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Abstract: The fate of foliar and ground-applied essential nutrients is the least studied topic under
citrus greening or Huanglongbing (HLB)-affected citrus, which is inherently suffering from severe
root decline because of HLB-associated problems. The objective of this study was to evaluate if
ground-applied coupled with foliar spray of essential nutrients can reverse the decline in tree growth
and understand the fate of the nutrients in the soil-root-tree interfaces. The treatments were arranged
in a split-split plot design in which nitrogen (N) was ground-applied in 20 splits biweekly and Mn,
Zn, and B were foliar and /or ground-applied in three splits following the spring, summer, and
late summer flush seasons. Soil nutrients in three depths (0–15, 15–30, and 30–45 cm), root, and leaf
nutrient concentrations of the essential nutrients, leaf area index (LAI), and tree canopy volume
(TCV) data were studied twice (spring and summer) for two years. A significantly higher soil NH4-N
and NO3-N concentrations were detected in the topsoil depth than the two lower soil depths (15–30
and 30–45 cm) indicating lesser nutrient leaching as trees received moderate (224 kg ha−1) N rate.
Except for soil zinc (Zn) concentration, all the nutrient concentrations were significantly higher in
the topsoil (0–15 cm), compared with two lower soil depths indicating that Zn was intricate by
changes in soil environmental conditions, root acquisition, and/or leaching to lower soil depth. Leaf
N concentration significantly increased over time following seasonal environmental fluctuations,
tree growth, and development. Thus, leaf N concentration remained above the optimum nutrient
range implying lower N requirement under irrigation scheduling with SmartIrrigation, an App
used to determine the daily irrigation duration to meet tree water requirement and split fertigation
techniques. Root Manganese (Mn) and Zn concentrations were significantly higher in the root
tissues of the treated than the control trees and translocated to the leaves accordingly. Meanwhile,
a significantly higher LAI for trees budded on Swingle (Swc) rootstock however, larger TCV for
trees budded on Volkameriana (Volk) rootstocks. The trees had significantly larger TCV when the
trees received a moderate N rate during early study years and under foliar 9 kg ha−1 coupled with
the ground 9 kg ha−1 Mn and Zn treatments during the late study years. Therefore, split ground
application of 224 kg ha−1 of N, foliar applied 9 kg ha−1 coupled with ground-applied 9 kg ha−1

Mn and Zn were the suggested rates to sustain the essential leaf nutrient concentration within the
optimum ranges and improve the deterioration of vegetative growth associated with HLB-induced
problems of citrus trees.

Keywords: Candidatus Liberibacter asiaticus; HLB; irrigation scheduling; LAI; micronutrients; soil
ammonium–nitrogen; soil nitrate-nitrogen; tree canopy volume; vegetative growth

1. Introduction

The bacteria Candidatus Liberibacter asiaticus are Gram-negative, phloem-limited, the
primary cause of Huanglongbing disease (HLB, citrus greening), fast-proliferating, and
the most destructive disease of citrus trees since its detection in Florida in 2005 [1–4]. The
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Asian citrus psyllid (Diaphorina citri Kuwayama), the disease’s vector, is a widespread
pest throughout Florida [3,5–7]. Once a citrus tree is infected with HLB, it becomes
nonproductive within a few years [8,9]. HLB alters citrus tree physiology (photosynthesis
and xylem flux) and morphology (e.g., phloem translocation, bloated and corky veins,
root length, and density) subsequently affecting nutrient acquisition, movement, and
utilization [10,11]. Several methodologies were devised that include soil acidification,
enhanced nutritional programs, split fertigation, and foliar spray of essential nutrients to
reverse the decline of citrus trees as the result of HLB-induced citrus deterioration [7,12–15].

Foliar nutrition can complement ground-applied fertilizers to satisfy crop nutrient de-
mand, particularly when citrus root systems are restricted, in soil having a severe nutrient
deficiency, nutrients immobilized because of undesirable soil conditions [7,13,16–18]. Nev-
ertheless, the foliar spray is not expected to entirely replace or eliminate ground-applied
N, P, and K fertilization [17,19]. Foliar applied nutrients alone are inadequate to support
normal tree growth [7,20]. Foliar applications of some micronutrients, Zn, Mn, and B, are
an efficient method for satisfying citrus nutrient needs [18,21]. Ground-applied fertilizers
could be exposed to detrimental soil processes, such as immobilization to plant unavailable
forms, leaching, and runoff. Foliar spray of micronutrients Mn, Zn, Cu, B, and Mo, are
significantly more efficient and economically viable than soil applications if applied in
sufficient quantities [22,23].

Nitrogen is one of the essential nutrients for citrus production that play a vital role
in canopy growth and fruit yield [14,24]. Florida sandy soils coupled with leaching rain
events and extended irrigation duration exacerbate the possibility of N leaching beyond
the root zone [12,25–27]. Acidic and alkaline soils are common problems in Florida citrus
groves because of leaching in the acidic soils and precipitation in alkaline soils [18,28].
Some essential nutrients (e.g., Ca, Mg, Fe, Mn, Zn, and B) are less available for uptake
by some crops under alkaline soil conditions [28,29]. Therefore, multiple annual fertilizer
applications in association with scheduling fertigation, and products with incorporated
elemental sulfur (S) that releases S to lower soil pH were utilized to enhance nutrient
availability and minimize the nutrient leaching probability [28,30]. Manganese (Mn)
deficiency is normally a worldwide problem predominantly manifested in the spring after
a cold winter [2,31]. Severe Zn or Fe deficiencies bring about a delay in recognizing the
symptoms of Mn deficiency and subsequent corrective measures. Soils with insufficient
levels of the essential plant micronutrient Zn are common worldwide [7,32]. In a study
conducted on the perennial plant Phytolacca acinosa, Mn accumulation in tissues (leaves,
stems, roots) increased with time with an increase in the supply of the amount of Mn [33,34].
Similarly, partitioning of Mn was found between shoots and roots, displaying the ability
of Mn movement from roots to shoots, remarkable tolerance to Mn but also has greater
uptake and accumulation [15,34]. Mn deficiency increases the vulnerability of plants to
pathogen attack [31,35]. Though citrus trees possess a thick cuticle leaf layer, they react
adequately to foliar nourishment because of numerous and wider stomata on the abaxial
surface coupled with a high quantity of cuticle apertures than other epidermal cells [19,36].
On the other hand, the peak photosynthetic activity is manifested in mature leaves, the
source of photosynthetic produce for the remaining parts of the plant parts. At that phase,
foliar-applied nutrition is absorbed and translocated from leaves to flowers, fruits, and
roots along with assimilates [13,19].

The physiological impact of Zn on the leaves and fruit have not been
identified [13,18,30,32]. Phloem translocation of Zn is one of the important features that
contribute to HLB-induced Zn deficiency in grapefruit and the concentration was too
low in young and mature leaves, such that no clear Zn distribution was detected in
the phloem tissues [4,32]. Research showed that there is indirect evidence for high Zn
translocation in the phloem of healthy citrus, which previously had been associated with
intermediary phloem mobility [18,23,32]. Physiological, morphological, and biochemical
abnormalities are usually initiated by Zn deficit resulting in a decline in flowering, fruit
set, and yield losses [4,18,37]. Boron (B) is a vital micronutrient but the least understood
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in plant physiology [11,38]. A decrease in leaf B has been associated with HLB-affected
citrus trees [11,38,39]. Inherently, Florida sandy soils are low in B, and deficiency of B
is exacerbated by extreme drought, high pH irrigation water, or excessive lime dress-
ing [29,37]. Soil pH is an imperative factor that influences the availability of B in soil and
its availability progressively decreases with increasing soil, pH particularly beyond soil
pH 6.5 [39,40]. Boron takes part in carbohydrate translocation through the phloem, cell wall
structure, and influences pathogen susceptibility [11]. Soil pH is an imperative factor that
influences the availability of B in soil and its availability progressively decreases with in-
creasing soil pH, particularly beyond soil pH 6.5 [37–39]. Boron takes part in carbohydrate
translocation through the phloem, cell wall structure, and influences pathogen suscepti-
bility [11,38,39]. The impact of rootstocks on scion performance, micronutrient rate, type,
method of applications on HLB-affected citrus trees have not been well addressed. The
fate of essential nutrients in the soil-root-tree interfaces of HLB-affected citrus trees is not
well studied [22,41,42]. Therefore, the following hypotheses were outlined: (1) split foliar
and /or ground-applied essential nutrients improve soil availability, accumulation, and
uptake of nutrients by HLB-affected citrus trees; (2) split application of essential nutrients
reduces nutrient leaching and the detrimental effect of soil immobilization as result of soil
reactions; (3) split application of essential nutrients increases the nutrient concentration
in the soil, root, and leaf tissues; and (4) adding essential nutrients boost LAI and TCV
of HLB-affected citrus trees. Therefore, the objective of this study was: (1) determine if
split applications of essential nutrients increase soil N, Mn, Zn concentration over time;
(2) compare foliar and ground-applied essential nutrients improve the root and leaf N,
Mn, and Zn concentrations of HLB-affected citrus trees; (3) evaluate if ground applications
in addition to the foliar spray of essential micronutrients (Mn and Zn) and split ground
application of N reverse the decline in vegetative growth, such as LAI and TCV.

2. Materials and Methods
2.1. Study Site, Experimental Design, and Treatments

Mature sweet orange trees (Citrus × sinensis L. Osbeck cv. “Valencia late” budded
onto Volkameriana (Volk) lemon (C. volkameriana Pasquale) or Swingle (Swc) citrumelo
(Citrus × paradisi Macf. × Citrus trifoliata L. Raf.) rootstocks were planted in 2006. The
test was conducted at the University of Florida, Southwest Florida Research and Education
Center near Immokalee, FL from 2017 to 2019. The soil at the test site was classified as
Immokalee fine sand (sandy, siliceous, hyperthermic Arenic Alaquods). A randomly se-
lected mature five leaves per tree were collected and processed for quantitative polymerase
chain reaction (qPCR) analysis in HLB diagnostic laboratory located at Southwest Florida
Research and Education Center (Immokalee, FL) in February 2017. Leaf samples with cycle
threshold (Ct) values of 30 or less were deemed HLB-positive, with Ct values of more
than 32 or more were HLB-negative. Hence, foliar laboratory results of the HLB-affected
trees under the study showed a cycle threshold value of 24.7 ± 0.19, indicating an active
infection or more copies of the CLas bacteria were amplified during each cycle.

The test comprised of three main effects as the main block of two rootstocks, in-
termediary subplots of three N rates, and sub subplots of three micronutrient rates in
which each sub subplot consisted of 0.036 ha. The treatments were assigned in random
in each experimental units where the three N rates (168, 224, and 280 kg ha−1) were
split within the large block of the rootstocks, the sub subplots which received either
0× (control), 1× (foliar only), 2× (1× foliar and 1× ground-applied), or 3× (1× foliar and
2× ground-applied) bentonite clay encapsulated micronutrient product containing ele-
mental sulfur and Mn and Zn oxide, as previously suggested by the University of Florida,
Institute of Food and Agricultural Sciences for citrus nutrition [43]. Each of 1× was equiv-
alent to 9 kg ha−1 of S coated metallic Mn and Zn oxides and 2.3 kg ha−1 of B nutrients
(Table 1). Meanwhile, all trees received K fertilizer (as K2O) at 168 kg ha−1.
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Table 1. Soil and/or foliar applied essential nutrients on HLB-affected citrus trees at Immokalee, FL
during the 2016–2018 growing seasons.

Method and Rate of Application (kg ha−1 year−1)

Soil Foliar Soil

Treatments N rate 1 Mn 2 Zn 3 B 4 Mn 5 Zn 5 B 6

2× 168 9 9 2.3 9 * 9 * 2.3 *
224 9 9 2.3 9 9 2.3
280 9 9 2.3 9 9 2.3

3× 168 9 9 2.3 18 ** 18 ** 4.6 **
224 9 9 2.3 18 18 4.6
280 9 9 2.3 18 18 4.6

1 Nitrogen as NH4NO3 for split 20 times per year from Feb. to Nov. 2 Foliar spray 0.011 kg L−1 ZnSO4 per hectare
equivalent. 3 Foliar spray 0.013 kg L−1 MnSO4 per hectare equivalent. 4 Foliar spray 0.0012 kg L−1 B Na2B4O7
per hectare equivalent. 5 Soil applied sulfur encapsulated 6% ZnSO4 and 6% MnSO4 of 0.16 kg and 0.32 kg per
sub subplot (each plot = 0.036 hectare) for treatments 3× * and treatment 4× **, respectively. 6 Ground-applied
equivalent to 0.15 and 0.30 kg of Na2B4O7 per sub subplot (each sub subplot = 0.036 hectare) for treatments 3× *
and treatment 4× **, respectively.

The N and K were fertigated as split applications on a biweekly basis between February
and November in each study year. Trees were fertigated with a micro-sprinkler Max−14
(Maxijet Inc., Dundee, FL, USA), Fill-in blue emitters were placed 15 cm from the tree trunk.
The irrigation was assisted with a 172.4 kpa irrigation pump at a flow rate of 45 L h−1 [30].
Citrus SmartIrrigation app, which is available on iOS and Android interfaces, was used
to determine daily irrigation duration to meet tree water requirement based on reference
evapotranspiration (ETo) calculated with Penman-Monteith and crop coefficient related to
the meteorological data of the study site [12,30].

2.2. Soil Sampling, Extraction, and Nutrient Analysis

Soil samples were collected within a 0.5–1.0 m radius under the tree canopy. The
samples were collected at three different locations along with three soil profiles: 0–15, 15–30,
and 30–45 cm per tree in spring (Feb. or Mar.) and summer (Aug. or Sept.) of 2017 and 2018
growing seasons. The collected samples were stored in a freezer until soil extraction [10,30].
Soil NH4-N and NO3

−1-N concentrations were extracted using the 2M KCl by pipetting a
40 mL of 2M KCl solution into an extraction tube containing approximately 5.0 g (±0.05)
of wet soil, capped, and shaken for 30 min on a reciprocating shaker [44]. Subsequently,
the supernatant was left to settle for 15 min, filtered using Fisher Scientific filter paper
placed onto labeled vials, capped, and kept in a freezer until analysis [45]. The soil NH4-N
and NO3-N concentrations were processed using a Microplate Reader spectrophotometric
(Epoch BioTec, Winooski, VT, USA) at 660 and 520 nm, respectively, and calculate on a dry
weight basis [12,46].

A 25 mL of Mehlich III extractant solution (0.2 M CH3COOH + 0.015 M NH4F + 0.013
M HNO3 + 0.001 M EDTA + 0.25 M H4NO3) was pipetted into an extraction tube containing
dry soil samples of 2.5 g (±0.05) [46,47] to extract Mehlich III-extractable concentrations
of P and heavy metals. The sample was capped and shaken for 5 min at a high rate
(200 reciprocating per minute). Subsequently, the supernatant was allowed to rest for
30 min, after which the solution was filtered onto labeled vials, and stored in a freezer
pending analysis [12,14,48]. Mehlich III-extractable concentrations of P and heavy metals
were processed using inductively coupled plasma optical emission spectroscopy (ICP-OES,
Spectro Ciros CCD, Fitzburg, MA, USA). All results were expressed on an oven-dry soil
weight basis [12,46].

2.3. Leaf and Root Tissue Nutrient Concentration

Leaf and root samples were collected in the spring (February/March) and summer (Au-
gust/September) seasons. Twenty leaves (4–6 month-old) were collected from non-fruiting
branches [43]. The leaf samples were washed in a weak detergent solution (0.1–0.3%, Micro-
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90 ®Burlington, NJ, USA), rubbed between the thumb and forefinger, subsequently rinsed
with reverse osmosis water followed by deionized water to remove nutrients adhering
to the leaf surface [34]. Approximately 50 g of fine roots of < 2.0 mm were also collected
from the topsoil depth (0–15) cm using a hand rake across the half canopy on the swale
side of the bedded rows. The root samples were gently shaken to remove the soil, kept
in a labeled kaki paper bag, and brought to the processing lab for cleaning the roots. The
samples were then oven-dried at 65◦C, before grinding to pass through a 40 mesh screen in
a Wiley mill (Thomas-Wiley Laboratory Mills, Philadelphia, PA, USA) [49–51]. Oven-dried
sample (0.5 g) was weighed, processed [43], and stored in a refrigerator at < 4 ◦C pending
analysis with Inductively Coupled Plasma Optical Emission Spectroscopy (Spectro Ciros
CCD, Fitzburg, MA) [7,52,53]. The NA2500 carbon (C)/N Analyzer (Thermoquest CE
Instruments; ThermoQuest Corporation, Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used to determine tissue N (%). Subsequently, the leaf nutrient concentration was
compared with the critical nutrition concentration that was previously established from
years of experimentation [43].

2.4. Vegetative Growth
2.4.1. Leaf Area Index

Canopy density or leaf area index (LAI) is an indicator of above-ground vegetation
growth. The measurement of LAI was determined by the amount of radiation transmission
through the tree canopy using the radiative transfer principle [54] with a SunScan canopy
sensor system (Dynamax Inc., Houston, TX, USA) at mid-day (1130 to 1330 HR), in which
the solar zenith angle was within < ±10◦ (±0.1) [12]. The average of four readings per tree
was made across the four directions: east, west, north, and south from three sub subplots
and replicated four times (n = 48).

2.4.2. Tree Canopy Volume

The average canopy diameter along the east-west and north-south and canopy height
was measured to calculate the canopy volume using Equation (1). The TCV was measured
at the beginning (Feb. or Mar.) of the experiment and every six months thereafter (Feb. or
Mar. and Aug. or Sept.) for three years.

TCV =
4
3
× (π)

(
r2
)
×

(
h
2

)
(1)

where TCV (m3) = Tree canopy volume; r = mean canopy radius (m); h = canopy height (m).

2.5. Statistics and Data Analysis

Three-way interaction effect among the main factors: rootstock, N rates, and micronu-
trient rate treatment effects was tested on soil, root, and leaf nutrient concentration, LAI,
and TCV. Field data on rootstocks, N rates, micronutrients were deemed as fixed effects,
while replication in sub and sub-sub blocks were assigned as the random effect to the
PROC General Linear Model (GLM) procedures SAS 14.1 (SAS Institute, Cary, NC, USA).
This allowed us to see all the main effects and interaction effects between rootstocks, N
rates, and micronutrient rates. The data were tested for linearity, normality, homogeneity
of variance, and independent errors before the derivable statistics analyses were performed.
Mean separation among the means with a statistical difference at the p-value of ≤ 0.05 was
performed using the Tukey–Kramer honestly significant difference grouping range test.
All graphs were formed using the Sigma Plot 14 (SigmaPlot 14, Systat Software, San Jose,
CA, USA).
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3. Results and Discussion
3.1. Soil Nutrient Concentration
3.1.1. Soil Nitrate Nitrogen

During the entire study seasons, the amount of soil NO3-N was higher on the top-
most depth (0–15 cm) as compared with the two lower soil depths (15–30 and 30–45 cm)
regardless of the N rates (Table 2 and Figure 1A–C). The amount of soil NO3-N significantly
increased at the lowest soil depth (30–45 cm) with the moderate N rate and was lowest with
the lowest N rate (168 kg ha−1) (Figure 1B). Meanwhile, higher soil NO3-N concentration
was detected when trees received 224 kg ha−1 than 280 kg ha−1 N during summer 2018
indicating that more soil NO3-N leaching to the lower soil depth or more N was absorbed
by the trees on the highest N rate, as compared with the lowest N rate. Higher soil NO3-N
concentration in the lower soil depth as a result of soil NO3-N leaching following leaching
rain events of Hurricane Irma (300 mm day−1) in summer 2017. The relative accumulation
and leaching in soil NO3-N concentration during 2017 was not conspicuous along with the
soil profile and within the N rates. During spring 2018, the soil NO3-N showed an increase
of 7%, 30%, and 23% of soil NO3-N concentration in the topmost soil depth as compared
with its immediate soil depth pertained to 168 kg, 224 kg, and 280 kg ha−1, respectively. In
summer 2018, 36% more soil NO3-N was accumulated in the topmost soil depth for trees
that received 200 kg ha−1 than 168 kg ha−1.

Table 2. Analysis of variance (ANOVA) of soil nutrient concentration on a dry weight basis under Huanglongbing-affected
Valencia citrus trees at Immokalee, FL during 2017 and 2018 growing seasons.

Spring 2017 Summer 2017

NO3-N NH4-N Mn Zn B NO3-N NH4-N Mn Zn B

Model Variables 1 Significance Level 2

D * * NS NS * * NS * * ***
N NS NS NS NS NS NS NS NS NS NS

M NS NS * NS NS NS NS NS NS NS

Spring 2018 Summer 2018

D NS * * NS *** * NS * NS *
N NS NS NS NS NS NS NS NS NS NS

M NS NS *** NS NS NS * NS NS NS

D × M * NS NS NS NS * NS ** ** NS

N × R × M NS NS NS NS * NS NS NS NS NS

1 Model variables: D = depths of the soil, N = nitrogen rate, and M = micronutrients. 2 NS, *, **, and *** represent non-significant or
significant at p ≤ 0.05, < 0.01, and < 0.0001, respectively.

During summer 2018, the soil NO3-N showed an increase of 9%, 42%, and 65% of
soil NO3-N concentration in the topmost soil depth as compared with its immediate soil
depth ascribed to 168 kg, 224 kg, and 280 kg ha−1, respectively. The overall range of the
soil NO3-N concentration varies between 0.3–4.0 mg kg−1 throughout the study season.
These findings are similar to those results documented under similar fertigation programs
on HLB-affected Hamlin citrus trees with optimum irrigation scheduling [12,17,55]. In
a previous study in conventional N application methods, under a mature sweet orange
tree, on well-drained soil with optimum irrigation, and regular split fertigation ranging
from 112 to 280 kg ha−1 N the soil NO3-N concentration was 8–15 mg kg−1, which was
a value of 200 to 400% more than the current study [12,17,22,56]. Therefore, irrigation
scheduling and multiple split application of N utilized in the current study was per the
best management practices (BMP) directed by the Florida Department of Agriculture and
Consumer Services for sustainable citrus production in the era of HLB which is severely
affecting the citrus industry [29,57].
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Figure 1. Soil available N (soil NO3-N: figures (A–C) and soil NH4-N: figures (D–F)) accumulation
and dynamics under Huanglongbing-affected citrus trees as impacted by three nitrogen rate (168,
224, and 280 kg ha−1) in spring (sp, Feb. /Mar) and summer (su, Aug. /Sept.) 2017 and 2018 seasons
in three soil depths (0–15, 15–30, and 30–45 cm). Means followed with the same lower case letters on
a vertical alignment is not significantly different (p ≤ 0.05) using Tukey’s range test (n = 36).

3.1.2. Soil Ammonium Nitrogen

Like the soil NO3-N, the soil of NH4-N concentration was significantly higher in the
topsoil depth as compared with the two lower depths regardless of the N rates during the
2018 seasons (Table 2 and Figure 1D–F). The accumulation soil NH4-N concentration in
the topmost soil depth as compared with its immediate lower soil depth was a value of
9%, 30%, and 10% greater in the spring and 10%, 40%, and 7% greater in the summer of
2018 under 168, 224, and 280 kg ha−1 N rates, respectively. None of the N rates showed a
significant variation to the movement of soil NH4-N along with the soil profile irrespective
of the N rates. This indicated that the dynamic of soil NH4-N to the lower soil depth was
limited as compared with the soil NO3-N concentration. Similar results were reported
in which the magnitude of soil NH4-N ranging from 1.0 to 6.0 mg kg−1 in the topsoil
depth under restricted and drip irrigations with poorly drained soils [22,48]. Meanwhile,
the restricted soil NH4-N mobility along the soil profile and the conversion of 33 to 41%
of the applied NH4-N to NO3-N in 7 days could be the best strategy for year-round
availability of N to the citrus trees suffering from severe deterioration of fine root density
from HLB-associated problems [12,22,58,59].
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3.1.3. Soil Manganese Concentration

Early in the study season, the soil Mn concentration reacted according to the amount of
Mn applied foliar and to the ground among the three soil depths (Table 2 and Figure 2A–C).
The soil Mn concentration was significantly higher only when trees received the foliar (1×)
and ground (1×) or foliar and the ground (2×) doses, while only the foliar treated trees
showed no significant difference as compared with the control trees. Following the spring
2017 leaf flushes, the acquisition of Mn from the soil pool and the translocation of Mn from
accumulated tissues to the newly growing tissues created a potential gradient in the leaves
to absorb more nutrients, which were discussed below. The soil Mn concentration in the soil
significantly increased over time when trees received the foliar (1×) couple with the ground
(1×) as well as foliar (1×) couple with the ground (2×) Mn and Zn treatments. However,
since foliar Mn spray promotes above-ground vegetative biomass, the foliar spray could
significantly exploit more of the soil Mn pool as compared with the control trees on the
topmost soil depth (Figure 2A). The soil Mn concentration was significantly lower in the
two lower soil depths under the control trees, proving that there was deteriorating soil Mn
concentration because of no external source to replenish Mn acquisition by crop removal.

3.1.4. Soil Zinc Concentration

Soil Zn was less likely to accumulate in the topsoil depth. It was uncertain if it moved
to the lower soil depth or absorbed by the root and moved to leaf tissues. During the early
seasons, no significant variations of soil Zn concentrations were detected in the topmost
soil depth (Figure 2D–F). However, later in the seasons, more soil Zn concentrations were
observed gradually to accumulate in the lower soil depth (Figure 2E,F). Ground-applied
Zn is less accessible to plants root because of its low movement, high soil fixation, and
HLB-induced root injury [16,18]. Since no proof was reported to recover Zn deficiency
by adding to the soil or immobilized zinc within the plant tissue, foliar spray of Zn is a
suggested method to increase leaf Zn tissue concentration in plants [18,60].

3.1.5. Other Soil Nutrients

A significant effect on soil Ca, Mg, and NH4-N was detected as the result of adding
Mn and Zn in the soil consistently during the spring and summer seasons (Table 3). Soil
Ca concentration showed a magnitude of 1.9×, 3.3×, and 1.9× in the spring and 1.5×,
1.6×, and 3.5× lesser in summer under the control trees in response to the foliar (1×),
foliar (1×) couple with the ground (1×) and foliar (1×) couple with the ground (2×),
respectively. Similarly, Soil Mg concentration showed a magnitude of 1.3×, 2.5×, and 4.0×
in the spring and 1.0×, 0.8×, and 3.3× lesser in summer under the control trees attributed
to the foliar (1×), foliar (1×) couple with the ground (1×) and foliar (1×) couple with
the ground (2×), respectively. Similar metallic elements have an antagonistic effect, can
replace, and compete for the same plant acquisition, movement, and storage site within
an organism [61]. In previous studies indicated that any divalent element impedes the
acquisition of other elements such as Mn, Zn, Ca in the soil, which might induce reduced
uptake and toxicity of other cations [4,12,61]. On the other hand, soil NH4-N increased
with increasing the application of Mn and Zn. Soil NH4-N had 1.1×, 1.6×, and 2.3× greater
than the control trees that received foliar (1×), foliar (1×) couple with the ground (1×)
and foliar (1×) couple with the ground (2×), respectively. Soil Cu and Fe concentrations
were not significantly affected on the topmost depth soil in reaction to the ground-applied
essential nutrient treatments in neither of the study seasons.



Plants 2021, 10, 925 9 of 19

Figure 2. Soil Mn (figures (A–C)) and Zn (figures (D–F)) movement and accumulation in three soil
depths: 0–15, 15–30, and 30–45 cm under Huanglongbing-affected Hamlin citrus trees in spring (sp,
Feb. /Mar) and summer (su, Aug. /Sept.) seasons. Micronutrient treatments: control (0×, closed
circles), foliar (1×) (1×, open circles), foliar (1×) coupled with the ground (1×) (2×, closed triangles),
and foliar (1×) and the ground (2×) (3×, open triangles), (1× = 9 kg ha−1 of metallic Mn and Zn
each and 2.3 kg ha−1 of B). Error bars denote mean ± standard error of means (n = 36). Means along
the same vertical alignment with the same lower case letters are not significantly different (p ≤ 0.05)
using the Tukey's range test.

3.2. Root Nutrient Concentration
3.2.1. Root Mn Concentration

The root Mn concentration remained significantly higher for trees that received foliar
(1×) coupled with the ground (1×) and foliar (1×) coupled with the ground (2×) treatments
as compared with control trees in the spring season (Figure 3A,B). Soil Mn concentration
showed a magnitude of 1.2×, 2.6×, and 2.4× greater for trees budded on Volk and 1.7×,
3.8×, and 4.4x greater for trees budded on Swc the spring and 2.1 ×, 3.1×, and 4.3× greater
for trees budded on Volk and 1.7×, 3.8×, and 4.4x for trees budded on Swc rootstocks
in the summer than the control trees ascribed to the foliar (1×), foliar (1×) couple with
the ground (1×), and foliar (1×) couple with the ground (2×), respectively. The root Mn
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concentration showed no significant difference between foliar (1×) treated and the control
trees during the spring and summer seasons. Similarly, foliar (1×) coupled with the ground
(1×) and foliar coupled with the ground (2×) Mn and Zn treatment showed no significant
variation in root Mn concentration. This indicated that only foliar spray is not enough to
show variation in root Mn concentration compared to the untreated trees and foliar (1×)
and ground (2×) application was less reactive to the excess application compared with
foliar (1×) and ground (1×) Mn applications. However, these premises will not provide
us the notion of tree optimum Mn concentration unless the accumulated Mn nutrition
in the root is showed up in the leaf nutrient concentration, which later will be discussed
in the leaf nutrient concentrations. Besides, it was documented that Zn, Mn, and Fe are
among the most micronutrients affected by HLB-associate problems, particularly in the
root tissues of HLB-affected citrus trees [15]. Generally, foliar and /or ground-applied Mn
nutrients increase root Mn concentration approximately 35–65% greater in the foliar (1×)
treated trees and 60–85% more in the foliar (1×) coupled with the ground (1×) treated trees
as compared to the control trees. These fine roots of Valencia Mn concentration grown on
sandy soil were similar to those reported by [62], 250 mg kg−1.

Table 3. Effect of split soil and /or foliar-applied essential nutrients on soil nutrient concentration in 0–15 cm soil depth
under Huanglongbing-affected Hamlin citrus trees at Immokalee, FL during 2017 and 2018 growing seasons.

Soil Nutrient Concentration (mg kg−1)

Spring 2018

Treatments 1 NO3-N NH4-N P K Ca Mg B Cu Fe

Spring 2018

0× 1.9 ± 1.4 3.85 ± 0.6 28 ± 4 28 ± 3 356 ± 38a 28 ± 4a 0.4 ± 0.0ab 13 ± 1 69 ± 12
1× 2.7 ± 1.5 3.72 ± 0.9 47 ± 8 27 ± 2 184 ± 22ab 21 ± 2b 0.4 ± 0.1a 12 ± 2 44 ± 7
2× 2.6 ± 1.8 5.45 ± 1.1 33 ± 5 26 ± 2 109 ± 18ab 11 ± 1b 0.3 ± 0.0b 11 ± 1 46 ± 7
3× 4.1 ± 1.7 5.40 ± 0.5 26 ± 6 18 ± 3 186 ± 73b 7 ± 2b 0.3 ± 0.0ab 11 ± 1 62 ± 8

Sign. 2 NS NS NS NS ** ** * NS NS

Summer 2018

0× 1.6 ± 0.4 3.3 ± 0.4b 21 ± 4 15 ± 1 325 ± 45a 13 ± 3a 0.2 ± 0.1 9 ± 2 59 ± 1
1× 1.7 ± 0.6 3.6 ± 0.5b 26 ± 4 18 ± 2 224 ± 37ab 13 ± 2a 0.3 ± 0.0 7 ± 1 35 ± 1
2× 1.4 ± 0.3 5.4 ± 0.8b 27 ± 3 22 ± 4 208 ± 40ab 17 ± 7a 0.2 ± 0.0 9 ± 1 55 ± 6
3× 1.2 ± 0.2 7.6 ± 1.1a 48 ± 13 12 ± 2 93 ± 27b 4 ± 3b 0.3 ± 0.1 11 ± 2 42 ± 1

Sign. 2 NS *** NS NS ** *** NS NS NS

1 Treatments: control (0×), foliar (1×) (1×), foliar (1×) and ground (1×) (2×), and foliar (1×) and ground (2×) (3×), (1× = 9 kg ha−1 of
metallic Mn and Zn each and 2.3 kg ha−1 of B). Mean soil nutrient concentration ± standard error on the same column with the same letters
are not significantly different at p ≤ 0.05 using Tukey’s range test (n = 12 trees). 2 NS, *, **, *** Non-significant or significant at p ≤ 0.05, 0.01,
< 0.0001, respectively.

3.2.2. Root Zinc Concentration

Foliar (1×) coupled with the ground (1×) treated trees showed a significantly higher
root Zn concentration compared with the control trees (Figure 4A,B). No significant vari-
ation of root Zn concentration was detected between the foliar (1×) and untreated trees
implying a required soil Zn application. Soil Zn concentration showed a magnitude of
1.8×, 2.1×, and 1.5× greater for trees budded on Volk and 1.6×, 1.9×, and 3.1x for trees
budded on Swc in the spring and 1.6×, 1.9, and 3.1× for trees budded on Volk and 1.3×,
2.1×, and 1.8x for trees budded on Swc rootstocks in summer under the control trees
ascribed to the foliar (1×), foliar (1×) couple with the ground (1×), and foliar (1×) cou-
ple with the ground (2×), respectively. There was no significant noticeable difference of
root Zn concentration between the foliar (1×) coupled with the ground (1×) and foliar
(1×) coupled with the ground (2×) treated trees in any of the seasons implying with
increasing Zn soil application would result in an antagonizing effect with other divalent
metallic elements and soil fixation problems discussed earlier. Previous results reported
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that competition of Zn with other divalent mineral nutrients like Fe, Mn, and Ca result
in Zn deficiency [21,53,61]. No significant difference in root Zn concentration was also
detected in trees underground and foliar treated trees regardless of rootstock type, nutrient
doses, and method of Zn application. Foliar Zn spray was reported to be less effective than
ground-applied Zn in increasing vegetative growth, which eventually cannot be manifested
to translocate from the top to down to correct Zn deficiency in the roots [18]. Meanwhile,
the current study indicated that extra Zn application beyond the ground (1×) dose showed
unnecessary during the entire season. A previous study indicated that reduced phloem
dynamics of Zn is the primary factor that is prevalent on HLB-driven Zn insufficiency in
grapefruit [32]. The pre-HLB era indicated lower fine root micronutrient concentration of
Valencia citrus trees grown on sand soil, (mg kg−1): Mn = 250; and Zn = 409 supporting
the aforementioned statements [62].

Figure 3. Root Mn concentration as affected by foliar and /or ground-applied micronutrients during
spring (figure (A)) and summer (figure (B)) of 2017–2018. growing seasons. Micronutrient treatments
(X-axis): control [0×], foliar (1×) (1×), foliar (1×) and ground (1×) (2×), and foliar (1×) and ground
(2×) (3×), (1× = 9 kg ha−1 of metallic Mn and Zn each and 2.3 kg ha−1 of B). Error bars indicate the
mean values (n = 12 trees) ± standard error of the mean for trees budded on Volkameriana (Volk) or
Swing (Swc) rootstocks. Asterisks (***) indicate significance at p ≤ 0.0001. Means along the same
vertical alignment with the same lower case letters are not significantly different (p ≤ 0.05) using the
Tukey’s range test.

3.3. Vegetative Growth and Leaf Nutrient Concentration
3.3.1. Leaf Nutrient Concentration

During the first year, the leaf N concentration remained below the optimum range
concentration regardless of the rootstock type and N rates (Figure 5A,B). In spring 2017,
the Leaf N concentration was significantly higher for the lowest (168 kg ha−1) and highest
(280 kg ha−1) N rates (Figure 5A). The high leaf N concentration in the lowest N rate
probably could be because lowest TCV in which the leaf N concentration appeared to
be higher. Meanwhile, the high leaf N concentration in the highest N rate could also
be because of the highest N amount received by the trees. Later in the study years, the
224 kg ha−1 N showed significantly higher N concentration as compared with the highest
and lowest N rates. However, no significant leaf N concentration was noted for trees
budded on Volk rootstock irrespective of the N rate suggesting a lower N requirement.
As will be discussed later in this paper regarding TCV, with increasing N beyond the
224 kg ha−1, the trees did not respond to the addition of N with differences in TCV. Adding
less than 224 kg ha−1 N limited the potential tree growth further. This indicates that leaf N
concertation was elevated by the split N application that made the N available and taken up



Plants 2021, 10, 925 12 of 19

by the trees throughout the season. To connect the dots, the 200% to 400% less soil NO3.-N
in the current split application than in the conventional N application could be the plausible
reason for the elevated leaf N concentrations. Similar or less leaf N concentration was
reported on fleshy fruits in which higher N concentration was detected in the early stage
of fruit development and decline progressively through time as the flush season and fruit
growth and maturity advances because of the dilution effect inflicted by N translocation
from old to the young leaves, scion to rootstock association, weather conditions, and
agronomic practices [36,48]. Dilution is the decrease in nutrient concentration created as
the result of translocation of nutrients from mature leaves and to the newly growing shoots
and roots [7,48,63]. The allocation of nutrients to the increased vegetative growth resulted
in a decrease in the nutrient concentrations in trees with higher vegetative density (LAI)
and TCV discussed below. Therefore, increased biomass and N distribution relationships
established on tree size measurements revealed the efficiency of the nutrition acquisition
when the tree has higher above-ground biomass [24,27,52].

Figure 4. Root Zn concentration as affected by foliar and /or ground-applied micronutrients during
spring (figure (A)) and summer (figure (B)) of 2017–2018 growing seasons. Micronutrient treatments
(X-axis): control (0×), foliar (1×) (1×), foliar (1×) and ground (1×) (2×), and foliar (1×) and ground
(2×) (3×), (1× = 9 kg ha−1 of metallic Mn and Zn each and 2.3 kg ha−1 of B). Error bars indicate the
mean values (n = 12 trees) ± standard error of the mean for trees budded on Volkameriana (Volk) or
Swing (Swc) rootstocks. Asterisks (***) indicate significance at p ≤ 0.0001. Means along the same
vertical alignment with the same lower case letters are not significantly different (p ≤ 0.05) using the
Tukey’s range test.

Leaf Mn concentration. As with soil Mn, leaf Mn concentration was reactive to the
amount of Mn applied to either the ground and/or foliar. Foliar (1×) coupled with the
ground (1×) or foliar (1×) coupled with the ground (2×) treatments constantly showed
above the optimum nutrient ranges (Figure 6A). During peak growing season in summer
2017, leaf Mn concentration was 3.8×, 4.4×, and 6.8× greater than the control trees ascribed
to foliar (1×), foliar (1×) couple with the ground (1×) and foliar (1×) couple with the
ground (2×), respectively. The leaf Mn concentration of the control trees was consistently
below, foliar (1×) within, and foliar (1×) couple with the ground (1×) and foliar (1×)
couple with the ground (2×) were above the optimum nutrient concentration ranges
throughout the study seasons. Thus, in summer 2018, leaf Mn concentration showed 2.7×,
7.8×, and 5.6× greater than the control trees attributed to the foliar (1×), foliar (1×) couple
with the ground (1×) and foliar (1×) couple with the ground (2×), respectively. Even
though, leaf Mn concentration under foliar (1×) treatments was consistently within the
optimum ranges, during heavy Mn crop removal season or severe vegetative fall growth



Plants 2021, 10, 925 13 of 19

following a strong windy season could result in a decline in the leaf Mn concentration
below the optimum leaf nutrient concentration ranges. Research results indicated that up
to 80% lower Mn in the root tissues and 58% in the leaf tissue of HLB-affected than HLB-
free citrus trees [15,20,32]. Meanwhile, the increase in above-ground vegetative growth
exploited the soil Mn pool in the soil and inflicted a rapid decrease in leaf Mn concentration
because of the dilution effect.

Figure 5. Leaf N concentration in spring (sp, Feb. /Mar) and summer (su, Aug. /Sept.) seasons
of 2016–2018 growing seasons of Valencia citrus trees budded on Swingle (A) and Volkameriana
(B) rootstocks at three N rates (168, 224, and 280 kg ha−1). No data for trees on Volk for 2018 as
Hurricane Irma removed the trees in summer 2017. Asterisks (**) indicate significance at p ≤ 0.01.
The space between the two broken lines indicates the optimum range of leaf nutrient concentrations.
Means along the same vertical alignment with the same lower case letters are not significantly
different (p ≤ 0.05) using the Tukey’s range test.

Leaf Zinc concentration. Leaf Zn concentration was significantly higher in the Mn and
Zn treated trees than the control trees except for the data collected after Hurricane Irma. In
summer 2017, leaf Zn concentration of the treated trees were 3.8×, 4.0×, and 4.1× greater
than the control trees associate with foliar (1×), foliar (1×) coupled with the ground (1×),
and foliar (1×) coupled with the ground (2×), respectively (Figure 6B). Similar results were
reported for leaf Zn concentration ranging 25–31 (mg kg−1) on Hamlin, Parson Brown,
Valencia, and Sunburst Citrus varieties under the control trees [63]. The sharp decrease of
leaf Zn concentration in the treated trees noticed in spring 2018 could be because of heavy
defoliation instigated by Hurricane Irma in September 2017. Heavy crop removal from the
soil during summer and followed by fruit harvest, Zn soil fixation problems, Zn leaching
beyond the root zone, and defoliation of leaves, branches, and twigs are the plausible
justification for the sharp drop in the leaf Zn concentration. This is indirect evidence of
the high mobility of leaf Zn accumulated in the source to the newly vegetative growth
points [15,34]. However, the treated trees showed an increment in leaf Zn concentration
following the spring and summer Zn application; yet, no significant difference among
the treated tree was another indication of less mobility of Zn from the soil to the leaf in
addition to the high soil Zn fixation and root injury in HLB-affected citrus trees [16,18].
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Figure 6. Leaf Mn (figure (A)) and Zn (figure (B)) concentration in spring (sp, Feb. /Mar) and summer
(su, Aug. /Sept.) seasons of 2017–2018 growing seasons of Valencia citrus trees. Micronutrient
treatments: control [0×, closed circles], foliar (1×) (1×, open circles), foliar (1×) and ground (1×)
(2×, closed triangles), and foliar (1×) and ground (2×) (3×, open triangles), (1× = 9 kg ha−1 of
metallic Mn and Zn each and 2.3 kg ha−1 of B). No data for trees on Volk as Hurricane Irma removed
the trees in summer 2017. Asterisks: **, *** indicate significant at p ≤ 0.01, p < 0.0001, respectively.
The space between the two broken lines indicates the optimum range of leaf nutrient concentrations.
Means along the same vertical alignment with the same lower case letters are not significantly
different (p ≤ 0.05) using the Tukey’s range test.

3.3.2. Leaf Area Index

In summer 2017, a significantly higher LAI for tree budded on Swc than Volk rootstocks
was detected attributed to nutrient effect (Table 4). The LAI results documented after
Hurricane Irma in summer 2017 indicated that an overall loss of 2%, 17%, 3%, and 19% for
trees budded on Volk and 30%, 29%, 24%, and 33% for trees budded on Swc rootstocks in
reaction to the control, foliar (1×), foliar (1×) coupled with the ground (1×) or foliar (1×)
coupled with the ground (2×) treated trees, respectively. The resistance to defoliation to
Hurricane Irma coupled with the big canopy frame of the trees budded on Volk rootstocks
resulted in the loss of the entire tree blocks. However, in summer 2018 the treated trees
showed an increment in LAI of 5.5%, 5.5%, and −16% associated with foliar (1×), foliar
(1×) coupled with the ground (1×) or foliar (1×) coupled with the ground (2×) for trees
budded on Swc rootstocks, respectively. Similarly, in summer 2019, 11.4%, 14.3%, and
−25% increase in LAI was noted accredited to the trees that received foliar (1×), foliar (1×)
coupled with the ground (1×) or foliar (1×) coupled with the ground (2×), respectively.

A value of 6.4–8.1 of LAI has been reported in response to N-application on 22-year-
old Shamouti orange trees, in which the trees produce a higher leaf density to excess N
(660 g N as NH4-NO3) application [64]. Similar results under conventional fertilization,
3.7–4.8 LAI in response to different quantities of SmartIrrigation treatments was reported
on 5-year-old sweet orange trees located at three commercial groves at Arcadia, Avon
Park, and Immokalee, FL. Each [65]. The decrease in LAI could be because the highest
Mn acquisition resulted in reducing the growth tip associated with overdose toxicity. A
decrease in soil pH as the result of the S emanated from the sulfur-coated Mn and Zn
products created acidic soil environment could be another reason to reduce the fine root
density [30] and LAI of the trees that received foliar (1×) coupled with the ground (2×)
treatments. A quadruple Mn application (4×) rate resulted in Mn toxicity that led to
reduced Mn acquisition on HLB-affected Valencia citrus trees [15] a decline of biomass and
photosynthesis, and biochemical disarrays associated with oxidative stress under acidic
soil environments [33,66]



Plants 2021, 10, 925 15 of 19

Table 4. Effect of rootstock and ground-applied plant nutrition on the leaf area index (LAI) and analysis of variance
(ANOVA) of Huanglongbing (HLB)-affected citrus trees cv. “Valencia” budded on Volkameriana (Volk) or Swingle (Swc)
rootstocks at Immokalee, FL during the 2017–2018 growing seasons.

2017 2018 2019

Spring Summer Spring Summer Spring Summer

Leaf Area Index

Treatments 1 Volk Swc Volk Swc Volk Swc Volk Swc Swc Swc

0× 2.6 3.4 2.6 2.4 nd 2 3.6ab nd 3.7a 3.4a 3.5a
1× 3.0 3.7 2.5 2.6 nd 3.7ab nd 3.9a 3.6a 3.9a
2× 2.5 3.7 2.4 2.8 nd 3.9a nd 3.9a 3.1a 4.0a
3× 2.7 3.5 2.2 2.3 nd 3.3b nd 3.1b 2.3b 2.6b

Sign. 3 NS NS NS NS – * – *** *** ***

Model variables 4 ANOVA

R *** NS NS NS NS NS

M NS NS * *** *** ***
N NS NS NS NS NS NS

1 Treatments: control, (0×) foliar (1×), foliar (1×) and ground (1×), and foliar (1×) and ground (2×), (1× = 9 kg ha−1 of metallic Mn and
Zn and 2.3 kg ha−1 of B). Mean leaf area index on the same column with different letters are significantly different at p ≤ 0.05 according
to Tukey’s range test (n = 12 trees). 2 No data for trees budded on Volk rootstock in 2018, as Hurricane Irma removed trees budded on
Volkameriana rootstocks in September 2017. 3 NS, *, *** Non-significant or significant at p ≤ 0.05, < 0.0001, respectively. 4 Model variables:
R = Rootstocks, N = nitrogen rate, and M = Micronutrients.

3.3.3. Tree Canopy Volume

The TCV was significantly affected by the interaction of rootstock × N rate during
the early growing seasons (Table 5). Results indicated a significantly larger TCV for trees
budded on Volk than on Swc rootstocks that received the two lower N (168 and 224 kg ha−1)
rates. These results indicated that trees budded on both rootstocks responded to increasing
N rates. However, increasing N rates beyond the highest N rate (224 kg ha−1) eliminated
variation in TCV among the two rootstocks. A linear relationship between N application
and tree biomass was observed implying a persistent tree above-ground biomass, which
led to the increasing in tree size rather than tree age [24]. Meanwhile, Hurricane Irma
imposed a severe TCV orientation and more TCV loss was observed for trees budded
on Swingle than on Volk rootstocks. Hurricane Irma, one of the strongest and lengthiest
hurricanes in the Atlantic Ocean; with wind speeds of 88 KPH and rainfall of 300 mm were
reported at Immokalee, FL on 10 September 2017. The TCV losses on Volk rootstocks were
12.0%, 11.6%, and 15%, while those on Swingle rootstock were 24.9%, 25.3%, and 24.6%
attributed to 168, 224, and 280 N Kg ha−1, respectively. Consequently, the higher wind
resistance of the citrus trees budded on Volk rootstocks was eliminated from the grove
because of the severe damage inflicted by the Hurricane. It was only during the third year,
the trees responded to the micronutrient for TCV.

A significantly higher TCV was recorded for trees that received foliar (1×) coupled
with the ground (1×) as compared with the rest of the treatments. Thus, as compared with
the control trees, TCV showed an increase of 9.6%, 17.6%, 8.6% in spring 2019 and 8.0%,
20.8%, 4.3% in summer 2019 in response to foliar (1×), foliar (1×) coupled with the ground
(1×) or foliar (1×) coupled with the ground (2×) treatments, respectively. TCV with high
light intensity for peak net photosynthesis can be utilized to evaluate crop growth, which
eventually produces fruit in proportion to the TCV [67]. An increase in TCV was detected
when trees received different N rates during the early growth stage, but fewer studies
were documented on the effect of micronutrients on HLB-affected citrus trees [7,68]. The
current study indicated that no significant increase in TCV was detected as trees receive
beyond the 224 N kg ha−1 coupled with foliar (1×) coupled with ground (1×) treatments.
Similar results were observed, in which TCV increment was reported when trees received
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the suggested N rate of 224 kg N ha−1 and foliar Zn nutrition as compared with other N
rates and application methods [31].

Table 5. Effect of rootstock and ground-applied plant nutrition on the tree canopy volume and ANOVA of Huanglongbing
(HLB)-affected citrus trees cv. “Valencia” budded on Volkameriana (Volk) or Swingle (Swc) rootstocks at Immokalee, FL
during the 2017–2019 growing seasons.

2017 2018 2019

Spring Summer Spring Summer Spring Summer

Tree Canopy Volume (m3)

Treatments 1 Volk Swc Volk Swc Volk Swc Volk Swc Swc Swc

0× 23.0b 18.4 20.2 13.6 –2 14.4 – 14.7 17.6b 18.7b
1× 27.0a 18.4 23.8 13.6 – 14.3 – 17.5 19.3ab 20.2ab
2× 25.1ab 19.1 22.1 14.4 – 15.6 – 17.8 20.7a 22.6a
3× 26.3ab 18.9 22.9 14.2 – 15.0 – 16.6 19.1ab 19.5ab

Significance 3 * NS NS NS NS NS NS NS * *

Model variables 4 ANOVA

R *** *** NS NS NS NS

M NS NS NS NS * *
N NS NS NS NS NS NS

R×N * * NS NS NS NS

1 Model variables: control, (0×) foliar (1×), (T3) foliar (1×) and ground (1×), and (T4) foliar (1×) and ground (2×), (1× = 9 kg ha−1 of
metallic Mn and Zn and 2.3 kg ha−1 of B). Mean tree canopy volume on the same column with different letters are significantly different at
p ≤ 0.05 according to Tukey’s range test (n = 12 trees). 2 No data for trees budded on Volk rootstock in 2018, as Hurricane Irma removed
trees budded on Volkameriana rootstocks in September 2017. 3 NS, *, *** Non-significant or significant at p ≤ 0.05, 0.0001, respectively.
4 Model variables: R = Rootstocks, N = nitrogen rate, and M = Micronutrients.

4. Conclusions

Irrigation scheduling using SmartIrrigation coupled with the split application of
essential nutrients showed a significant amount of the ground-applied nutrients to retain in
the topmost soil depth. The acquisition of Mn and Zn by the roots and their concentration
in the root and leaf tissue was in line with the dose of the application. Increasing the rate
of N to 224 kg ha−1 increases the leaf N concentration, LAI, and the TCV. Yet, increasing
the N beyond the moderate N rate did not significantly impact TCV inferring a lower N
requirement. Adding beyond 9 kg ha−1 of each foliar and ground applications of Mn and
Zn treatments did not significantly increase soil, root, and leaf Mn and Zn concentrations,
LAI, and TCV. Hence, 224 kg ha−1 of N and foliar 9 kg ha−1 coupled with ground-applied
9 kg ha−1 Mn and Zn were the suggested doses of essential nutrients to fulfill nutrient
requirement need and reverse the decline in HLB-induced problems, while conforming to
the BMPs modalities.
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