dihydroxytetrahydrofuran-2-yl)oxy)methyl)phosphonic diphosphoric anhydride (**26d**)

Phosphonodiphosphate **26d** was prepared according to the procedure described for compound **26a**, starting from **6a** (180 mg; 0.39 mmol) in a yield of 150 mg (68%). HRMS (M - H)⁻ for C₁₀H₁₅O₁₄N₅P₃ calculated: 521.98338; measured: 521.98242; IR (coating MeOH, cm⁻¹): 3432, 3313, 3098, 2346, 1695, 1650, 1533, 1449, 1232, 1128, 1073, 1032, 999, 895, 792, 688. For NMR data, see table IIa and IIb.

4.32. ((((2R,3S,4R,5R)-5-(7-amino-3H-[1,2,3]triazolo[4,5-d] pyrimidin-3-yl)-3,4-dihydroxytetrahydrofuran-2-yl)oxy)methyl) phosphonic diphosphoric anhydride (**26e**)

Phosphonodiphosphate **26e** was prepared according to the procedure described for the compound **26a**, starting from **6b** (100 mg; 0.28 mmol) in a yield of 43 mg (28%). HRMS $(M - H)^{-}$ for C₉H₁₃N₆Na₂O₁₃P₃ calculated: 506.98372; measured: 506.98343; IR (KBr, cm-1): 3344, 3285, 3285, 3190, 1662, 1579, 1453, 1420, 1334,

1248, 1126, 1075, 1037, 1016, 904, 687, 648. For NMR data, see table IIa and IIb.

4.33. ((((2R,3S,4R,5R)-5-(5-amino-7-hydroxy-3H-[1,2,3]triazolo [4,5-d]pyrimidin-3-yl)-3,4-dihydroxytetrahydrofuran-2-yl)oxy) methyl)phosphonic diphosphoric anhydride (**26f**)

Phosphonodiphosphate **26f** was prepared according to the protocol developed for the compound **26a**, starting from **6c** (100 mg; 0.27 mmol) in a yield of 110 mg (80%). HRMS $(M - H)^-$ for C₉H₁₄O₁₄N₆P₃ calculated: 522.97863; measured: 522.97760; IR (KBr, cm⁻¹): 3402, 3387, 3163, 2493, 1709, 1644, 1533, 1456, 1227, 1109, 1070, 1036, 1001, 930, 788, 682; NMR: For NMR data, see table IIa and IIb.

4.34. Butyl (((((2R,3R,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl)-L-phenylalaninate (**27a**)

Triethylammonium salt of phosphonate **5a** (135 mg; 0.3 mmol) was converted to tetrabutylammonium salt (Dowex® 50WX 8 in tetrabutylammonium cycle) and dried by the co-evaporation with anhydrous pyridine. The solution of **5a**, L-phenylalanine butyl ester hydrochloride (137 mg; 0.53 mmol), phenol (125 mg; 1.3 mmol) and Et₃N (445 µL; 3.18 mmol) in dry pyridine (12 mL) was stirred for 15 min at 60 °C. Next, the solution of triphenylphosphine (412 mg; 1.57 mmol) and Aldrithiol[™] (485 mg; 7.34 mmol) in dry pyridine (6 mL) was added to the mixture. The mixture was stirred for 16 h at 60 °C, and then concentrated. The solid residue was adsorbed on a silica gel in acetone, and phosphonoamidate 27a was isolated by chromatography on a silica gel (0-8% EtOH in CHCl₃) in a yield of 85 mg (45%) as a mixture of epimers (estimated ratio by ³¹P NMR 1:1). HRMS $(M + Na)^+$ for C₂₉H₃₄FN₆O₇P calculated: 651.21028; measured: 651.20978; IR (CHCl₃, cm⁻¹): 3601, 3413, 3062, 2963, 2931, 2875, 2856, 1631, 1602, 1589, 1491, 1471, 1456, 1420, 1330, 1294, 1244, 1069, 1032, 901, 702, 690. For NMR data, see table IIa and IIb.

4.35. Butyl (((((2R,3R,4R,5R)-5-(2-amino-6-hydroxy-9H-purin-9yl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)oxy)methyl)(phenoxy) phosphoryl)-L-phenylalaninate (**27b**)

Phosphonoamidate **27b** was prepared according to the procedure described for the compound **27a**, starting from **5b** (50 mg; 0.1 mmol) in a yield of 28 mg (43%) as a mixture of epimers. HRMS $(M + Na)^{-}$ for C₂₉H₃₄O₈N₆FNaP calculated: 667.20520; measured: 667.20472; IR (CHCl₃, cm⁻¹): 3469, 3307, 3066, 2963, 2935, 2877, 1693, 1654, 1604, 1591, 1533, 1491, 1466, 1456, 1379, 1379, 1238, 1175, 1071, 1036, 701, 690, 642. For NMR data, see table IIa and IIb.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The work was supported by the European Regional Development Fund; OP RDE; Project: "Chemical biology for drugging undruggable targets (ChemBioDrug)" (No. CZ.02.1.01/0.0/0.0/16_019/0000729).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tet.2021.132159.

References

- E. De Clercq, A 40-year journey in search of selective antiviral chemotherapy, Annu. Rev. Pharmacol. Toxicol. 51 (2011) 1–24.
- [2] I. Polakova, M. Budesinsky, Z. Tocik, I. Rosenberg, Tetrofuranose nucleoside phosphonic acids: synthesis and properties, Collect. Czech Chem. Commun. 76 (5) (2011) 503–536.
- [3] Š. Králíková, M. Buděšínký, M. Masojídková, I. Rosenberg, Nucleoside 5'-C-phosphonates: reactivity of the α-hydroxyphosphonate moiety, Tetrahedron 62 (20) (2006) 4917–4932.
- [4] O. Simak, P. Pachl, M. Fabry, M. Budesinsky, T. Jandusik, A. Hnizda, R. Sklenickova, M. Petrova, V. Veverka, P. Rezacova, J. Brynda, I. Rosenberg, Conformationally constrained nucleoside phosphonic acids - potent inhibitors of human mitochondrial and cytosolic 5[prime or minute](3[prime or minute])-nucleotidases, Org. Biomol. Chem. 12 (40) (2014) 7971–7982.
- [5] C.U. Kim, B.Y. Luh, J.C. Martin, Regiospecific and highly stereoselective electrophilic addition to furanoid glycals: synthesis of phosphonate nucleotide analogs with potent activity against HIV, J. Org. Chem. 56 (8) (1991) 2642–2647.
- [6] S. De, S. De Jonghe, P. Herdewijn, Synthesis of a 3'-Fluoro-3'-deoxytetrose adenine phosphonate, J. Org. Chem. 82 (18) (2017) 9464–9478 (Ahead of Print).
- [7] Q. Li, E. Groaz, P. Herdewijn, Synthesis of tetradialdose phosphonate nucleosides as mimics of l-nucleotides, Tetrahedron 75 (37) (2019) 130497.
 [8] C.G. Boojamra, R.L. Mackman, D.Y. Markevitch, V. Prasad, A.S. Ray, J. Douglas,
- [8] C.G. Boojamra, R.L. Mackman, D.Y. Markevitch, V. Prasad, A.S. Ray, J. Douglas, D. Grant, C.U. Kim, T. Cihlar, Synthesis and anti-HIV activity of GS-9148 (2'-Fd4AP), a novel nucleoside phosphonate HIV reverse transcriptase inhibitor, Bioorg. Med. Chem. Lett 18 (3) (2008) 1120–1123.
- [9] I. Gentile, F. Borgia, A.R. Buonomo, G. Castaldo, G. Borgia, A novel promising therapeutic option against hepatitis C virus: an oral nucleotide NS5B polymerase inhibitor sofosbuvir, Curr. Med. Chem. 20 (30) (2013) 3733–3742.
- [10] H. Ren, H. An, P.J. Hatala, W.C. Stevens Jr., J. Tao, B. He, Versatile synthesis and biological evaluation of novel 3'-fluorinated purine nucleosides, Beilstein J. Org. Chem. 11 (2015) 2509–2520.
- [11] G.G. Sivets, F. Amblard, R.F. Schinazi, Synthesis of 2-fluoro-substituted and 2,6-modified purine 2',3'-dideoxy-2',3'-difluoro-d-arabinofuranosyl

nucleosides from d-xylose, Tetrahedron 75 (13) (2019) 2037-2046.

- [12] R. Käppi, Z. Kazimierczuk, F. Seela, H. Lönnberg, Kinetics and mechanism for acid-catalyzed hydrolysis of regioisomeric 2'-deoxyribonucleosides of 8azaadenine and substituted benzotriazoles, Nucleos Nucleot. 10 (1–3) (1991) 571–572.
- [13] N.B. Dyatkina, F. Theil, M. von Janta-Lipinski, Stereocontrolled synthesis of the four stereoisomeric diphosphorylphosphonates of carbocyclic 2',3'-dideoxy-2',3'-didehydro-5'-noradenosine, Tetrahedron 51 (3) (1995) 761–772.
- Y.-h. Koh, J.H. Shim, J.Z. Wu, W. Zhong, Z. Hong, J.-L. Girardet, Design, synthesis, and antiviral activity of adenosine 5'-phosphonate analogues as chain terminators against hepatitis C virus, J. Med. Chem. 48 (8) (2005) 2867–2875.
 T. Klejch, D.T. Keough, M. Chavchich, J. Travis, J. Skácel, R. Pohl, Z. Janeba,
- [15] T. Klejch, D.T. Keough, M. Chavchich, J. Travis, J. Skácel, R. Pohl, Z. Janeba, M.D. Edstein, V.M. Avery, L.W. Guddat, D. Hocková, Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: synthesis and evaluation, Eur. J. Med. Chem. 183 (2019) 111667.
- [16] R.L. Mackman, A.S. Ray, H.C. Hui, L. Zhang, G. Birkus, C.G. Boojamra, M.C. Desai, J.L. Douglas, Y. Gao, D. Grant, G. Laflamme, K.-Y. Lin, D.Y. Markevitch, R. Mishra, M. McDermott, R. Pakdaman, O.V. Petrakovsky, J.E. Vela, T. Cihlar, Discovery of GS-9131: design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148, Bioorg. Med. Chem. 18 (10) (2010) 3606–3617.
- [17] G. Birkus, N. Kutty, C.R. Frey, R. Shribata, T. Chou, C. Wagner, M. McDermott, T. Cihlar, Role of cathepsin A and lysosomes in the intracellular activation of novel antipapillomavirus agent GS-9191, Antimicrob. Agents Chemother. 55 (5) (2011) 2166.
- [18] K. Hercík, J. Kozak, M. Šála, M. Dejmek, H. Hřebabecký, E. Zborníková, M. Smola, D. Ruzek, R. Nencka, E. Boura, Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase, Antivir. Res. 137 (2017) 131–133.
- [19] A. Cho, L. Zhang, J. Xu, R. Lee, T. Butler, S. Metobo, V. Aktoudianakis, W. Lew, H. Ye, M. Clarke, E. Doerffler, D. Byun, T. Wang, D. Babusis, A.C. Carey, P. German, D. Sauer, W. Zhong, S. Rossi, M. Fenaux, J.G. McHutchison, J. Perry, J. Feng, A.S. Ray, C.U. Kim, Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients, J. Med. Chem. 57 (5) (2014) 1812–1825.
- [20] İ. Mejdrová, D. Chalupská, M. Kögler, M. Šála, P. Plačková, A. Baumlová, H. Hřebabecký, E. Procházková, M. Dejmek, R. Guillon, D. Strunin, J. Weber, G. Lee, G. Birkus, H. Mertlíková-Kaiserová, E. Boura, R. Nencka, Highly selective phosphatidylinositol 4-kinase IIIβ inhibitors and structural insight into their mode of action, J. Med. Chem. 58 (9) (2015) 3767–3793.