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Abstract: Ultrashort Bessel beams have been used in this work to study the response of a 430-µm-thick
monocrystalline sapphire sample to laser–matter interaction when injecting the beam orthogonally
through the whole sample thickness. We show that with a 12◦ Bessel beam cone angle, we are able to
internally modify the material and generate tailorable elongated microstructures while preventing
the formation of surface cracks, even in the picosecond regime, contrary to what was previously
reported in the literature. On the other hand, by means of Bessel beam machining combined with a
trepanning technique where very high energy pulses are needed, we were able to generate 100 µm
diameter through-holes, eventually with negligible cracks and very low taper angles thanks to an
optimization achieved by using a 60-µm-thick layer of Kapton Polyimide removable tape.

Keywords: laser micromachining; hole drilling; Bessel beams; sapphire

1. Introduction

In this era of modern technological advancements, sapphire plays an important role
in the electronic industry. Due to its physical properties such as scratch resistance, supe-
rior hardness, tensile strength, impressive thermal conductivity, chemical inertness, high
melting point, thermal shock resistance, and transparency to electromagnetic waves in a
wide spectral range [1], it is widely used in optoelectronic industries such as the substrate
layer for light-emitting diodes [2], in integrated optical and microfluidic devices [3], and
touchscreens, micromechanical devices, and optical windows [4]. Even with huge potential
in consumer electronics, the power sector, and aerospace and defense applications [5], the
exponential growth of sapphire usage has lagged behind expectations. One of the reasons
for this is that the same advantages such as hardness that is beneficial for many applications
also makes sapphire a very difficult material to fabricate very fine structures. The major
problem is the crack formation during machining. In the case of laser machining, the
explanation for cracks formation is based on droplet ejection during the laser irradiation [6].
Such debris continue to absorb laser energy afterward leading to higher local temperatures
and high thermal stress [7]. In general, the various techniques for sapphire micromachining
involve, but are not limited to, electro discharge machining (EDM), compound machining,
the grinding process, and the lapping process. These processes face additional problems
such as low accuracy, over time-consumption and unwanted additional damages [8].

The new center of attraction for sapphire micromachining is the use of ultrafast lasers
with picosecond and femtosecond pulse durations. In [9], it was shown that sub-micrometer
pit holes can be produced with single femtosecond pulses due to the self-focusing effect in
air. By using a low energy fluence, microstructures without the generation of craters on the
sapphire surface could be fabricated [10]. The advantage of bottom-up ablation to create
less taper and crack-free holes in sapphire was also demonstrated [11]. It was also noted
that there is a clear improvement in the quality of the ablated structures in multiple-shot
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regime as the pulse width decreases [12]. In fact, different groups have reported the same
while using a standard ultrafast Gaussian beam for machining.

Recently, non-conventional beams have become widely used in ultrafast laser mi-
cromachining of transparent materials [13]. In particular, the non-diffracting nature of
Bessel beams with a transverse intensity profile featured by a central narrow core and weak
concentric rings [14,15] makes them a great choice for in-bulk modifications without the
need for sample translation along the thickness. Indeed, thanks to their self-reconstruction
property and their elongated focal zone, finite energy Bessel beams are ideal not only
for internal microstructuring [16–20] or deep and tailorable surface modification such
as microchannels for microfluidics applications [21] but also for high-impact technologi-
cal applications [22] such as high-speed cutting [23,24], cleaving [25,26], welding [27] or
drilling [28,29] of transparent materials.

Even though some works have demonstrated stealth dicing and cutting of sapphire
using Bessel beams [25,30], the drastic usage of these for sapphire micro-structuring is
limited due to crack formation and propagation, especially at the surfaces of the sample.
Further, while in-bulk modifications have been reported in burst mode in the picosecond
regime [31], the same using single shots, without surface cracks, has never been reported.
Moreover, it has been shown in [30,32] that the crack formation depends on the pulse
duration of the Bessel beam. While in the femtosecond regime, the surface cracks are less
evident, their length increases for increasing pulse duration, and in the picosecond regime,
three cracks in the laser written zone, especially on the top sample surface, have been
observed to occur with a 120◦ angle between them [25,30].

In this paper, we exploit a 12◦ cone angle Bessel beam to induce in-bulk laser mod-
ifications in a monocrystalline c-plane sapphire sample along its whole thickness. We
study the effect of the pulse duration and pulse energy and show that for a large range of
these parameters, both in the femtosecond and picosecond regimes, single shot material
modifications along the bulk can occur without any surface cracks in contrast to what
was observed in [25,30] where the Bessel beam cone angle was greater than or equal to
20◦. We also identify the picosecond regime as the best regime to obtain regular internal
microstructures across the sample thickness and we study the possibility to drill holes in
sapphire with picosecond Bessel pulses. This can be done by means of a trepanning-like
technique [28] provided very high energy pulses are used. In this case where multiple-shot
machining with hundreds of µJ pulses is adopted, the cracks appearing around the gener-
ated apertures at the surfaces can be avoided thanks to an optimization technique making
use of a removable tape applied on the top surface. Its use has also been validated in a
preliminary study of multiple-shot micromachining, aimed at verifying the possibility to
eliminate strong radiation–matter interaction effects at the top air–sapphire interface. In
this way, as shown later on, we have been able to drill 100 µm diameter through-holes,
eventually with negligible cracks and a very low taper angle, which to the best of our
knowledge have never been reported before for sapphire.

2. Materials and Methods
2.1. Experimental Set-Up

The micromachining studies were performed by means of a 20-Hz Ti:Sapphire ampli-
fied laser system (Amplitude Technologies) delivering 40-fs transform-limited pulses at
800 nm wavelength in the mJ pulse energy range. By detuning the laser compressor, the
pulse duration can be adjusted, allowing us to work in both femtosecond and picosecond
regimes. The experimental set-up is shown in Figure 1. The spatially filtered Gaussian
beam (5 mm beam waist after demagnification with two spherical mirrors in a telescopic
configuration) is converted into a Bessel beam (BB) thanks to a fused silica axicon (178◦

apex angle). A telescopic system formed by a 250 mm focal length lens (L1) and a 0.45 N.A.
20× microscope objective (fobj = 9 mm), together with a 1:1 imaging system (L2 lenses),
allowed us to have at the sample position a final BB featured by 12◦ cone angle, a total
central core size of about 3 µm, and a total Bessel zone of 700 µm. The transverse intensity



Micromachines 2022, 13, 624 3 of 12

beam profiling using a one lens imaging and a Charge-Coupled Device (CCD) camera
(uEye) was carried out in air along the whole non-diffracting zone prior to micromachining
(See Figure 1c). To deflect the laser beam and send it vertically towards the sample placed
on a micrometer precision 3D motorized stage (driven by SCA, system control application
software, Altechna Rnd, Vilnius, Lithuania), a dichroic mirror was positioned between the
lens and the objective. Thanks to a backlighting Light Emitting Diode (LED) placed below
the transparent sample and an imaging system using another CCD (uEye), a real-time
observation of the sample surface during the micromachining process can be realized. This
allows a careful adjustment of the relative positioning of the BB focal length (and thus
of the core intensity profile along the propagation direction) with respect to the sample.
For in-bulk machining, the Bessel zone is generally symmetrically distributed across the
sample, i.e., with maximal intensity in the middle of the sample, although we try to set the
beam position in such a way that a slightly lower intensity impacts the top surface with
respect to the bottom. This prevents strong input interaction at the air/material interface
where beam reshaping occurs because of the sudden change in the refractive index [29,33].
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micromachining (b). In (c): Peak intensity evolution of the Bessel beam along the propagation 
Figure 1. Experimental set-up for Bessel beam generation (a) and transparent material microma-
chining (b). In (c): Peak intensity evolution of the Bessel beam along the propagation direction after
the microscope objective and (in the inset) transverse intensity profile recorded (over 200 ms) in the
center of the Bessel zone. The intensity was evaluated by averaging the counts inside the whole
central core (the vertical size of the data point reflects the statistical error).

The pulse energy is controlled by a polarizer combined with a half waveplate and
neutral density filters. Pinholes (Ph) are used to align the beam along its path and mirrors
(M) are used to deflect and carry the beam towards the sample. An optical shutter, whose
aperture time is controlled by software, allows us to select the number of laser pulses to
send to the sample. In Figure 1b, the detailed schematic of the micromachining set-up
is shown.
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2.2. Material Sample Details

In this work, the sample used for the Bessel beam micromachining experiments is a
monocrystalline c-plane sapphire of 430 µm thickness. The sample belongs to the family
of hexagonal crystals. The typical crystallographic orientation of the structure is reported
in [30]. There are three axes at 120 degrees to one another on the c-plane. The physical and
chemical properties of sapphire are reported in Table 1 [34–37].

Table 1. Physical and chemical properties of sapphire.

Physical and Chemical Properties of Sapphire

Refractive index 1.77
Hardness (on Mohs scale) 9

Density (kg/m3) 3.98 × 103

CTE (10−6 K−1) 5.5
Young modulus Y (GPa) 345

Melting temperature (◦C) 2040
Thermal Conductivity (W/m·K) 23–25

Transmission range (µm) 8.4
Softening Temperature (◦C) 1797

When working in multiple-shot mode, in order to reduce or eliminate the crack effects
that can occur in this microfabrication regime, we also used a polyimide tape (Kapton
Adhesive Polyimide Tape) of 60 µm thickness, whose refractive index (1.70) is comparable
to that of sapphire. The Kapton layer, resistant to heat up to 350◦, was applied on the top
surface of the sample in order to eliminate the strong effect of radiation–matter interaction
at the air–material interface where the ablation threshold is typically lower than that in
the bulk, and Bessel beam reshaping and distortion can occur. This has been a key point
during the study of hole drilling in sapphire. As shown later on, this allowed us to avoid
crack formation around the apertures created by our Bessel beam drilling technique [28] in
a multiple-shot regime featured by hundreds of µJ energy pulses.

2.3. Experimental Method

Our work started with a preliminary study of the single shot in-bulk modifications
that can be generated along the thickness of the sapphire sample for different energies and
pulse durations. The features of the internal and surface damages were observed under an
optical microscope. The multiple-shot regime in view of the hole-drilling machining was
also investigated, as the laser processing technique for this particular application is based
on the partial superposition of neighboring Bessel beam focal lines (i.e., interaction zones in
the material), with trajectories that can be concentric or spiraling. This technique is indeed
based on a Bessel beam microfabrication in combination with the trepanning technique
described in [28,29], without the need of sample translation along the beam propagation
direction. Hole drilling in sapphire was performed with different pulse energies in the
picosecond regime, and results prior to and after optimization of the aperture quality
are presented. Scanning electron microscopy was used to clearly observe the resulting
hole morphology.

3. Results and Discussion
3.1. Single-Shot Bessel Beam Micromachining

The length of the Bessel non-diffracting zone under our experimental conditions
(700 µm in air) guaranties an interaction between the beam and our sapphire sample along
its whole thickness, also in a single shot. We recall that while for a Gaussian beam the total
input power is concentrated in the localized focal spot (within the Rayleigh range), for a
Bessel beam it is equally distributed over the core and rings featuring the beam [38]; these
act as a conical reservoir refilling the core during propagation and thus avoiding depletion
effects. In turn, the beam power is distributed along the whole Bessel zone. By choosing
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the suitable pulse energy regime, it is thus possible to work under conditions where the
central core of the pulsed BB alone will undergo nonlinear absorption along the whole
focal length and, for a pulse energy above the material modification threshold, the core will
be responsible for the surface damage. If the pulse energy is too high, the BB rings might
contribute to the material damage as well. The preliminary microfabrication tests allowed
us to establish, for our experimental conditions, the pulse energy threshold for single shot
surface damage. For instance, depending on the pulse duration, this threshold value for
our BB configuration was around 20 µJ for 200 fs pulses or 60 µJ for 10 ps. On the other
hand, the results of the single shot micromachining investigation highlighted that only
in the picosecond regime could elongated material modifications be produced within the
sapphire bulk (even at pulse energies lower than the threshold values for surface damage)
similar to what was previously observed in glass [20]; moreover, no top surface cracks were
detected in the energy range investigated, even when using pulses of 300 µJ (the energy
limit for our micromachining set-up).

The morphology of the damage produced in a single shot at the sample surface can be
observed in the images recorded under the microscope objective, reported in Figure 2 for
two different pulse energies (135 µJ and 65 µJ) above the damage threshold.
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Figure 2. Optical microscope images of the surface traces left on the sapphire sample after single
shot Bessel beam machining, for two different pulse energies and different pulse durations, namely,
200 fs (a), 600 fs (b), 1 ps (c), 6 ps (d), and 10 ps (e). The scale bar in (a) is the same for all images.

The effect of a few BB rings can also be seen in the femtosecond regime in (a) and (b)
and in the 1 ps regime (c). On the other hand, the beam core weakly affects the material
surface, but over a larger area, when using longer pulse durations such as 6 ps or 10 ps,
regimes where avalanche ionization and stronger thermal effects start to play an important
role. Note that the dark halo around the damage in Figure 2d,e is due to the (out of focus)
trace left on the bottom surface. No cracks departing from the central damaged zone
are present, in contrast to what was observed in [30]. Nevertheless, we observed that
for energies greater than 270 µJ, small cracks appeared only on the bottom surface of the
sample (data not shown). We believe this may be explained by considering that the Bessel
core hits the bottom surface with a higher intensity than that hitting the top, due not only
to the chosen relative beam positioning with respect to the sample as previously discussed,
but also due to the sudden beam reshaping at the material/air interface [29].

The refractive index modifications generated inside the sapphire bulk are presented in
Figure 3 for 1 ps, 6 ps, and 10 ps and for four pulse energy values. In particular, in view
of hole drilling, high-energy pulses reaching 300 µJ were tested in the experiment. One
can observe that the obtained microstructures were continuous only for 6 ps and 10 ps
pulse durations. Nonlinear effects associated with focusing and refocusing of the BB beam
due to the high intensities reached for 1 ps pulses may affect the material modifications
as shown in Figure 3a. In general, in contrast to what can be observed in glass in the
picosecond regime where channel-like internal modifications can be very smooth [20,28],
the microstructures generated in sapphire appear to be more irregular. This could be due
to the crystalline structure of sapphire and to its higher coefficient of thermal expansion
(CTE) with respect to glass [29].
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3.2. Micro-Hole Drilling in Thick Sapphire Sample

In accordance with previous drilling experiments on glass or diamond performed
using Bessel beams [28,29] and with the results of our single shot tests for what concerns
a most uniform and controllable energy deposition along the sapphire bulk, we mainly
chose the 6 ps pulse duration regime for hole drilling in sapphire. Generally, for pulse
durations between 6 and 10 ps, through-holes could be generated, but using 6 ps allowed a
complete extrusion of the internal residual material, with the pulse energies available in our
set-up. Femtosecond Bessel beams with a 12◦ cone angle did not allow us to generate holes
across such thick transparent samples. With our 20 Hz Ti:Sapphire laser source and our BB
geometry, the writing parameters for the realization of through-holes were featured by a
fabrication speed of 0.01 mm s−1, corresponding to a pulse density of 2000 pulses mm−1,
and a 0.25 µm step between the circular trajectories [28]. The number of these was set to
90 and was found to be the minimum number needed to completely extrude the material
in 430-µm-thick sapphire in the available energy range. Moreover, the BB drilling process
was launched three times (three-pass machining in the same position) as in thick glass
or diamond [29]. Note that previous work regarding the generation of half millimeter or
millimeter size holes in sapphire [7,11] was reported using standard femtosecond laser
machining and vertical translation of the focal spot in a bottom-up process. In contrast, the
goal of our work here was to study the possibility to generate 100-µm-size micro through-
holes without any sample translation along the BB beam propagation direction and to
eventually optimize the results.

3.2.1. Bessel Beam Trepanning Technique Applied to Sapphire

Application of the BB trepanning technique to form through-holes in a 430-µm-thick
c-plane monocrystalline sample led to the results shown in Figure 4. Evident cracks and
internal lateral modifications close to the apertures at the top and bottom surfaces of the
material were present, even in the case where the pulse energy was not sufficient to induce
a complete extrusion of the material (see Figure 4a,d). The cracks were mostly distributed
along three axes at 120 degrees with respect to the other, in accordance with the discussion
on the structural characteristics of single-crystal materials [30]. These results are in contrast
to those obtained in diamond, another crystalline material where the BB drilling technique
was previously applied and where no cracks appeared [29]. It is worth noting that Young’s
modulus of sapphire, determining its elasticity, is more than three times smaller than that
of diamond, while its coefficient of thermal expansion is more than five times larger than
diamond. We attribute to this the very different response of sapphire material with respect
to diamond and to the stresses and plasma formation induced by the radiation–matter
interaction during laser microfabrication.
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beam from the center (see [28] for details), there was a partial superposition of about three 

pulses in the same position during one circular trajectory of the laser fabrication (given 

the machining speed used and a 3-μm-diameter beam core). In general, considering 

neighboring trajectories, we should consider that in the successive circular writing 

trajectory, three more pulses will fall in the same area of those covered by the precedent 

smaller radius trajectory. Figures 6a,c show optical microscope images of the top and 

Figure 4. Optical microscope images of the top surface (top row) and bottom surface (bottom row)
of the apertures obtained with the Bessel beam trepanning technique. Three pulse energies were
considered: 230 µJ (a,d), 270 µJ (b,e), and 300 µJ (c,f). The pulse duration chosen was 6 ps.

A scanning electron microscopy image of the top aperture shown in Figure 4b is
presented in Figure 5a, highlighting, despite the surrounding cracks, the formation of a
uniform hole. A zoomed image of the internal wall of the aperture is presented in Figure 5b.
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Figure 5. (a) SEM image of the aperture shown in Figure 4b obtained with the Bessel beam trepanning
technique. Pulse energy 270 µJ. (b) Zoomed image of a portion of the aperture internal wall.

3.2.2. Removal and Reduction of Surface Cracks

Given the above results, we verified the effect of multiple-shot Bessel beam machining
on the sapphire sample surface, with a 6 ps pulse and pulse energy of 270 µJ. Indeed,
as the BB drilling technique relies on a spiraling-like movement of the injected beam
from the center (see [28] for details), there was a partial superposition of about three
pulses in the same position during one circular trajectory of the laser fabrication (given
the machining speed used and a 3-µm-diameter beam core). In general, considering
neighboring trajectories, we should consider that in the successive circular writing trajectory,
three more pulses will fall in the same area of those covered by the precedent smaller radius
trajectory. Figure 6a,c show optical microscope images of the top and bottom sample
surfaces hit by multiple BB shots for different number of pulses, with the laser writing
parameters typically used for drilling. The typical crack formation was evident.
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Figure 6. (a,c) Optical microscope images of the damage left on the top (a) and bottom (c) sapphire
surfaces after multiple-shot BB machining with a pulse energy of 270 µJ and a pulse duration of 6 ps.
The number of pulses used is indicated at the bottom of the figure. In (b,d) damage results of the
same experiment performed by applying prior to micromachining a 60 µm layer of Kapton adhesive
polyimide tape on the top of the sample. The scale bar indicated in (b) is the same for all images. The
top surface is shown in (b), bottom surface in (d).

A complete absence of cracks on the top surface of the sapphire sample and a drastic
reduction of their length on the bottom one (see Figure 6a,d) could be achieved by applying
prior to micromachining a layer of Kapton adhesive polyimide tape on the sample input
surface, as discussed in Section 2.2. This layer featured by the same refractive index of
sapphire not only avoids the strong impact of the Bessel beam at the air–material interface
where the damage threshold is typically lower than that in the bulk but also possible
distortion effects of the beam when entering the material. Note that we also observed
that the tape absorbs 20% of the incoming laser radiation (at 800 nm); thus, a crack length
reduction in the bottom sample may be due to the reduced pulsed energy entering the
sapphire bulk.

3.2.3. Optimized Through-Holes in Sapphire

Following the above observations, the Bessel beam trepanning technique was again
applied on the 430-µm-thick sapphire sample, this time covered with the Kapton adhesive
tape. The results obtained with the same input pulse energy as before (270 µJ) and same
pulse duration (6 ps) are shown in Figure 7 where we report the optical microscope images
of the top and bottom sample surfaces after the micromachining. Interestingly, although
the tape partially absorbed the infrared light of the BB before reaching the sapphire sample,
a through-hole of about 100 µm diameter was clearly generated. In contrast to the results
of Figure 4 (in particular those of Figure 4a,d considering the loss of energy due to the tape
linear absorption) the aperture obtained presented no residual internal material, and only
minimal stress and internal defects were observed on the top surface. A slight chipping
effect, resembling that of previous observations [11], was visible on the bottom surface.
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Figure 7. Optical microscope images of top surface (a) and bottom surface (b) of a through-hole
obtained with the Bessel beam trepanning technique applied on the sapphire sample covered with a
60 µm layer of Kapton tape. The input pulse energy considered was 270 µJ with a pulse duration of
6 ps.
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After chemical etching of the sapphire sample (in HF solution at 40% in volume for
24 h), we performed an SEM investigation of the top and bottom apertures generated.
The recorded images are presented in Figure 8a,b, respectively, and highlight the absence
of any evident stress or cracks. In Figure 8c, we present a “half” hole fabricated across
the lateral edge of the material, allowing us to observe the internal morphology (in this
case no chemical etching was applied) and to highlight the smoothness of the walls of the
through-holes that we were able to obtain. A taper angle θ of about 5◦ (much lower than
that of the hole of Figure 5) was evaluated from the expression

θ = tan−1 T − B
2h

(1)

where T is the hole diameter on the top surface, B is the minimum internal hole diameter,
and h is the thickness of the sample [11]. Finally, a comparison between images of the
internal wall of the top aperture recorded before and after the chemical etching is presented
in Figure 9.
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laser drilling technique in sapphire with that of the standard spiraling technique. The 

main difference is that in our work, we relied on finite energy Bessel beams to modify and 
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of the non-diffracting beam and the use of a Kapton tape layer on the sample top, we 
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Figure 8. SEM image recorded after chemical etching of the top (a) and bottom (b) aperture shown in
Figure 7 and obtained with the Bessel beam trepanning technique applied to the sapphire sample
previously covered by a 60-µm-thick layer of Kapton tape; pulse energy 270 µJ, pulse duration 6 ps.
In (c): SEM transverse image of a “half” through-hole drilled across the lateral edge of the sapphire
sample under the same experimental conditions.
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Figure 9. SEM images of a portion of the internal wall of the aperture shown in Figure 8a before (a)
and after (b) chemical etching with hydrofluoric acid.

Table 2 summarizes our results and compares the performance of our Bessel beam
laser drilling technique in sapphire with that of the standard spiraling technique. The
main difference is that in our work, we relied on finite energy Bessel beams to modify and
ablate the internal bulk material rather than on Gaussian beams. With suitable geometry
of the non-diffracting beam and the use of a Kapton tape layer on the sample top, we
generated crack-less apertures on the surfaces in the picosecond regime, in contrast to
previous results. More importantly, we were able to create holes much smaller than those
previously presented in the literature [7,11] but with comparable taper angle. With the use
of Bessel beams, the latter may be reduced when mm size holes are created. Finally note
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that an investigation on the use of Kapton tape together with the more standard Gaussian
beam in a bottom-up machining approach may be the focus of future work.

Table 2. Comparison of sapphire hole drilling using the Bessel beam trepanning technique with
previous results in the literature.

Parameters Present Work Reference [7] Reference [11]

Material Monocrystalline Sapphire
(c-cut)

Monocrystalline Sapphire
(c-cut)

Monocrystalline Sapphire
(c-cut)

Beam Bessel Gaussian Gaussian

Pulse duration Picosecond (6 ps) Femtosecond (300–500 fs) Picosecond (0.8 ps)

Sample thickness 430 µm 300 µm 430 µm

Hole diameter ≈100 µm ≈1 mm ≈400 µm

Machining technique Trepanning with Kapton
Polyimide Tape

Bottom—Up Ablation
with Spiraling

Bottom—Up Ablation
with Spiraling

Tapering angle <5◦ <3◦ <2◦–<5◦

Z-axis translation No Yes Yes

4. Conclusions

The work presented here demonstrates the applicability of the pulsed Bessel beam
micro-drilling technique used for sapphire for the generation of smooth holes much smaller
than those previously reported in the literature and without the need of sample translation
along the beam propagation direction. Single-shot micromachining first allowed us to
study and analyze the internal material modification when injecting a finite energy Bessel
beam orthogonally through the whole sample thickness. With a Bessel beam featured by a
12 cone angle, a 3-µm-diameter core, and a non-diffracting zone of 700 µm, we were able to
generate tailorable elongated microstructures while preventing the formation of surface
cracks, even in the picosecond regime. When working in multiple-shot mode, in order to
reduce or eliminate the crack effects that in this case can occur in the regime needed for
drilling (featured by hundreds of µJ energy pulses), we used a Kapton adhesive polyimide
tape of 60 µm thickness applied on the top surface of the sample. By choosing the suitable
writing conditions, we have shown the possibility to eliminate the typical stress effects
of sapphire at the air–material interface where the ablation threshold is typically lower
than that in the bulk and where Bessel beam reshaping and distortion can occur. This has
allowed us to generate, as confirmed by SEM diagnostics, 100 µm diameter through-holes
in a 430-µm-thick sapphire sample, eventually with negligible cracks, a very low taper
angle, and perfectly regular internal walls.
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