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Abstract: Understanding gene functions and their associated abnormal phenotypes is crucial in
the prevention, diagnosis and treatment against diseases. The Human Phenotype Ontology (HPO)
is a standardized vocabulary for describing the phenotype abnormalities associated with human
diseases. However, the current HPO annotations are far from completion, and only a small fraction
of human protein-coding genes has HPO annotations. Thus, it is necessary to predict protein-
phenotype associations using computational methods. Protein sequences can indicate the structure
and function of the proteins, and interacting proteins are more likely to have same function. It is
promising to integrate these features for predicting HPO annotations of human protein. We developed
GraphPheno, a semi-supervised method based on graph autoencoders, which does not require feature
engineering to capture deep features from protein sequences, while also taking into account the
topological properties in the protein–protein interaction network to predict the relationships between
human genes/proteins and abnormal phenotypes. Cross validation and independent dataset tests
show that GraphPheno has satisfactory prediction performance. The algorithm is further confirmed
on automatic HPO annotation for no-knowledge proteins under the benchmark of the second Critical
Assessment of Functional Annotation, 2013–2014 (CAFA2), where GraphPheno surpasses most
existing methods. Further bioinformatics analysis shows that predicted certain phenotype-associated
genes using GraphPheno share similar biological properties with known ones. In a case study on the
phenotype of abnormality of mitochondrial respiratory chain, top prioritized genes are validated by
recent papers. We believe that GraphPheno will help to reveal more associations between genes and
phenotypes, and contribute to the discovery of drug targets.

Keywords: deep learning; graph autoencoder; protein-phenotype associations prediction

1. Introduction

Phenotypes refer to observable physical or biological traits of an organism. Revealing
the relationships between genes/proteins and their related phenotypes is critical for design-
ing diagnosis, therapy and prevention strategies against diseases [1]. Human Phenotype
Ontology (HPO) is a standardized vocabulary for describing the phenotypic abnormal-
ities associated with human diseases [2]. At present, only small quantities of human
protein-coding genes (~3500) have HPO annotations, and a large number of phenotype-
associated genes/proteins remain undiscovered. It is laborious to experimentally identify
the associations between proteins and abnormal phenotypes. Therefore, a robust computa-
tional strategy is desirable to systematically identify the potential phenotype-associated
genes/proteins at the proteome scale.
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HPO annotation prediction is essentially a large-scale multi-label classification prob-
lem, which is also well-known as automated function prediction (AFP). To advance the
performance of AFP, several Critical Assessment of Functional Annotation (CAFA) chal-
lenges [3–5] were held in recent years, and many computational strategies have been
proposed to address the problem of protein function prediction. The Critical Assessment
of Functional Annotation challenges (CAFA) organizers first provided a large number of
proteins for researchers to develop their algorithms for associating these proteins with Gene
Ontology terms or Human Phenoytpe Ontology terms. Additionally, organizers then spent
several months verifying these proteins’ functions by experiments. Those verified proteins’
functional annotation constituted the CAFA benchmark data, to assess these computational
methods [3–5]. The existing computational approaches for AFP are mostly sequence-based
or protein–protein interaction network (PPI network)-based methods.

For sequence feature, the GoFDR (Gene Ontology—functionally discriminating residues)
method uses BLAST to find homologous sequences and transfers their functional annotations
to the query protein [6]. Funfam (Functional families) method uses domains and motifs
to indicate the function of a protein [7]. For PPI network feature, several semi-supervised
methods such as guilt by association [8], random walk [9], and weighted score computa-
tion [10] are used to capture the topological information in the PPI network. The GeneMANIA
prediction server [10] integrates multiple networks in a linear regression fashion to learn the
weights over multiple networks. Given a single query gene, GeneMANIA finds genes likely
to share function with the query gene based on their interactions with it. Recently, HPODNets
presents a deep GCN architecture to capture high-order topological information from multiple
protein–protein interaction networks [11].

Integrating sequence and PPI network information would be promising to improve
the prediction performance of AFP. In fact, several approaches (MS-kNN [12], HPOLa-
beler [13], GOLabeler [14], Phenostruct [15], DeepGO [16] and DeepGOPlus [17]) of using
the idea of integration have been already proposed. MS-kNN (Multi-Source k-Nearest
Neighbor) algorithm predicts the functions by averaging over the prediction scores from
three data sources [12]. HPOLabeler [13] and GO-Labeler [14] use Learning to Rank to
integrate multiple classifiers trained from different sequence-derived data. PHENOs-
truct [15] uses Support Vector Machine to give predictions based on multiple feature
vectors. DeepGO/DeepGOPlus [16,17] encodes the PPI network and sequence feature
separately then integrates them into a Convolutional Neural Network model using simple
concatenation.

However, all above integration methods are rather simple feature concatenation
between sequence and PPI network. Ignorance of the interaction between these features
might underestimate the performance of prediction. To address this problem, we developed
GraphPheno, a variational graph autoencoders based architecture, which can extend the
feature extracted from protein sequences using topological information of PPI network
to predict the relationships between human genes/proteins and abnormal phenotypes.
GraphPheno does not rely on any manually crafted features and is entirely data driven.
Cross validation and independent dataset test were performed to test the prediction ability
of GraphPheno. Then, the performance of our model was compared with existing classifiers,
and results prove that our model has equivalent performance with other state-of-the-art
classifiers. Further bioinformatics analysis shows that predicted and known phenotype-
associated genes share similar biological properties. Finally, we performed a case study on
HP:0008972 (Decreased activity of mitochondrial respiratory chain, DAMRC, https://hpo.
jax.org/app/browse/term/HP:0008972, accessed on 18 May 2021), and the results show
that our algorithm is able to identify novel relationships between human genes/proteins
and abnormal phenotypes, and these newly identified DAMRC-associated genes might be
potential biomarkers of multiple mitochondrial related diseases.

https://hpo.jax.org/app/browse/term/HP:0008972
https://hpo.jax.org/app/browse/term/HP:0008972
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2. Materials and Methods
2.1. Gold Standard Data Sets

Two releases of HPO database were used. First, we downloaded the Human Phenotype
Ontology (HPO) from https://hpo.jax.org (accessed on 3 June 2019). We expanded every
gene-phenotype association in the original dataset to all the ancestor terms of the phenotype
so that we could fully utilize existing data for gene-phenotype association prediction. This
expansion was done using true path rule [18], that is, if a gene is annotated with a HPO
term T, we consider that this gene is also inherently annotated with all the ancestors of T.
We divided all the HPO terms into six groups, according to the number of appearances
(in brackets): Very rare (1–3), Rare (4–10), Uncommon (11–30), Common (31–100), Very
common (100–300) and Extremely common (>300). Supplementary Figure S1 shows the
statistics of these six groups. These statistics indicate that HPO terms with low appearances,
i.e., Very rare, Rare, occupy 37.68% and 20.74%, respectively, of all HPO terms. Whereas
these HPO terms are only small parts of all protein–HPO term pairs, i.e., Very rare and
Rare, occupying only 1.04%, 2.20%, respectively, of all pairs. To more confidently assess
the performance in predicting individual terms, terms with no more than 10 annotated
proteins were removed [4]. We obtained 496,202 gene-phenotype associations with an
average of 126 HPO annotations per gene (Supplementary Table S1). Then, we downloaded
HPO (April 2021) and constricted a novel independent test set of 128,115 gene-phenotype
associations that were newly included in the database between June 2019 and April 2021
(none of them was used in the cross-validation for training). Since there is no existing
experimentally negative data set, we built our gold standard negative data sets based on
unannotated genes for each HPO term. For each HPO term, we randomly selected the same
number of genes as the annotated genes from the non-annotated genes of the phenotype
to construct the gold standard negative data set. The gold standard negative data set
contains 496,202 gene-phenotype associations for cross validation and 128,115 associations
for independent test as well.

2.2. Comparison Dataset

To compare our method with other phenotype prediction methods, we generated a
comparison dataset on automatic HPO annotation for no-knowledge proteins following
the CAFA2 challenge rules [4]. The training dataset contains phenotype annotations that
were available before January 2014. Additionally, the testing dataset (benchmark) of the
CAFA2 challenge was collected from annotations that appeared during January 2014 until
September 2014 (Supplementary Table S2). Proteins in the benchmark of the CAFA2
challenge are not associated with any HPO terms before the submission date (January 2014),
and received HPO annotations by September 2014.

2.3. Protein–Protein Interaction Network and Sequence Evidence for Prediction

Protein sequences were downloaded from UniProt [19] PPI network was downloaded
from the STRING database (v11.0) [20].

Amino acid sequences were encoded following the conjoint triad (CT) method [21],
which has been widely used to represent sequences in related fields. 20 kinds of amino
acids are first clustered into 7 classes according to the dipoles and volumes of the side
chains. Then, all the amino acids in the same class are considered identical. The mapping
between classes and amino acids is shown in Supplementary Table S3. The conjoint triad
considers the properties of one amino acid and its vicinal amino acids, and regards any three
continuous amino acids as a unit, then, the triad frequencies were counted by calculating
the occurrence numbers within the protein sequence. Thus, the dimension of the CT
encoding feature vector is 7 × 7 × 7 = 343. Using the CT method, we manage to convert
amino acid sequences into fixed-dimension representation.

For the PPI network data downloaded from STRING, we use the “combined score”
provided by STRING as the confidence score. Interactions with a “combined score” greater

https://hpo.jax.org
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than 300 were used to construct PPI network [22]. Then, PPI network was converted to the
format of adjacency matrix.

2.4. Variational Graph Autoencoder Model

Variational graph autoencoder (VGAE) [23] is an unsupervised feature extraction
method, which can generate latent representations based on both network structure and
node features by training the encoder and decoder at the same time.

We consider the PPI network as an undirected graph, G = (V,E,X), where {vi}i = 1, . . . ,n
consists of a set of proteins in the graph and ei,j = <vi,vj>∈E represents one interaction in the
PPI network. The topological structure of graph G was represented by an adjacency matrix
A, and we incorporated the combined score as weights: Ai,j = combined score/1000 if
ei,j∈E, otherwise Ai,j = 0 (we assume that every node is connected to itself and set diagonal
elements to 1). xi∈X indicates the content features associated with each node vi, which is the
encoding of protein sequence using the CT method. The graph encoder is constructed using
graph convolutional network (GCN). The goal of encoder is to map the original features
X to the latent variable Z with the network information A. Z is a numerical matrix of
protein-embedding vectors, which is also interpretable latent representation for undirected
graphs learnt using VGAE. Z was used to compress the complex graph structure data in
non-Euclidean space into simple low-dimensional numerical vectors while considering the
relevant information of the original input as completely as possible.

We define a spectral convolution function fgcn [23]:

Z(l+1) = fgcn(Z(l), A|W(l)) (1)

Here, Z(l) is the input for convolution, and Z(l+1) is the output after convolution. We
have Z0 = X in our work. W(l) is a matrix of filter parameters we need to learn in the neural
network. Each layer of our graph convolutional network can be defined as follows:

fgcn(Z(l), A|W(l)) = Φ
(

ÃZ(l)W(l)
)

(2)

where A = D−
1
2 (A + I)D−

1
2 , i.e., the symmetrically normalized adjacency matrix Dij = ∑jAij.

I is the identity matrix of A and Φ is activation function leakyRelu (t) = max(0, t) [24].
Our graph encoder consists of two GCN layers, and we let the prior over the latent

variables Z be the centered isotropic multivariate Gaussian [25]:

q(Z|X, A) =
n

∏
i=1

q(zi|X, A) (3)

q(zi|X, A) = N (zi|µi, diag(σ2)) (4)

where µ and σ are the mean and variance, respectively, of the Gaussian distribution
corresponding to latent variable Z:

zi = µi + σi � εi (5)

where � is element-wise multiplication and εi~N (0,1).
Next, we define a simple inner product decoder that aims to reconstruct adjacency

matrix A using learned latent variable Z:

p(Ã|Z) =
n

∏
i=1

n

∏
j=1

p(Ãij|zizj) (6)

p(Ãij = 1|zizj) = sigmoid
(

zi, zj
T
)

(7)
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Finally, to make the approximated adjacency matrix Ã and the original adjacency
matrix A as close as possible, we optimize the model using the following loss function:

L = Eq(Z|(X,A))

[
log p(Ã|Z)

]
− KL[q(Z|X, A) ‖ p(Z)] (8)

where KL[q (·)‖p (·)] is the Kullback–Leibler divergence [26] between q (·) and p (·). Here, we
assume p (Z)~N (0,1). The cost function reflects how accurately our model can reconstruct
the input network and how closely the latent variables can match p (Z). Stochastic gradient
descent was used to train the model in order to optimize the cost function with respect to
the parameters of the encoder.

2.5. Neural Network Model

NN has become one of the most popular and powerful techniques for supervised
learning [27]. We take Z as final protein feature vectors and train a two-layer NN as the
final supervised classifier. We define a function fmlp:

fmlp(P(l)|W(l), P(l)) = leakyReLU
(

W(l)P(l) + b(l)
)

(9)

Each layer of our NN can be defined as follows:

P(l+1) = fmlp(P(l)|W(l), b(l)) (10)

Here, P(l) is the input for NN, and P(l+1) is the output after each NN layer. We have
P0 = Z in our work. W(l) is a matrix of filter parameters we need to learn in the neural
network, b(l) is the bias of each layer.

Our NN consists of two layers, and we add batch normalization and dropout between
each layer:

P(1) = fmlp(Z|W(0), b(0)) (11)

P(2) = fmlp(P(1), |W(1), b(1)) (12)

We compute the final probability using sigmoid function:

P(3) = sigmoid
(

P(2)
)

(13)

For the NN classifier, it is a multi-class, multi-label model, and the dimension of the
output space is the number of HPO terms within each ontology. Each protein may be
predicted with multiple HPO terms simultaneously. The classifier predicts the probabilities
of the protein having each HPO term annotation.

2.6. Cross-Validation

To test the efficacy of the overall performance of various assessment models, the
five-fold cross-validation protocol was used. The gold standard positive and negative data
sets were randomly divided into five approximately equal subsets. Four subsets were used
as training data sets to train the model, and the remaining one was used as the test data set
to calculate the AUC.

2.7. F-Max for Protein-Centric Evaluation

Protein-centric evaluation measures how accurately methods can assign functional
terms to a protein. We calculated the F-measure (a harmonic mean between precision and
recall) for each threshold and obtained its maximum value over all thresholds. Precision
(pr), recall (rc), and the resulting F-max are defined as:

pr(t) =
1

m(t)

m(t)

∑
i=1

∑ f I( f ∈ Pi(t)Λ f ∈ Ti)

∑ f I( f ∈ Pi(t))
(14)
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rc(t) =
1
n ∑n

i=1

∑ f I( f ∈ Pi(t)Λ f ∈ Ti)

∑ f I( f ∈ Ti)
(15)

F−max = max
t

{
2 · pr(t) · rc(t)
pr(t) + rc(t)

}
(16)

where Pi denotes the set of terms that have predicted scores greater than or equal to t for a
protein i, Ti denotes the corresponding ground-truth set of terms for that protein, m(t) is
the number of proteins with at least one predicted score greater than or equal to t, I(·) is an
indicator function, and n is the total number of proteins.

2.8. AUC for Term-Centric Evaluation

Term-centric evaluation measures how accurately methods can assign proteins to a
functional term. Here, we use AUC (the area under ROC curve) for term-centric evalua-
tion. The ROC curve can show the efficacy of one test by presenting both sensitivity and
specificity for different cutoff points. For cutoff t and HPO term f , sensitivity (Sn) and
specificity (Sp) are defined as:

Sn(t) = ∑n
i=1 I( f ∈ Pi(t)Λ f ∈ Ti)

∑n
i=1 I( f ∈ Ti)

(17)

Sp(t) = ∑n
i=1 I( f /∈ Pi(t)Λ f /∈ Ti)

∑n
i=1 I( f /∈ Ti)

(18)

We then computed AUC f of term f using the ROC curve obtained by plotting (1 −
Sp(t),Sn(t)) changing t, and obtained the final AUC by averaging AUC f over all terms. An
ideal test with perfect discrimination (100% sensitivity, 100% specificity) has an AUC of
1.0, whereas a non-informative prediction has the AUC of 0.5, indicating that it may be
achieved by mere guess. The more a test’s AUC approximates to 1.0, the higher its overall
efficacy will be.

3. Results
3.1. Overview of Our Prediction Protocol

We have developed a protein-phenotype associations prediction pipeline. The first
stage of GraphPheno is protein embedding. The model takes STRING PPI network and pro-
teins amino acid sequences as input. PPI network was converted to the format of adjacency
matrix. Protein amino acid sequences were embedded using the conjoint triad (CT) method
and served as the proteins’ initial features (Figure 1A). The second stage of GraphPheno is
an unsupervised feature extraction based on variational graph autoencoder (VGAE) [23],
which can generate latent representations based on both topological information from
PPI network and protein sequence features (Figure 1B). The purpose of VGAE is to learn
interpretable embedding for each protein by training the encoder and decoder at the same
time. The encoder is a two-layer GCN architecture, which can map the original features X
to the latent variable Z with the network information A. As our latent embedding already
contains both node attributes and sequence information, we define a simple inner product
decoder that aims to reconstruct adjacency matrix A using learned latent variables Z. In
the third stage of GraphPheno, as shown in Figure 1, we take Z as the final protein feature
vectors and train a two-layer NN as the final supervised classifier. Each dense layer consists
of three parts: “Fully connected layer”, “Batch Normalization” and “Dropout”. The inputs
to the NN are feature vectors for each protein, whereas the output layer represents HPO
terms that we aim to predict (Figure 1C).
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Figure 1. Overview of GraphPheno. The model consists of three modules: (A) the Protein embedding
module: this module takes proteins interaction and sequence information as input. PPI network was
converted to the format of adjacency matrix A. Proteins amino acid sequences were embedded using
the conjoint triad (CT) method and served as proteins initial features X; (B) the VGAE module for
feature embedding: This module consists of a two-layer GCN encoder and a dot product decoder,
and generates latent representations Z based on both topological information from PPI network
and protein sequence features. The adjacency matrix Ã is reconstructed using the latent variable Z
through the dot product decoder. (C) Neural network module for prediction: Gold standard dataset
is used to train this module. This module takes VGAE embedding as an input to produce prediction
scores for each gene-phenotype association.

3.2. Performance Evaluation for GraphPheno

To verify the effectiveness of model integrating protein sequences and PPI network,
we constructed six baseline methods.

Baseline 1, ‘Sequence’: Variational autoencoder was used to generate feature vectors
based on protein sequences, and then NN (Neural Network) was used to give prediction
scores for each protein-phenotype associations.

Baseline 2, ‘BLAST’: Blast was used to retrieve the query protein against the gold
standard dataset, and make predictions about a protein-phenotype association based on
the number of blast hits with proteins annotated with the HPO term divided by the total
number of blast hits.

Baseline 3, ‘PPI network’: The prediction scores for each protein-phenotype association
were calculated as the number of interaction partners with the query protein which are also
annotated to the query HPO term, divided by total number of query protein’s interaction
partners in the STRING PPI network.

Baseline 4, ‘PPI network (VGAE)’: VGAE was used to generate feature vectors based
on PPI network, and then NN was used to generate prediction scores for predicted protein-
phenotype associations.

Baseline 5, ‘Concatenation’: To verify the effectiveness of using graph autoencoder
for data integration, we constructed a baseline integration method called ‘Concatenation’.
This method integrates protein sequences and PPI network by using a simple vector
concatenation protocol.

Baseline 6, ‘Naive’: This method was developed by Wyatt et al. [28] for protein-
centric evaluation. It assumes that there is a similar HPO term distribution for any protein.
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The prediction score for each protein-HPO term association was based on the number of
appearances of the HPO term in the database.

The results in Figure 2A,B indicate that the GraphPheno achieved the best performance
in both term-centric evaluation and protein-centric evaluation. The performance difference
between GraphPheno and all other methods were all significant (p < 0.001) by Student’s t
test.
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Figure 2. Performance evaluation of GraphPheno. (A,B) Performance comparison of various predic-
tion models in term-centric evaluation (A) and protein-centric evaluation (B). Confidence intervals
(95%) were determined using bootstrapping with 100 iterations. (C) The distributions of AUCs for
the prediction of 3741 HPO terms by GraphPheno model against five-fold cross-validation prediction.
(D) The distributions of AUCs for the prediction of 2993 HPO terms by GraphPheno model against
independent test set validation. The mean value of AUCs are plotted in dotted lines.

Interestingly, ‘PPI network’ shows the performance second only to GraphPheno in
term-centric evaluation, yet its performance decreases dramatically in protein-centric
evaluation. This method makes predictions by counting the number of interaction partners
with the query protein, so it is only effective when HPO term has a considerable amount of
annotation genes. However, we found that HPO terms with high appearances, i.e., Very
common, extremely common, occupy only small parts (7.49% and 4.32%, respectively) of
all HPO terms (Supplementary Figure S1), and this could underestimate its performance in
protein-centric evaluation.

In particular, ‘Naive’ shows the performance second only to GraphPheno in protein-
centric evaluation. ‘Naive’ baseline uses the number of appearances of HPO term as the
prediction score, but it is not possible to evaluate it for term-centric evaluation because it
reports the same score for an HPO term for any gene.

In addition to the five-fold cross-validation, we assessed our model on a novel inde-
pendent test set of 128,115 gene-phenotype associations that were newly included in the
database between June 2019 and April 2021 (none of them was used in the cross-validation
for training). The distributions of AUC for five-fold cross-validation and independent test
prediction using GraphPheno of each phenotype are shown in Figure 2C,D, respectively.

Moreover, we conducted performance comparison on automatic HPO annotation for
no-knowledge proteins under the benchmark of the CAFA2 challenge [4] as described in
Method 2.2 using protein centric metric F-max (Figure 3). GraphPheno is compared with
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the top performing CAFA2 [4] participating methods (EVEX [4], Rost Lab [4], Tian Lab [4],
Anacleto Lab [4], Gouph Lab [4], KernelFusion [4], INGA-Tosatto [29], BAR++ [4]), baseline
methods in CAFA2 challenge (Naive, BLAST), and two HPO predicting methods proposed
after CAFA2 challenge (HPOLabeler and HPODNETS). The results of eight CAFA2 partici-
pating methods and two baselines were copied from CAFA2 result announcement, and the
results of HPODNETS were copied from their papers. We ran GraphPheno and HPOLabeler
using the data sources released before the beginning of CAFA2 challenge (January 2014) to
avoid information leakage. We found that GraphPheno outperforms all top performing
CAFA2 participating methods and HPODNETS (Figure 3). In particular, HPOLabeler has
slightly higher F-max than GraphPheno (0.396 vs. 0.383, p-value = 1.92 × 10−4, U-test). It
should be noted that HPOLabeler can make use of wide variety of biological evidences
from Gene Ontology [30], InterPro [31], and HPO term frequency [1]. In constract, Graph-
Pheno only uses protein primary sequence and protein interaction data as input. For those
proteins without rich annotations, GraphPheno can be a good complement to HPOLabeler.
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Figure 3. Performance comparison under the benchmark of the CAFA2 challenge using F-max.
GraphPheno (green) was compared with the top performing CAFA2 participating methods (light
gray), baseline methods in CAFA2 challenge (red for Naive, and blue for BLAST), and several HPO
predicting methods proposed after CAFA2 challenge (dark gray). F-max is the maximum value of
F-measure over all thresholds. Confidence intervals (95%) were determined using bootstrapping with
100 iterations.

3.3. Predicted and Known Phenotype-Associated Genes Share Similar Biological Properties

Next, we trained GraphPheno by all the available gene-phenotype relationships in HPO
database before April 2021, and implemented a proteome-wide gene-phenotype association
scanning to generate a predicted gene-phenotype association data set. We use Youden In-
dex [32] to find cut-point with optimal threshold in five-fold cross-validation to determine
gene-phenotype association authenticity. Ultimately, we predicted 21,114,059 pairs of can-
didate gene-phenotype associations between 18,155 genes and 4369 phenotypes. To further
clarify the reliability of the model’s prediction results, we have conducted multiple bioinfor-
matics analysis. We checked the sequence consistency and protein–protein interaction number
between known annotated genes and predicted genes across 4369 phenotypes, and those
between known annotated genes and random genes as controls. The random genes were
randomly selected from unannotated genes of each phenotype with an equal number of pre-
dicted genes. As expected, predicted genes have a significantly higher sequence consistency



Cells 2022, 11, 2485 10 of 16

and probability of interaction with known annotated genes than random genes (Figure 4A,B),
which is obvious since we use sequence and PPI network as input.

Cells 2022, 11, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 4. Predicted and known annotated genes of 4369 phenotypes share similar biological prop-

erties. Box plots of the sequence consistency (A), number of protein–protein interactions (B), gene 

expression correlation coefficient (C), number of proteins in the smallest shared biological process 

(D) between predicted genes and random genes with known annotated genes for each phenotype. 

The random genes were randomly selected from unannotated genes of each phenotype with an 

equal number of predicted genes. (In the box plots, the middle bar represents the median, and the 

box represents the interquartile range; bars extend to 1.5× the interquartile range. p-values are cal-

culated by the Student’s t-test and shown on the top of the boxes. *** p-value < 0.001, **** p-value < 

0.0001.). 

We also found that predicted genes have higher gene expression correlation with 

known annotated genes than random genes (Figure 4C), which suggesting the effective-

ness of our predicted gene–phenotype association since we did not use gene expression 

data in training. 

Known annotated genes and predicted genes associated with certain phenotype are 

supposed to be of the same biological functions. Here, we introduce the smallest shared 

biological process (SSBP) [33] to measure the functional similarity of a pair of proteins. 

SSBP of each pair of proteins was computed based on Gene Ontology by finding all the 

GO terms shared by them, and the GO term with the smallest protein count was identified. 

Protein pairs with smaller SSBP tend to share more specific GO terms. Although we did 

not use GO annotation for training, predicted genes still have statistically lower SSBP with 

known annotated genes compared with random genes (Figure 4D). 

3.4. Discovery of Genes Associated with Abnormality of Mitochondrial Respiratory Chain 

Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, 

which supplies more than 95% of the total energy requirement in the cells. The mitochon-

drial respiratory chain (MRC) comprises ~92 nuclear and mitochondrial DNA-encoded 

protein subunits that are organized into five different multi-subunit respiratory com-

plexes [34]. These complexes produce 90% of the ATP required for cell sustenance. Dam-

age to the mitochondrial respiratory chain has been suggested to be an important factor 

in the pathogenesis of a range of psychiatric disorders [35,36]. Tissues with high energy 

demands, such as the brain, contain a large number of mitochondria, being therefore more 

susceptible to reduction in the aerobic metabolism [37]. 

We predicted 995 candidate DAMRC (HP:0008972)-associated genes using 

GraphPheno. In a quantitative functional analysis of these genes, we considered the en-

richment of GO terms and KEGG pathways through a hyper-geometric test. We found 

that a relatively larger shared enriched GO terms and KEGG pathways appeared in the 

known annotated and predicted genes (Figure 5A). In particular, we found predicted 

DAMRC (HP:0008972)-associated genes were actively involved in mitochondrial inner 

membrane, mitochondrial protein complex, respiratory electron transport chain, etc. (Fig-

Figure 4. Predicted and known annotated genes of 4369 phenotypes share similar biological prop-
erties. Box plots of the sequence consistency (A), number of protein–protein interactions (B), gene
expression correlation coefficient (C), number of proteins in the smallest shared biological process (D)
between predicted genes and random genes with known annotated genes for each phenotype. The
random genes were randomly selected from unannotated genes of each phenotype with an equal
number of predicted genes. (In the box plots, the middle bar represents the median, and the box
represents the interquartile range; bars extend to 1.5× the interquartile range. p-values are calculated
by the Student’s t-test and shown on the top of the boxes. *** p-value < 0.001, **** p-value < 0.0001).

We also found that predicted genes have higher gene expression correlation with
known annotated genes than random genes (Figure 4C), which suggesting the effectiveness
of our predicted gene-phenotype association since we did not use gene expression data in
training.

Known annotated genes and predicted genes associated with certain phenotype are
supposed to be of the same biological functions. Here, we introduce the smallest shared
biological process (SSBP) [33] to measure the functional similarity of a pair of proteins.
SSBP of each pair of proteins was computed based on Gene Ontology by finding all the
GO terms shared by them, and the GO term with the smallest protein count was identified.
Protein pairs with smaller SSBP tend to share more specific GO terms. Although we did
not use GO annotation for training, predicted genes still have statistically lower SSBP with
known annotated genes compared with random genes (Figure 4D).

3.4. Discovery of Genes Associated with Abnormality of Mitochondrial Respiratory Chain

Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which
supplies more than 95% of the total energy requirement in the cells. The mitochondrial
respiratory chain (MRC) comprises ~92 nuclear and mitochondrial DNA-encoded protein
subunits that are organized into five different multi-subunit respiratory complexes [34].
These complexes produce 90% of the ATP required for cell sustenance. Damage to the
mitochondrial respiratory chain has been suggested to be an important factor in the patho-
genesis of a range of psychiatric disorders [35,36]. Tissues with high energy demands, such
as the brain, contain a large number of mitochondria, being therefore more susceptible to
reduction in the aerobic metabolism [37].

We predicted 995 candidate DAMRC (HP:0008972)-associated genes using Graph-
Pheno. In a quantitative functional analysis of these genes, we considered the enrichment of
GO terms and KEGG pathways through a hyper-geometric test. We found that a relatively
larger shared enriched GO terms and KEGG pathways appeared in the known annotated
and predicted genes (Figure 5A). In particular, we found predicted DAMRC (HP:0008972)-
associated genes were actively involved in mitochondrial inner membrane, mitochondrial
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protein complex, respiratory electron transport chain, etc. (Figure 5B). Pathway analysis
using Reactome [38] shows that these genes are actively involved in oxidative phosphory-
lation, thermogenesis, and several neurodegenerative diseases (NDs) such as Parkinson’s
disease [36], Huntington’s disease [35] and Alzheimer’s disease [39] (Figure 5C).
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Figure 5. Functional analysis of predicted and known annotated genes with the phenotype of
Decreased activity of mitochondrial respiratory chain. (A) Overlap between predicted and known
annotated “Decreased activity of mitochondrial respiratory chain”-associated genes with respect to
enriched GO terms and KEGG pathways. A relatively large shared GO enrichment terms and KEGG
enrichment pathways was found. (*** p-value < 0.001, hypergeometric test). Predicted “Decreased
activity of mitochondrial respiratory chain”-associated genes are enriched in mitochondrial related
GO terms (B) and Mitochondrial related diseases such as Alzheimer’s disease, Parkinson’s disease,
etc. (C).

Several studies demonstrate that there are reduced expression and impaired activity
of respiratory chain Complexes in NDs [40]. We explored the gene expression level of
those predicted and known DAMRC-related genes in multiple mitochondrial diseases-
related expression data sets from GEO (GSE68719, GSE122063, GSE15222). As a result, we
found that both predicted and known genes associated with DAMRC were enriched in
significantly down-regulated genes in these datasets (Figure 6), indicating our predicted
genes might be involved in these pathological process and act as potential biomarkers. R
package “limma” (Linear Models for Microarray Data) [41] was used to identify significantly
down regulated genes.

Further on, we manually examined the top 150 prioritized DAMRC-associated genes.
Among these 150 genes, 67 genes were associated with the assembly of mitochondrial
respiratory chain complex I–V (53 genes were subunits of mitochondrial respiratory chain
complex, 14 genes were assembly factors of mitochondrial respiratory chain complex and
coenzyme Q), 5 predicted genes were subunits of translocase of the outer mitochondrial
membrane (TOM) 40 and translocase of the inner mitochondrial membrane (TIM) 23
(Figure 7). These results are of biological significance considering that the predictions did
not utilize any function and localization information about mitochondrial respiratory chain.
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Figure 6. Both predicted and known annotated “Decreased activity of mitochondrial respiratory
chain”-associated genes tend to be significantly down regulated in multiple neurodegenerative
diseases. Enrichment ratio was calculated as the GeneRatio divided by Background Ratio. GeneR-
atio refers to the number of predicted or known annotated “Decreased activity of mitochondrial
respiratory chain”-associated genes which are significantly down regulated in the GEO dataset
divided by the total number of predicted or known annotated “Decreased activity of mitochondrial
respiratory chain”-associated genes. Background Ratio refers to the number of significantly down
regulated genes in the GEO dataset divided by the total number of genes identified in the GEO
dataset. (ns: p-value > 0.05, *** p-value < 0.001, hypergeometric test).
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Figure 7. Biological insight into the predicted “Decreased activity of mitochondrial respiratory
chain”-associated genes. The oxidative phosphorylation (OXPHOS) system is embedded in the
lipid bilayer of the inner mitochondrial membrane (IMM) and is composed of five protein enzyme
complexes and two mobile electron carriers namely ubiquinone (CoQ) and cytochrome c (Cyt C).
Translocator of the outer and inner mitochondrial membrane (TOM and TIM, respectively) were also
shown. Predicted “Decreased activity of mitochondrial respiratory chain”-associated genes were
presented in dotted boxes, in which circle and rectangle denote genes which function as the subunits
and assemble factors of mitochondrial respiratory chain complex I–V, TOM40 complex and TIM23
complex, respectively. Predicted “Decreased activity of mitochondrial respiratory chain”-related
genes validated by recent papers or the newest version of HPO database were marked with asterisks.

In more detail, NDUFA8 (Rank:1) and COA6 (Rank:15) were annotated to HP:0011923
(Decreased activity of mitochondrial complex I) and HP:0008347 (Decreased activity of
mitochondrial complex IV), respectively, which are sub classes of HP:0008972 in the newest
version of HPO database (December 2021).
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Our predictions about 2 DAMRC-associated genes were validated by recent papers. An
article published in November 2021 reported that UQCRH (Rank:8)-deficient mouse model
shows impaired CIII activity [42]. ATP5MC3 (Rank:24) encodes a structural complex V
(CV) subunit, and heterozygous ATP5MC3 variants were reported to reduce mitochondrial
complex V activity in a paper published in October 2021 [43].

Moreover, GraphPheno has successfully identified 4 DAMRC-associated genes (UQCRQ,
Rank: 6 [44]; NDUFA5, Rank: 10 [45]; NDUFB8, Rank: 13 [46]; COX5B, Rank: 16 [47]) which
were omitted by HPO database. These findings suggest that our model is of certain prediction
power for novel gene-phenotype associations discovery (Figure 7 and Supplementary Table S4).

GraphPheno also has the ability to find potential drug targets. For example, the
predicted PMPCB (Rank:46, a subunit of mitochondrial-processing peptidase) is a member
of the family of mitoproteases, which can modulate several biological activities necessary
for proper mitochondrial functioning, such as apoptosis. PMPCB has been reported to be
associated with the chemoresistance of HCC to sorafenib. Silencing of PMPCB can increase
HCC tumor cell susceptibility to sorafenib therapy and is a potential drug target [48].

4. Discussion

Determining the HPO annotations of human genes can promote disease gene identi-
fication and prioritization and hence assist in clinical diagnostics. However, the current
HPO annotations are still incomplete. To address this challenge, we developed a novel
computational strategy called GraphPheno to formalize gene features via protein homology
and protein interactions for automatic HPO annotation prediction. GraphPheno exhibits
superior efficacy over routine strategies.

Case studies on mitochondrial related diseases show that GraphPheno has the ability
to find novel gene-phenotype associations and potential drug targets. In fact, it is easy to
extend GraphPheno to other diseases. For example, among the top 80 prioritized Hyper-
cholesterolemia (HP:0003124)-associated genes (only 18 of them are membrane proteins)
predicted by GraphPheno, the knockdown of SOAT1 (Sterol O-acyltransferase 1, located
in endoplasmic reticulum) (Rank:65) was reported to alter the distribution of cellular
cholesterol, and effectively suppresses the proliferation and migration of hepatocellular car-
cinoma [49]. Furthermore, avasimibe, an inhibitor of SOAT1, was reported to markedly re-
duce the size of tumours that had high levels of SOAT1 expression. Besides SOAT1, several
proteins related to cholesterol homeostasis including CYP7A1 (Rank:16, Cytochrome P450
7A1, located in endoplasmic reticulum), HMGCR (Rank:17, 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, located in endoplasmic reticulum) and SREBF2 (Rank:45, Sterol
regulatory element-binding protein 2, located in cytoplasm and endoplasmic reticulum) are
reported to be significantly up-regulated in the HCC tumour tissue, suggesting these genes
might be potential targets for HCC drugs [49] (Supplementary Table S5). In order to facili-
tate researchers to explore many other diseases/phenotypes, a comprehensive predicted
gene-phenotype association dataset involving 4369 diseases/phenotypes was provided to
facilitate the study of diseases/phenotypes (Supplementary Table S6). This dataset could be
a valuable resource for biologists to find candidate genes for diseases/phenotypes research.

The sequence homology of proteins is very important for prediction. In GraphPheno,
genes with similar sequences tend to group in the same functional category in the prediction
output. For example, among the predicted phenotype terms for CYP3A4 and CYP3A5
(which are members of cytochrome P450 enzyme system (CYP) family 3 subfamily A),
there are 4 overlap phenotypes: HP:0001939 (Abnormality of metabolism/homeostasis),
HP:0011849 (Abnormal bone ossification), HP:0004349 (Reduced bone mineral density) and
HP:0000818 (Abnormality of the endocrine system). Meanwhile, if we randomly selected
two genes and count the number of overlap phenotypes, we found that the average number
of the overlap phenotypes is significantly lower than that of CYP3A4 and CYP3A5 (0.5 vs.
4, empirical p-value < 0.01), which means GraphPheno can describe the commonalities
and differences between protein sequences and lead to the grouping of paralogous genes
with similar sequences in the same functional category in the prediction output. It should
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be pointed out that the baseline ‘Sequence’ method without integration of PPI network
information has an average AUC of 0.497, which is worse than random, meaning it is
difficult to learn vectors that can distinguish functional differences between proteins based
on primary structures only. However, by integration of protein sequences and PPI network
information, GraphPheno can obtain good predicting performance.

HPOLabeler can make use of wide variety of evidences from Gene Ontology, protein
domains, trigram frequency and HPO term frequency to predict protein-HPO associations.
It is the first method which has outperformed a simple Naive approach in the second Critical
Assessment of Functional Annotation, 2013–2014 (CAFA2). In performance comparison
under the benchmark of the CAFA2 [4], HPOLabeler has slightly higher F-max than
GraphPheno (0.396 vs. 0.383, p-value = 1.92 × 10−4, U-test). It should be pointed out
that GraphPheno only uses protein primary sequence and protein interaction data as
input without any other prior knowledge. As announced by authors of HPOLabeler,
temporal validation has low prediction performance, which might be caused by incomplete
annotation of new proteins [13]. For those proteins without rich annotations, GraphPheno
can be a good complement to HPOLabeler. We calculated the F-max of two methods
(HPOLabeler and GraphPheno) against one independent test dataset of newly annotated
70 genes (HPO annotations added between 9 March 2018 and 21 December 2018) which
have less than 10 GO annotations. The results show that GraphPheno was of significantly
higher F-max than HPOLabeler (0.153 vs. 0.054, p-value = 2.22 × 10−16, Student’s t-test).

In general, we believe GraphPheno will contribute to novel gene-phenotype associa-
tion discovery and be a valuable resource for disease/phenotypes research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11162485/s1, Supplementary Table S1: Gold standard dataset;
Supplementary Table S2: Comparison dataset; Supplementary Table S3: Relationship between
amino acids and CT classes; Supplementary Table S4: Top 150 prioritized HP:0008972 (Decreased
mitochondrial respiratory chain activity)-associated genes. Supplementary Table S5: Top 80 pri-
oritized HP:0003146 (Hypocholesterolemia)-associated genes; Supplementary Table S6: Predicted
gene-phenotype association dataset; Supplementary Figure S1: Statistics on groups of HPO terms.

Author Contributions: Conceptualization, Y.L. and D.L. (Dong Li); methodology, Y.L., R.H., Y.Q.,
D.L. (Dianke Li) and D.L. (Dong Li); validation, R.H. and Y.Q.; resources, Y.Z., Y.Q. and Z.L.; data
curation, Y.Z., S.X., X.L.; writing—original draft preparation, D.L. (Dong Li); writing—review and
editing, Y.L., Y.Q. and R.H.; supervision, D.L. (Dong Li); project administration, D.L. (Dong Li). All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 31871341 and 32088101. This research was also funded by the National key Research and
Development Program of China, grant number 2021YFA1301603 and 2020YFE0202200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data and codes are available at https://github.com/herry0
310/graphpheno, accessed on 7 March 2022.

Acknowledgments: We thank Emmanuel Boutet, Damian Szklarczyk and Sebastian Köhler for kindly
providing related data and Liu Lizhi for fruitful discussion.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.; Brown, D.L.; Brudno, M.; Campbell,

J. The Human Phenotype Ontology project: Linking molecular biology and disease through phenotype data. Nucleic Acids Res.
2014, 42, D966–D974. [CrossRef] [PubMed]

2. Kohler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;
Brower, A.M. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cells11162485/s1
https://www.mdpi.com/article/10.3390/cells11162485/s1
https://github.com/herry0310/graphpheno
https://github.com/herry0310/graphpheno
http://doi.org/10.1093/nar/gkt1026
http://www.ncbi.nlm.nih.gov/pubmed/24217912
http://doi.org/10.1093/nar/gkaa1043
http://www.ncbi.nlm.nih.gov/pubmed/33264411


Cells 2022, 11, 2485 15 of 16

3. Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Sokolov, A.; Graim, K.; Funk, C.; Verspoor, K.; Ben-Hur, A. A
large-scale evaluation of computational protein function prediction. Nat. Methods 2013, 10, 221–227. [CrossRef] [PubMed]

4. Jiang, Y.; Oron, T.R.; Clark, W.T.; Bankapur, A.R.; D’Andrea, D.; Lepore, R.; Funk, C.S.; Kahanda, I.; Verspoor, K.M.; Ben-Hur, A.
An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 2016, 17, 184.
[CrossRef] [PubMed]

5. Zhou, N.; Jiang, Y.; Bergquist, T.R.; Lee, A.J.; Kacsoh, B.Z.; Crocker, A.W.; Lewis, K.A.; Georghiou, G.; Nguyen, H.N.; Hamid,
M.N. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes
through experimental screens. Genome Biol. 2019, 20, 244. [CrossRef]

6. Gong, Q.; Ning, W.; Tian, W. GoFDR: A sequence alignment based method for predicting protein functions. Methods 2016, 93,
3–14. [CrossRef]

7. Scheibenreif, L.; Littmann, M.; Orengo, C.; Rost, B. FunFam protein families improve residue level molecular function prediction.
BMC Bioinform. 2019, 20, 400. [CrossRef]

8. Valentini, G.; Armano, G.; Frasca, M.; Lin, J.; Mesiti, M.; Re, M. RANKS: A flexible tool for node label ranking and classification in
biological networks. Bioinformatics 2016, 32, 2872–2874. [CrossRef]

9. Xie, M.; Xu, Y.; Zhang, Y.; Hwang, T.; Kuang, R. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
PLoS ONE 2015, 10, e0125138. [CrossRef]

10. Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T. The
GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids
Res. 2010, 38, W214–W220. [CrossRef]

11. Liu, L.; Mamitsuka, H.; Zhu, S. HPODNets: Deep graph convolutional networks for predicting human protein-phenotype
associations. Bioinformatics 2021, 38, 799–808. [CrossRef]

12. Lan, L.; Djuric, N.; Guo, Y.; Vucetic, S. MS-kNN: Protein function prediction by integrating multiple data sources. BMC Bioinform.
2013, 14 (Suppl. 3), S8. [CrossRef]

13. Liu, L.; Huang, X.; Mamitsuka, H.; Zhu, S. HPOLabeler: Improving prediction of human protein-phenotype associations by
learning to rank. Bioinformatics 2020, 36, 4180–4188. [CrossRef]

14. You, R.; Zhang, Z.; Xiong, Y.; Sun, F.; Mamitsuka, H.; Zhu, S. GOLabeler: Improving sequence-based large-scale protein function
prediction by learning to rank. Bioinformatics 2018, 34, 2465–2473. [CrossRef] [PubMed]

15. Kahanda, I.; Funk, C.; Verspoor, K.; Ben-Hur, A. PHENOstruct: Prediction of human phenotype ontology terms using heteroge-
neous data sources. F1000research 2015, 4, 259. [CrossRef] [PubMed]

16. Kulmanov, M.; Khan, M.A.; Hoehndorf, R. DeepGO: Predicting protein functions from sequence and interactions using a deep
ontology-aware classifier. Bioinformatics 2018, 34, 660–668. [CrossRef] [PubMed]

17. Kulmanov, M.; Hoehndorf, R. DeepGOPlus: Improved protein function prediction from sequence. Bioinformatics 2020, 36, 422–429.
[CrossRef]

18. Valentini, G. True path rule hierarchical ensembles for genome-wide gene function prediction. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2011, 8, 832–847. [CrossRef]

19. Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.J.; Poux, S.; Bougueleret, L.; Xenarios, I.
UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods
Mol. Biol. 2016, 1374, 23–54. [CrossRef]

20. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The
STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res.
2017, 45, D362–D368. [CrossRef]

21. Shen, J.; Zhang, J.; Luo, X.; Zhu, W.; Yu, K.; Chen, K.; Li, Y.; Jiang, H. Predicting protein-protein interactions based only on
sequences information. Proc. Natl. Acad. Sci. USA 2007, 104, 4337–4341. [CrossRef] [PubMed]

22. Fan, K.; Guan, Y.; Zhang, Y. Graph2GO: A multi-modal attributed network embedding method for inferring protein functions.
GigaScience 2020, 9, giaa081. [CrossRef] [PubMed]

23. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
24. Zhang, X.; Zou, Y.; Shi, W. Dilated convolution neural network with LeakyReLU for environmental sound classification. In

Proceedings of the 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 23–25 August 2017; pp.
1–5. [CrossRef]

25. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
26. Hershey, J.R.; Olsen, P.A. Approximating the Kullback Leibler Divergence between Gaussian Mixture Models. In Proceedings of

the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI, USA, 15–20
April 2007; pp. 317–320. [CrossRef]

27. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
28. Clark, W.T.; Radivojac, P. Analysis of protein function and its prediction from amino acid sequence. Proteins 2011, 79, 2086–2096.

[CrossRef]
29. Piovesan, D.; Giollo, M.; Leonardi, E.; Ferrari, C.; Tosatto, S.C. INGA: Protein function prediction combining interaction networks,

domain assignments and sequence similarity. Nucleic Acids Res. 2015, 43, W134–W140. [CrossRef]

http://doi.org/10.1038/nmeth.2340
http://www.ncbi.nlm.nih.gov/pubmed/23353650
http://doi.org/10.1186/s13059-016-1037-6
http://www.ncbi.nlm.nih.gov/pubmed/27604469
http://doi.org/10.1186/s13059-019-1835-8
http://doi.org/10.1016/j.ymeth.2015.08.009
http://doi.org/10.1186/s12859-019-2988-x
http://doi.org/10.1093/bioinformatics/btw235
http://doi.org/10.1371/journal.pone.0125138
http://doi.org/10.1093/nar/gkq537
http://doi.org/10.1093/bioinformatics/btab729
http://doi.org/10.1186/1471-2105-14-S3-S8
http://doi.org/10.1093/bioinformatics/btaa284
http://doi.org/10.1093/bioinformatics/bty130
http://www.ncbi.nlm.nih.gov/pubmed/29522145
http://doi.org/10.12688/f1000research.6670.1
http://www.ncbi.nlm.nih.gov/pubmed/26834980
http://doi.org/10.1093/bioinformatics/btx624
http://www.ncbi.nlm.nih.gov/pubmed/29028931
http://doi.org/10.1093/bioinformatics/btz595
http://doi.org/10.1109/TCBB.2010.38
http://doi.org/10.1007/978-1-4939-3167-5_2
http://doi.org/10.1093/nar/gkw937
http://doi.org/10.1073/pnas.0607879104
http://www.ncbi.nlm.nih.gov/pubmed/17360525
http://doi.org/10.1093/gigascience/giaa081
http://www.ncbi.nlm.nih.gov/pubmed/32770210
http://doi.org/10.1109/ICDSP.2017.8096153
http://doi.org/10.1109/ICASSP.2007.366913
http://doi.org/10.1038/nature14539
http://doi.org/10.1002/prot.23029
http://doi.org/10.1093/nar/gkv523


Cells 2022, 11, 2485 16 of 16

30. Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017, 45,
D331–D338. [CrossRef]

31. Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.Y.; Dosztanyi, Z.; El-Gebali, S.; Fraser, M.
InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017, 45, D190–D199. [CrossRef]

32. Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations
affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [CrossRef]

33. Li, D.; Liu, W.; Liu, Z.; Wang, J.; Liu, Q.; Zhu, Y.; He, F. PRINCESS, a protein interaction confidence evaluation system with
multiple data sources. Mol. Cell Proteom. 2008, 7, 1043–1052. [CrossRef] [PubMed]

34. Vercellino, I.; Sazanov, L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol.
2022, 23, 141–161. [CrossRef] [PubMed]

35. McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018, 25, 24–34. [CrossRef]
36. Larsen, S.B.; Hanss, Z.; Kruger, R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res.

2018, 373, 21–37. [CrossRef]
37. Wallace, D.C.; Fan, W.; Procaccio, V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 2010, 5, 297–348. [CrossRef]

[PubMed]
38. Jassal, B.; Matthews, L.; Viteri, G. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [CrossRef]

[PubMed]
39. Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science 2006, 314, 777–781. [CrossRef]
40. Connolly, N.M.C.; Theurey, P.; Adam-Vizi, V.; Bazan, N.G.; Bernardi, P.; Bolanos, J.P.; Culmsee, C.; Dawson, V.L.; Deshmukh, M.;

Duchen, M.R. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative
diseases. Cell Death Differ. 2018, 25, 542–572. [CrossRef]

41. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

42. Vidali, S.; Gerlini, R.; Thompson, K.; Urquhart, J.E.; Meisterknecht, J.; Aguilar-Pimentel, J.A.; Amarie, O.V.; Becker, L.; Breen,
C.; Calzada-Wack, J. Characterising a homozygous two-exon deletion in UQCRH: Comparing human and mouse phenotypes.
EMBO Mol. Med. 2021, 13, e14397. [CrossRef]

43. Neilson, D.E.; Zech, M.; Hufnagel, R.B.; Slone, J.; Wang, X.; Homan, S.; Gutzwiller, L.M.; Leslie, E.J.; Leslie, N.D.; Xiao, J. A Novel
Variant of ATP5MC3 Associated with Both Dystonia and Spastic Paraplegia. Mov. Disord. 2022, 37, 375–383. [CrossRef] [PubMed]

44. Barel, O.; Shorer, Z.; Flusser, H.; Ofir, R.; Narkis, G.; Finer, G.; Shalev, H.; Nasasra, A.; Saada, A.; Birk, O.S. Mitochondrial complex
III deficiency associated with a homozygous mutation in UQCRQ. Am. J. Hum. Genet. 2008, 82, 1211–1216. [CrossRef] [PubMed]

45. Nie, H.; Yu, X.; He, H.; Zhou, L.; Li, Q.; Song, C.; Wang, D.; Ren, T.; Chen, Z.; Huang, H. Hepatocyte miR-33a mediates
mitochondrial dysfunction and hepatosteatosis by suppressing NDUFA5. J. Cell. Mol. Med. 2018, 22, 6285–6293. [CrossRef]

46. Piekutowska-Abramczuk, D.; Assouline, Z.; Matakovic, L.; Feichtinger, R.G.; Konarikova, E.; Jurkiewicz, E.; Stawinski, P.;
Gusic, M.; Koller, A.; Pollak, A. NDUFB8 Mutations Cause Mitochondrial Complex I Deficiency in Individuals with Leigh-like
Encephalomyopathy. Am. J. Hum. Genet. 2018, 102, 460–467. [CrossRef]

47. Gao, S.P.; Sun, H.F.; Jiang, H.L.; Li, L.D.; Hu, X.; Xu, X.E.; Jin, W. Loss of COX5B inhibits proliferation and promotes senescence
via mitochondrial dysfunction in breast cancer. Oncotarget 2015, 6, 43363–43374. [CrossRef]

48. Zheng, J.F.; He, S.; Zeng, Z.; Gu, X.; Cai, L.; Qi, G. PMPCB Silencing Sensitizes HCC Tumor Cells to Sorafenib Therapy. Mol. Ther.
2019, 27, 1784–1795. [CrossRef] [PubMed]

49. Jiang, Y.; Sun, A.; Zhao, Y. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019, 567,
257–261. [CrossRef]

http://doi.org/10.1093/nar/gkw1108
http://doi.org/10.1093/nar/gkw1107
http://doi.org/10.1002/bimj.200710415
http://doi.org/10.1074/mcp.M700287-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/18230642
http://doi.org/10.1038/s41580-021-00415-0
http://www.ncbi.nlm.nih.gov/pubmed/34621061
http://doi.org/10.1111/ene.13413
http://doi.org/10.1007/s00441-017-2768-8
http://doi.org/10.1146/annurev.pathol.4.110807.092314
http://www.ncbi.nlm.nih.gov/pubmed/20078222
http://doi.org/10.1093/nar/gkz1031
http://www.ncbi.nlm.nih.gov/pubmed/31691815
http://doi.org/10.1126/science.1132814
http://doi.org/10.1038/s41418-017-0020-4
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.15252/emmm.202114397
http://doi.org/10.1002/mds.28821
http://www.ncbi.nlm.nih.gov/pubmed/34636445
http://doi.org/10.1016/j.ajhg.2008.03.020
http://www.ncbi.nlm.nih.gov/pubmed/18439546
http://doi.org/10.1111/jcmm.13918
http://doi.org/10.1016/j.ajhg.2018.01.008
http://doi.org/10.18632/oncotarget.6222
http://doi.org/10.1016/j.ymthe.2019.06.014
http://www.ncbi.nlm.nih.gov/pubmed/31337603
http://doi.org/10.1038/s41586-019-0987-8

	Introduction 
	Materials and Methods 
	Gold Standard Data Sets 
	Comparison Dataset 
	Protein–Protein Interaction Network and Sequence Evidence for Prediction 
	Variational Graph Autoencoder Model 
	Neural Network Model 
	Cross-Validation 
	F-Max for Protein-Centric Evaluation 
	AUC for Term-Centric Evaluation 

	Results 
	Overview of Our Prediction Protocol 
	Performance Evaluation for GraphPheno 
	Predicted and Known Phenotype-Associated Genes Share Similar Biological Properties 
	Discovery of Genes Associated with Abnormality of Mitochondrial Respiratory Chain 

	Discussion 
	References

